xref: /linux/crypto/Kconfig (revision 1036633e10f86b793e60dd8698c65df6712cad2a)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
31d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
1162b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1172b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1186a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1192b8c19dbSHerbert Xu	help
1202b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1212b8c19dbSHerbert Xu	  cbc(aes).
1222b8c19dbSHerbert Xu
1236a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1246a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1256a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1266a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1276a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
128946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1294e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1302ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1316a0fcbb4SHerbert Xu
132a38f7907SSteffen Klassertconfig CRYPTO_USER
133a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1345db017aaSHerbert Xu	depends on NET
135a38f7907SSteffen Klassert	select CRYPTO_MANAGER
136a38f7907SSteffen Klassert	help
137d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
138a38f7907SSteffen Klassert	  cbc(aes).
139a38f7907SSteffen Klassert
140326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
141326a6346SHerbert Xu	bool "Disable run-time self tests"
14200ca28a5SHerbert Xu	default y
14300ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1440b767f96SAlexander Shishkin	help
145326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
146326a6346SHerbert Xu	  algorithm registration.
1470b767f96SAlexander Shishkin
1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1495b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1505b2706a4SEric Biggers	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
1515b2706a4SEric Biggers	help
1525b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1535b2706a4SEric Biggers	  including randomized fuzz tests.
1545b2706a4SEric Biggers
1555b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1565b2706a4SEric Biggers	  longer to run than the normal self tests.
1575b2706a4SEric Biggers
158584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
15908c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
160584fffc8SSebastian Siewior	help
161584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
162584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
163584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
164584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
165584fffc8SSebastian Siewior	  an external module that requires these functions.
166584fffc8SSebastian Siewior
167584fffc8SSebastian Siewiorconfig CRYPTO_NULL
168584fffc8SSebastian Siewior	tristate "Null algorithms"
169149a3971SHerbert Xu	select CRYPTO_NULL2
170584fffc8SSebastian Siewior	help
171584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
172584fffc8SSebastian Siewior
173149a3971SHerbert Xuconfig CRYPTO_NULL2
174dd43c4e9SHerbert Xu	tristate
175149a3971SHerbert Xu	select CRYPTO_ALGAPI2
176149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
177149a3971SHerbert Xu	select CRYPTO_HASH2
178149a3971SHerbert Xu
1795068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1803b4afaf2SKees Cook	tristate "Parallel crypto engine"
1813b4afaf2SKees Cook	depends on SMP
1825068c7a8SSteffen Klassert	select PADATA
1835068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1845068c7a8SSteffen Klassert	select CRYPTO_AEAD
1855068c7a8SSteffen Klassert	help
1865068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1875068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1885068c7a8SSteffen Klassert
18925c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
19025c38d3fSHuang Ying       tristate
19125c38d3fSHuang Ying
192584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
193584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
194584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
195b8a28251SLoc Ho	select CRYPTO_HASH
196584fffc8SSebastian Siewior	select CRYPTO_MANAGER
197254eff77SHuang Ying	select CRYPTO_WORKQUEUE
198584fffc8SSebastian Siewior	help
199584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
200584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
201584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
202584fffc8SSebastian Siewior
203584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
204584fffc8SSebastian Siewior	tristate "Authenc support"
205584fffc8SSebastian Siewior	select CRYPTO_AEAD
206584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
207584fffc8SSebastian Siewior	select CRYPTO_MANAGER
208584fffc8SSebastian Siewior	select CRYPTO_HASH
209e94c6a7aSHerbert Xu	select CRYPTO_NULL
210584fffc8SSebastian Siewior	help
211584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
212584fffc8SSebastian Siewior	  This is required for IPSec.
213584fffc8SSebastian Siewior
214584fffc8SSebastian Siewiorconfig CRYPTO_TEST
215584fffc8SSebastian Siewior	tristate "Testing module"
216584fffc8SSebastian Siewior	depends on m
217da7f033dSHerbert Xu	select CRYPTO_MANAGER
218584fffc8SSebastian Siewior	help
219584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
220584fffc8SSebastian Siewior
221266d0516SHerbert Xuconfig CRYPTO_SIMD
222266d0516SHerbert Xu	tristate
223266d0516SHerbert Xu	select CRYPTO_CRYPTD
224266d0516SHerbert Xu
225596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
226596d8750SJussi Kivilinna	tristate
227596d8750SJussi Kivilinna	depends on X86
228065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
229596d8750SJussi Kivilinna
230735d37b5SBaolin Wangconfig CRYPTO_ENGINE
231735d37b5SBaolin Wang	tristate
232735d37b5SBaolin Wang
2333d6228a5SVitaly Chikunovcomment "Public-key cryptography"
2343d6228a5SVitaly Chikunov
2353d6228a5SVitaly Chikunovconfig CRYPTO_RSA
2363d6228a5SVitaly Chikunov	tristate "RSA algorithm"
2373d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
2383d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
2393d6228a5SVitaly Chikunov	select MPILIB
2403d6228a5SVitaly Chikunov	select ASN1
2413d6228a5SVitaly Chikunov	help
2423d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
2433d6228a5SVitaly Chikunov
2443d6228a5SVitaly Chikunovconfig CRYPTO_DH
2453d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
2463d6228a5SVitaly Chikunov	select CRYPTO_KPP
2473d6228a5SVitaly Chikunov	select MPILIB
2483d6228a5SVitaly Chikunov	help
2493d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
2503d6228a5SVitaly Chikunov
2514a2289daSVitaly Chikunovconfig CRYPTO_ECC
2524a2289daSVitaly Chikunov	tristate
2534a2289daSVitaly Chikunov
2543d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
2553d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
2564a2289daSVitaly Chikunov	select CRYPTO_ECC
2573d6228a5SVitaly Chikunov	select CRYPTO_KPP
2583d6228a5SVitaly Chikunov	select CRYPTO_RNG_DEFAULT
2593d6228a5SVitaly Chikunov	help
2603d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
2613d6228a5SVitaly Chikunov
2620d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA
2630d7a7864SVitaly Chikunov	tristate "EC-RDSA (GOST 34.10) algorithm"
2640d7a7864SVitaly Chikunov	select CRYPTO_ECC
2650d7a7864SVitaly Chikunov	select CRYPTO_AKCIPHER
2660d7a7864SVitaly Chikunov	select CRYPTO_STREEBOG
267*1036633eSVitaly Chikunov	select OID_REGISTRY
268*1036633eSVitaly Chikunov	select ASN1
2690d7a7864SVitaly Chikunov	help
2700d7a7864SVitaly Chikunov	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
2710d7a7864SVitaly Chikunov	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
2720d7a7864SVitaly Chikunov	  standard algorithms (called GOST algorithms). Only signature verification
2730d7a7864SVitaly Chikunov	  is implemented.
2740d7a7864SVitaly Chikunov
275584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
276584fffc8SSebastian Siewior
277584fffc8SSebastian Siewiorconfig CRYPTO_CCM
278584fffc8SSebastian Siewior	tristate "CCM support"
279584fffc8SSebastian Siewior	select CRYPTO_CTR
280f15f05b0SArd Biesheuvel	select CRYPTO_HASH
281584fffc8SSebastian Siewior	select CRYPTO_AEAD
282584fffc8SSebastian Siewior	help
283584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
284584fffc8SSebastian Siewior
285584fffc8SSebastian Siewiorconfig CRYPTO_GCM
286584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
287584fffc8SSebastian Siewior	select CRYPTO_CTR
288584fffc8SSebastian Siewior	select CRYPTO_AEAD
2899382d97aSHuang Ying	select CRYPTO_GHASH
2909489667dSJussi Kivilinna	select CRYPTO_NULL
291584fffc8SSebastian Siewior	help
292584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
293584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
294584fffc8SSebastian Siewior
29571ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
29671ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
29771ebc4d1SMartin Willi	select CRYPTO_CHACHA20
29871ebc4d1SMartin Willi	select CRYPTO_POLY1305
29971ebc4d1SMartin Willi	select CRYPTO_AEAD
30071ebc4d1SMartin Willi	help
30171ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
30271ebc4d1SMartin Willi
30371ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
30471ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
30571ebc4d1SMartin Willi	  IETF protocols.
30671ebc4d1SMartin Willi
307f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
308f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
309f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
310f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
311f606a88eSOndrej Mosnacek	help
312f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
313f606a88eSOndrej Mosnacek
314f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L
315f606a88eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm"
316f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
317f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
318f606a88eSOndrej Mosnacek	help
319f606a88eSOndrej Mosnacek	 Support for the AEGIS-128L dedicated AEAD algorithm.
320f606a88eSOndrej Mosnacek
321f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256
322f606a88eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm"
323f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
324f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
325f606a88eSOndrej Mosnacek	help
326f606a88eSOndrej Mosnacek	 Support for the AEGIS-256 dedicated AEAD algorithm.
327f606a88eSOndrej Mosnacek
3281d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3291d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3301d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3311d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
332de272ca7SEric Biggers	select CRYPTO_SIMD
3331d373d4eSOndrej Mosnacek	help
3344e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3351d373d4eSOndrej Mosnacek
3361d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2
3371d373d4eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3381d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3391d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
340d628132aSEric Biggers	select CRYPTO_SIMD
3411d373d4eSOndrej Mosnacek	help
3424e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm.
3431d373d4eSOndrej Mosnacek
3441d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2
3451d373d4eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3461d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3471d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
348b6708c2dSEric Biggers	select CRYPTO_SIMD
3491d373d4eSOndrej Mosnacek	help
3504e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm.
3511d373d4eSOndrej Mosnacek
352396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640
353396be41fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm"
354396be41fSOndrej Mosnacek	select CRYPTO_AEAD
355396be41fSOndrej Mosnacek	help
356396be41fSOndrej Mosnacek	  Support for the MORUS-640 dedicated AEAD algorithm.
357396be41fSOndrej Mosnacek
35856e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE
3592808f173SOndrej Mosnacek	tristate
3602808f173SOndrej Mosnacek	depends on X86
36156e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
36247730958SEric Biggers	select CRYPTO_SIMD
36356e8e57fSOndrej Mosnacek	help
36456e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
36556e8e57fSOndrej Mosnacek	  algorithm.
36656e8e57fSOndrej Mosnacek
3676ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2
3686ecc9d9fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
3696ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3706ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3716ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS640_GLUE
3726ecc9d9fSOndrej Mosnacek	help
3736ecc9d9fSOndrej Mosnacek	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.
3746ecc9d9fSOndrej Mosnacek
375396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280
376396be41fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm"
377396be41fSOndrej Mosnacek	select CRYPTO_AEAD
378396be41fSOndrej Mosnacek	help
379396be41fSOndrej Mosnacek	  Support for the MORUS-1280 dedicated AEAD algorithm.
380396be41fSOndrej Mosnacek
38156e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE
3822808f173SOndrej Mosnacek	tristate
3832808f173SOndrej Mosnacek	depends on X86
38456e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
385e151a8d2SEric Biggers	select CRYPTO_SIMD
38656e8e57fSOndrej Mosnacek	help
38756e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
38856e8e57fSOndrej Mosnacek	  algorithm.
38956e8e57fSOndrej Mosnacek
3906ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2
3916ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
3926ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3936ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3946ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3956ecc9d9fSOndrej Mosnacek	help
3966ecc9d9fSOndrej Mosnacek	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
3976ecc9d9fSOndrej Mosnacek	  algorithm.
3986ecc9d9fSOndrej Mosnacek
3996ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2
4006ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
4016ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
4026ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
4036ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
4046ecc9d9fSOndrej Mosnacek	help
4056ecc9d9fSOndrej Mosnacek	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
4066ecc9d9fSOndrej Mosnacek	  algorithm.
4076ecc9d9fSOndrej Mosnacek
408584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
409584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
410584fffc8SSebastian Siewior	select CRYPTO_AEAD
411584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
412856e3f40SHerbert Xu	select CRYPTO_NULL
413401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
414584fffc8SSebastian Siewior	help
415584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
416584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
417584fffc8SSebastian Siewior
418a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
419a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
420a10f554fSHerbert Xu	select CRYPTO_AEAD
421a10f554fSHerbert Xu	select CRYPTO_NULL
422401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
4233491244cSHerbert Xu	default m
424a10f554fSHerbert Xu	help
425a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
426a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
427a10f554fSHerbert Xu	  algorithm for CBC.
428a10f554fSHerbert Xu
429584fffc8SSebastian Siewiorcomment "Block modes"
430584fffc8SSebastian Siewior
431584fffc8SSebastian Siewiorconfig CRYPTO_CBC
432584fffc8SSebastian Siewior	tristate "CBC support"
433584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
434584fffc8SSebastian Siewior	select CRYPTO_MANAGER
435584fffc8SSebastian Siewior	help
436584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
437584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
438584fffc8SSebastian Siewior
439a7d85e06SJames Bottomleyconfig CRYPTO_CFB
440a7d85e06SJames Bottomley	tristate "CFB support"
441a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
442a7d85e06SJames Bottomley	select CRYPTO_MANAGER
443a7d85e06SJames Bottomley	help
444a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
445a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
446a7d85e06SJames Bottomley
447584fffc8SSebastian Siewiorconfig CRYPTO_CTR
448584fffc8SSebastian Siewior	tristate "CTR support"
449584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
450584fffc8SSebastian Siewior	select CRYPTO_SEQIV
451584fffc8SSebastian Siewior	select CRYPTO_MANAGER
452584fffc8SSebastian Siewior	help
453584fffc8SSebastian Siewior	  CTR: Counter mode
454584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
455584fffc8SSebastian Siewior
456584fffc8SSebastian Siewiorconfig CRYPTO_CTS
457584fffc8SSebastian Siewior	tristate "CTS support"
458584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
459584fffc8SSebastian Siewior	help
460584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
461584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
462ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
463ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
464ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
465584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
466584fffc8SSebastian Siewior	  for AES encryption.
467584fffc8SSebastian Siewior
468ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
469ecd6d5c9SGilad Ben-Yossef
470584fffc8SSebastian Siewiorconfig CRYPTO_ECB
471584fffc8SSebastian Siewior	tristate "ECB support"
472584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
473584fffc8SSebastian Siewior	select CRYPTO_MANAGER
474584fffc8SSebastian Siewior	help
475584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
476584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
477584fffc8SSebastian Siewior	  the input block by block.
478584fffc8SSebastian Siewior
479584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4802470a2b2SJussi Kivilinna	tristate "LRW support"
481584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
482584fffc8SSebastian Siewior	select CRYPTO_MANAGER
483584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
484584fffc8SSebastian Siewior	help
485584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
486584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
487584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
488584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
489584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
490584fffc8SSebastian Siewior
491e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
492e497c518SGilad Ben-Yossef	tristate "OFB support"
493e497c518SGilad Ben-Yossef	select CRYPTO_BLKCIPHER
494e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
495e497c518SGilad Ben-Yossef	help
496e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
497e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
498e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
499e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
500e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
501e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
502e497c518SGilad Ben-Yossef
503584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
504584fffc8SSebastian Siewior	tristate "PCBC support"
505584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
506584fffc8SSebastian Siewior	select CRYPTO_MANAGER
507584fffc8SSebastian Siewior	help
508584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
509584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
510584fffc8SSebastian Siewior
511584fffc8SSebastian Siewiorconfig CRYPTO_XTS
5125bcf8e6dSJussi Kivilinna	tristate "XTS support"
513584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
514584fffc8SSebastian Siewior	select CRYPTO_MANAGER
51512cb3a1cSMilan Broz	select CRYPTO_ECB
516584fffc8SSebastian Siewior	help
517584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
518584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
519584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
520584fffc8SSebastian Siewior
5211c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
5221c49678eSStephan Mueller	tristate "Key wrapping support"
5231c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
5241c49678eSStephan Mueller	help
5251c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
5261c49678eSStephan Mueller	  padding.
5271c49678eSStephan Mueller
52826609a21SEric Biggersconfig CRYPTO_NHPOLY1305
52926609a21SEric Biggers	tristate
53026609a21SEric Biggers	select CRYPTO_HASH
53126609a21SEric Biggers	select CRYPTO_POLY1305
53226609a21SEric Biggers
533012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
534012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
535012c8238SEric Biggers	depends on X86 && 64BIT
536012c8238SEric Biggers	select CRYPTO_NHPOLY1305
537012c8238SEric Biggers	help
538012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
539012c8238SEric Biggers	  Adiantum encryption mode.
540012c8238SEric Biggers
5410f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
5420f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
5430f961f9fSEric Biggers	depends on X86 && 64BIT
5440f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
5450f961f9fSEric Biggers	help
5460f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
5470f961f9fSEric Biggers	  Adiantum encryption mode.
5480f961f9fSEric Biggers
549059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
550059c2a4dSEric Biggers	tristate "Adiantum support"
551059c2a4dSEric Biggers	select CRYPTO_CHACHA20
552059c2a4dSEric Biggers	select CRYPTO_POLY1305
553059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
554059c2a4dSEric Biggers	help
555059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
556059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
557059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
558059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
559059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
560059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
561059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
562059c2a4dSEric Biggers	  AES-XTS.
563059c2a4dSEric Biggers
564059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
565059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
566059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
567059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
568059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
569059c2a4dSEric Biggers
570059c2a4dSEric Biggers	  If unsure, say N.
571059c2a4dSEric Biggers
572584fffc8SSebastian Siewiorcomment "Hash modes"
573584fffc8SSebastian Siewior
57493b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
57593b5e86aSJussi Kivilinna	tristate "CMAC support"
57693b5e86aSJussi Kivilinna	select CRYPTO_HASH
57793b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
57893b5e86aSJussi Kivilinna	help
57993b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
58093b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
58193b5e86aSJussi Kivilinna
58293b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
58393b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
58493b5e86aSJussi Kivilinna
5851da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5868425165dSHerbert Xu	tristate "HMAC support"
5870796ae06SHerbert Xu	select CRYPTO_HASH
58843518407SHerbert Xu	select CRYPTO_MANAGER
5891da177e4SLinus Torvalds	help
5901da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5911da177e4SLinus Torvalds	  This is required for IPSec.
5921da177e4SLinus Torvalds
593333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
594333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
595333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
596333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
597333b0d7eSKazunori MIYAZAWA	help
598333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
599333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
600333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
601333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
602333b0d7eSKazunori MIYAZAWA
603f1939f7cSShane Wangconfig CRYPTO_VMAC
604f1939f7cSShane Wang	tristate "VMAC support"
605f1939f7cSShane Wang	select CRYPTO_HASH
606f1939f7cSShane Wang	select CRYPTO_MANAGER
607f1939f7cSShane Wang	help
608f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
609f1939f7cSShane Wang	  very high speed on 64-bit architectures.
610f1939f7cSShane Wang
611f1939f7cSShane Wang	  See also:
612f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
613f1939f7cSShane Wang
614584fffc8SSebastian Siewiorcomment "Digest"
615584fffc8SSebastian Siewior
616584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
617584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
6185773a3e6SHerbert Xu	select CRYPTO_HASH
6196a0962b2SDarrick J. Wong	select CRC32
6201da177e4SLinus Torvalds	help
621584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
622584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
62369c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
6241da177e4SLinus Torvalds
6258cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
6268cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
6278cb51ba8SAustin Zhang	depends on X86
6288cb51ba8SAustin Zhang	select CRYPTO_HASH
6298cb51ba8SAustin Zhang	help
6308cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
6318cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
6328cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
6338cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
6348cb51ba8SAustin Zhang	  gain performance compared with software implementation.
6358cb51ba8SAustin Zhang	  Module will be crc32c-intel.
6368cb51ba8SAustin Zhang
6377cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
6386dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
639c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
6406dd7a82cSAnton Blanchard	select CRYPTO_HASH
6416dd7a82cSAnton Blanchard	select CRC32
6426dd7a82cSAnton Blanchard	help
6436dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
6446dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
6456dd7a82cSAnton Blanchard	  and newer processors for improved performance.
6466dd7a82cSAnton Blanchard
6476dd7a82cSAnton Blanchard
648442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
649442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
650442a7c40SDavid S. Miller	depends on SPARC64
651442a7c40SDavid S. Miller	select CRYPTO_HASH
652442a7c40SDavid S. Miller	select CRC32
653442a7c40SDavid S. Miller	help
654442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
655442a7c40SDavid S. Miller	  when available.
656442a7c40SDavid S. Miller
65778c37d19SAlexander Boykoconfig CRYPTO_CRC32
65878c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
65978c37d19SAlexander Boyko	select CRYPTO_HASH
66078c37d19SAlexander Boyko	select CRC32
66178c37d19SAlexander Boyko	help
66278c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
66378c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
66478c37d19SAlexander Boyko
66578c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
66678c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
66778c37d19SAlexander Boyko	depends on X86
66878c37d19SAlexander Boyko	select CRYPTO_HASH
66978c37d19SAlexander Boyko	select CRC32
67078c37d19SAlexander Boyko	help
67178c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
67278c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
67378c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
674af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
67578c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
67678c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
67778c37d19SAlexander Boyko
6784a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6794a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6804a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6814a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6824a5dc51eSMarcin Nowakowski	help
6834a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6844a5dc51eSMarcin Nowakowski	  instructions, when available.
6854a5dc51eSMarcin Nowakowski
6864a5dc51eSMarcin Nowakowski
68768411521SHerbert Xuconfig CRYPTO_CRCT10DIF
68868411521SHerbert Xu	tristate "CRCT10DIF algorithm"
68968411521SHerbert Xu	select CRYPTO_HASH
69068411521SHerbert Xu	help
69168411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
69268411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
69368411521SHerbert Xu	  transforms to be used if they are available.
69468411521SHerbert Xu
69568411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
69668411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
69768411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
69868411521SHerbert Xu	select CRYPTO_HASH
69968411521SHerbert Xu	help
70068411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
70168411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
70268411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
703af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
70468411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
70568411521SHerbert Xu
706b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
707b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
708b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
709b01df1c1SDaniel Axtens	select CRYPTO_HASH
710b01df1c1SDaniel Axtens	help
711b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
712b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
713b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
714b01df1c1SDaniel Axtens
715146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
716146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
717146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
718146c8688SDaniel Axtens	help
719146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
720146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
721146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
722146c8688SDaniel Axtens
7232cdc6899SHuang Yingconfig CRYPTO_GHASH
7242cdc6899SHuang Ying	tristate "GHASH digest algorithm"
7252cdc6899SHuang Ying	select CRYPTO_GF128MUL
726578c60fbSArnd Bergmann	select CRYPTO_HASH
7272cdc6899SHuang Ying	help
7282cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
7292cdc6899SHuang Ying
730f979e014SMartin Williconfig CRYPTO_POLY1305
731f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
732578c60fbSArnd Bergmann	select CRYPTO_HASH
733f979e014SMartin Willi	help
734f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
735f979e014SMartin Willi
736f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
737f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
738f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
739f979e014SMartin Willi
740c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
741b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
742c70f4abeSMartin Willi	depends on X86 && 64BIT
743c70f4abeSMartin Willi	select CRYPTO_POLY1305
744c70f4abeSMartin Willi	help
745c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
746c70f4abeSMartin Willi
747c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
748c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
749c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
750c70f4abeSMartin Willi	  instructions.
751c70f4abeSMartin Willi
7521da177e4SLinus Torvaldsconfig CRYPTO_MD4
7531da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
754808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7551da177e4SLinus Torvalds	help
7561da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
7571da177e4SLinus Torvalds
7581da177e4SLinus Torvaldsconfig CRYPTO_MD5
7591da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
76014b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7611da177e4SLinus Torvalds	help
7621da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
7631da177e4SLinus Torvalds
764d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
765d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
766d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
767d69e75deSAaro Koskinen	select CRYPTO_MD5
768d69e75deSAaro Koskinen	select CRYPTO_HASH
769d69e75deSAaro Koskinen	help
770d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
771d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
772d69e75deSAaro Koskinen
773e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
774e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
775e8e59953SMarkus Stockhausen	depends on PPC
776e8e59953SMarkus Stockhausen	select CRYPTO_HASH
777e8e59953SMarkus Stockhausen	help
778e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
779e8e59953SMarkus Stockhausen	  in PPC assembler.
780e8e59953SMarkus Stockhausen
781fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
782fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
783fa4dfedcSDavid S. Miller	depends on SPARC64
784fa4dfedcSDavid S. Miller	select CRYPTO_MD5
785fa4dfedcSDavid S. Miller	select CRYPTO_HASH
786fa4dfedcSDavid S. Miller	help
787fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
788fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
789fa4dfedcSDavid S. Miller
790584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
791584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
79219e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
793584fffc8SSebastian Siewior	help
794584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
795584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
796584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
797584fffc8SSebastian Siewior	  of the algorithm.
798584fffc8SSebastian Siewior
79982798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
80082798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
8017c4468bcSHerbert Xu	select CRYPTO_HASH
80282798f90SAdrian-Ken Rueegsegger	help
80382798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
80482798f90SAdrian-Ken Rueegsegger
80582798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
80635ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
80782798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
80882798f90SAdrian-Ken Rueegsegger
80982798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8106d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
81182798f90SAdrian-Ken Rueegsegger
81282798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
81382798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
814e5835fbaSHerbert Xu	select CRYPTO_HASH
81582798f90SAdrian-Ken Rueegsegger	help
81682798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
81782798f90SAdrian-Ken Rueegsegger
81882798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
81982798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
820b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
821b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
82282798f90SAdrian-Ken Rueegsegger
823b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
824b6d44341SAdrian Bunk	  against RIPEMD-160.
825534fe2c1SAdrian-Ken Rueegsegger
826534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8276d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
828534fe2c1SAdrian-Ken Rueegsegger
829534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
830534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
831d8a5e2e9SHerbert Xu	select CRYPTO_HASH
832534fe2c1SAdrian-Ken Rueegsegger	help
833b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
834b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
835b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
836b6d44341SAdrian Bunk	  (than RIPEMD-128).
837534fe2c1SAdrian-Ken Rueegsegger
838534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8396d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
840534fe2c1SAdrian-Ken Rueegsegger
841534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
842534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
8433b8efb4cSHerbert Xu	select CRYPTO_HASH
844534fe2c1SAdrian-Ken Rueegsegger	help
845b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
846b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
847b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
848b6d44341SAdrian Bunk	  (than RIPEMD-160).
849534fe2c1SAdrian-Ken Rueegsegger
85082798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8516d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
85282798f90SAdrian-Ken Rueegsegger
8531da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8541da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
85554ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8561da177e4SLinus Torvalds	help
8571da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8581da177e4SLinus Torvalds
85966be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
860e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
86166be8951SMathias Krause	depends on X86 && 64BIT
86266be8951SMathias Krause	select CRYPTO_SHA1
86366be8951SMathias Krause	select CRYPTO_HASH
86466be8951SMathias Krause	help
86566be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
86666be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
867e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
868e38b6b7fStim	  when available.
86966be8951SMathias Krause
8708275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
871e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8728275d1aaSTim Chen	depends on X86 && 64BIT
8738275d1aaSTim Chen	select CRYPTO_SHA256
8748275d1aaSTim Chen	select CRYPTO_HASH
8758275d1aaSTim Chen	help
8768275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8778275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8788275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
879e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
880e38b6b7fStim	  Instructions) when available.
8818275d1aaSTim Chen
88287de4579STim Chenconfig CRYPTO_SHA512_SSSE3
88387de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
88487de4579STim Chen	depends on X86 && 64BIT
88587de4579STim Chen	select CRYPTO_SHA512
88687de4579STim Chen	select CRYPTO_HASH
88787de4579STim Chen	help
88887de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
88987de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
89087de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
89187de4579STim Chen	  version 2 (AVX2) instructions, when available.
89287de4579STim Chen
893efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
894efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
895efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
896efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
897efdb6f6eSAaro Koskinen	select CRYPTO_HASH
898efdb6f6eSAaro Koskinen	help
899efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
900efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
901efdb6f6eSAaro Koskinen
9024ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
9034ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
9044ff28d4cSDavid S. Miller	depends on SPARC64
9054ff28d4cSDavid S. Miller	select CRYPTO_SHA1
9064ff28d4cSDavid S. Miller	select CRYPTO_HASH
9074ff28d4cSDavid S. Miller	help
9084ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
9094ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
9104ff28d4cSDavid S. Miller
911323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
912323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
913323a6bf1SMichael Ellerman	depends on PPC
914323a6bf1SMichael Ellerman	help
915323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
916323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
917323a6bf1SMichael Ellerman
918d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
919d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
920d9850fc5SMarkus Stockhausen	depends on PPC && SPE
921d9850fc5SMarkus Stockhausen	help
922d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
923d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
924d9850fc5SMarkus Stockhausen
9251da177e4SLinus Torvaldsconfig CRYPTO_SHA256
926cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
92750e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
9281da177e4SLinus Torvalds	help
9291da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9301da177e4SLinus Torvalds
9311da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9321da177e4SLinus Torvalds	  security against collision attacks.
9331da177e4SLinus Torvalds
934cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
935cd12fb90SJonathan Lynch	  of security against collision attacks.
936cd12fb90SJonathan Lynch
9372ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9382ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9392ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9402ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9412ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9422ecc1e95SMarkus Stockhausen	help
9432ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9442ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9452ecc1e95SMarkus Stockhausen
946efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
947efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
948efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
949efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
950efdb6f6eSAaro Koskinen	select CRYPTO_HASH
951efdb6f6eSAaro Koskinen	help
952efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
953efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
954efdb6f6eSAaro Koskinen
95586c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
95686c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
95786c93b24SDavid S. Miller	depends on SPARC64
95886c93b24SDavid S. Miller	select CRYPTO_SHA256
95986c93b24SDavid S. Miller	select CRYPTO_HASH
96086c93b24SDavid S. Miller	help
96186c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
96286c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
96386c93b24SDavid S. Miller
9641da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9651da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
966bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9671da177e4SLinus Torvalds	help
9681da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9691da177e4SLinus Torvalds
9701da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9711da177e4SLinus Torvalds	  security against collision attacks.
9721da177e4SLinus Torvalds
9731da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9741da177e4SLinus Torvalds	  of security against collision attacks.
9751da177e4SLinus Torvalds
976efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
977efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
978efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
979efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
980efdb6f6eSAaro Koskinen	select CRYPTO_HASH
981efdb6f6eSAaro Koskinen	help
982efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
983efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
984efdb6f6eSAaro Koskinen
985775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
986775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
987775e0c69SDavid S. Miller	depends on SPARC64
988775e0c69SDavid S. Miller	select CRYPTO_SHA512
989775e0c69SDavid S. Miller	select CRYPTO_HASH
990775e0c69SDavid S. Miller	help
991775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
992775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
993775e0c69SDavid S. Miller
99453964b9eSJeff Garzikconfig CRYPTO_SHA3
99553964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
99653964b9eSJeff Garzik	select CRYPTO_HASH
99753964b9eSJeff Garzik	help
99853964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
99953964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
100053964b9eSJeff Garzik
100153964b9eSJeff Garzik	  References:
100253964b9eSJeff Garzik	  http://keccak.noekeon.org/
100353964b9eSJeff Garzik
10044f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
10054f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
10064f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
10074f0fc160SGilad Ben-Yossef	help
10084f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
10094f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
10104f0fc160SGilad Ben-Yossef
10114f0fc160SGilad Ben-Yossef	  References:
10124f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
10134f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
10144f0fc160SGilad Ben-Yossef
1015fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
1016fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
1017fe18957eSVitaly Chikunov	select CRYPTO_HASH
1018fe18957eSVitaly Chikunov	help
1019fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1020fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
1021fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
1022fe18957eSVitaly Chikunov
1023fe18957eSVitaly Chikunov	  References:
1024fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1025fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1026fe18957eSVitaly Chikunov
10271da177e4SLinus Torvaldsconfig CRYPTO_TGR192
10281da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
1029f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10301da177e4SLinus Torvalds	help
10311da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
10321da177e4SLinus Torvalds
10331da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
10341da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
10351da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
10361da177e4SLinus Torvalds
10371da177e4SLinus Torvalds	  See also:
10381da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
10391da177e4SLinus Torvalds
1040584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1041584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10424946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10431da177e4SLinus Torvalds	help
1044584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10451da177e4SLinus Torvalds
1046584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1047584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10481da177e4SLinus Torvalds
10491da177e4SLinus Torvalds	  See also:
10506d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10511da177e4SLinus Torvalds
10520e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10530e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
10548af00860SRichard Weinberger	depends on X86 && 64BIT
10550e1227d3SHuang Ying	select CRYPTO_CRYPTD
10560e1227d3SHuang Ying	help
10570e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
10580e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
10590e1227d3SHuang Ying
1060584fffc8SSebastian Siewiorcomment "Ciphers"
10611da177e4SLinus Torvalds
10621da177e4SLinus Torvaldsconfig CRYPTO_AES
10631da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1064cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10651da177e4SLinus Torvalds	help
10661da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10671da177e4SLinus Torvalds	  algorithm.
10681da177e4SLinus Torvalds
10691da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10701da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10711da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10721da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10731da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10741da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10751da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10761da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10771da177e4SLinus Torvalds
10781da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10791da177e4SLinus Torvalds
10801da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10811da177e4SLinus Torvalds
1082b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1083b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1084b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1085b5e0b032SArd Biesheuvel	help
1086b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1087b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1088b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1089b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1090b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1091b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1092b5e0b032SArd Biesheuvel
1093b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1094b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1095b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1096b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
10970a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
10980a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1099b5e0b032SArd Biesheuvel
11001da177e4SLinus Torvaldsconfig CRYPTO_AES_586
11011da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
1102cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
1103cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11045157dea8SSebastian Siewior	select CRYPTO_AES
11051da177e4SLinus Torvalds	help
11061da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11071da177e4SLinus Torvalds	  algorithm.
11081da177e4SLinus Torvalds
11091da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
11101da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
11111da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
11121da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
11131da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
11141da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
11151da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
11161da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
11171da177e4SLinus Torvalds
11181da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
11191da177e4SLinus Torvalds
11201da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11211da177e4SLinus Torvalds
1122a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
1123a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
1124cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
1125cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
112681190b32SSebastian Siewior	select CRYPTO_AES
1127a2a892a2SAndreas Steinmetz	help
1128a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1129a2a892a2SAndreas Steinmetz	  algorithm.
1130a2a892a2SAndreas Steinmetz
1131a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
1132a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
1133a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
1134a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
1135a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
1136a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
1137a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
1138a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
1139a2a892a2SAndreas Steinmetz
1140a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
1141a2a892a2SAndreas Steinmetz
1142a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1143a2a892a2SAndreas Steinmetz
114454b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
114554b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11468af00860SRichard Weinberger	depends on X86
114785671860SHerbert Xu	select CRYPTO_AEAD
11480d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
11490d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
115054b6a1bdSHuang Ying	select CRYPTO_ALGAPI
115185671860SHerbert Xu	select CRYPTO_BLKCIPHER
11527643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
115385671860SHerbert Xu	select CRYPTO_SIMD
115454b6a1bdSHuang Ying	help
115554b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
115654b6a1bdSHuang Ying
115754b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
115854b6a1bdSHuang Ying	  algorithm.
115954b6a1bdSHuang Ying
116054b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
116154b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
116254b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
116354b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
116454b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
116554b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
116654b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
116754b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
116854b6a1bdSHuang Ying
116954b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
117054b6a1bdSHuang Ying
117154b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
117254b6a1bdSHuang Ying
11730d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11740d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1175944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
11760d258efbSMathias Krause	  acceleration for CTR.
11772cf4ac8bSHuang Ying
11789bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11799bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11809bf4852dSDavid S. Miller	depends on SPARC64
11819bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
11829bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
11839bf4852dSDavid S. Miller	help
11849bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11859bf4852dSDavid S. Miller
11869bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11879bf4852dSDavid S. Miller	  algorithm.
11889bf4852dSDavid S. Miller
11899bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11909bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11919bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11929bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11939bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11949bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11959bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11969bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11979bf4852dSDavid S. Miller
11989bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11999bf4852dSDavid S. Miller
12009bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
12019bf4852dSDavid S. Miller
12029bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
12039bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
12049bf4852dSDavid S. Miller	  ECB and CBC.
12059bf4852dSDavid S. Miller
1206504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1207504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1208504c6143SMarkus Stockhausen	depends on PPC && SPE
1209504c6143SMarkus Stockhausen	help
1210504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1211504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1212504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1213504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1214504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1215504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1216504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1217504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1218504c6143SMarkus Stockhausen
12191da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
12201da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1221cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
12221da177e4SLinus Torvalds	help
12231da177e4SLinus Torvalds	  Anubis cipher algorithm.
12241da177e4SLinus Torvalds
12251da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
12261da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
12271da177e4SLinus Torvalds	  in the NESSIE competition.
12281da177e4SLinus Torvalds
12291da177e4SLinus Torvalds	  See also:
12306d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
12316d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
12321da177e4SLinus Torvalds
1233584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1234584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1235b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1236e2ee95b8SHye-Shik Chang	help
1237584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1238e2ee95b8SHye-Shik Chang
1239584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1240584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1241584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1242584fffc8SSebastian Siewior	  weakness of the algorithm.
1243584fffc8SSebastian Siewior
1244584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1245584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1246584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
124752ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1248584fffc8SSebastian Siewior	help
1249584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1250584fffc8SSebastian Siewior
1251584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1252584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1253584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1254e2ee95b8SHye-Shik Chang
1255e2ee95b8SHye-Shik Chang	  See also:
1256584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1257584fffc8SSebastian Siewior
125852ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
125952ba867cSJussi Kivilinna	tristate
126052ba867cSJussi Kivilinna	help
126152ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
126252ba867cSJussi Kivilinna	  generic c and the assembler implementations.
126352ba867cSJussi Kivilinna
126452ba867cSJussi Kivilinna	  See also:
126552ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
126652ba867cSJussi Kivilinna
126764b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
126864b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1269f21a7c19SAl Viro	depends on X86 && 64BIT
1270c1679171SEric Biggers	select CRYPTO_BLKCIPHER
127164b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
127264b94ceaSJussi Kivilinna	help
127364b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
127464b94ceaSJussi Kivilinna
127564b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
127664b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
127764b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
127864b94ceaSJussi Kivilinna
127964b94ceaSJussi Kivilinna	  See also:
128064b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
128164b94ceaSJussi Kivilinna
1282584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1283584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1284584fffc8SSebastian Siewior	depends on CRYPTO
1285584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1286584fffc8SSebastian Siewior	help
1287584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1288584fffc8SSebastian Siewior
1289584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1290584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1291584fffc8SSebastian Siewior
1292584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1293584fffc8SSebastian Siewior
1294584fffc8SSebastian Siewior	  See also:
1295584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1296584fffc8SSebastian Siewior
12970b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12980b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1299f21a7c19SAl Viro	depends on X86 && 64BIT
13000b95ec56SJussi Kivilinna	depends on CRYPTO
13011af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1302964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
13030b95ec56SJussi Kivilinna	help
13040b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
13050b95ec56SJussi Kivilinna
13060b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
13070b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
13080b95ec56SJussi Kivilinna
13090b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
13100b95ec56SJussi Kivilinna
13110b95ec56SJussi Kivilinna	  See also:
13120b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
13130b95ec56SJussi Kivilinna
1314d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1315d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1316d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1317d9b1d2e7SJussi Kivilinna	depends on CRYPTO
131844893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1319d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
132044893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
132144893bc2SEric Biggers	select CRYPTO_SIMD
1322d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1323d9b1d2e7SJussi Kivilinna	help
1324d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1325d9b1d2e7SJussi Kivilinna
1326d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1327d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1328d9b1d2e7SJussi Kivilinna
1329d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1330d9b1d2e7SJussi Kivilinna
1331d9b1d2e7SJussi Kivilinna	  See also:
1332d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1333d9b1d2e7SJussi Kivilinna
1334f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1335f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1336f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1337f3f935a7SJussi Kivilinna	depends on CRYPTO
1338f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1339f3f935a7SJussi Kivilinna	help
1340f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1341f3f935a7SJussi Kivilinna
1342f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1343f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1344f3f935a7SJussi Kivilinna
1345f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1346f3f935a7SJussi Kivilinna
1347f3f935a7SJussi Kivilinna	  See also:
1348f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1349f3f935a7SJussi Kivilinna
135081658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
135181658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
135281658ad0SDavid S. Miller	depends on SPARC64
135381658ad0SDavid S. Miller	depends on CRYPTO
135481658ad0SDavid S. Miller	select CRYPTO_ALGAPI
135581658ad0SDavid S. Miller	help
135681658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
135781658ad0SDavid S. Miller
135881658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
135981658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
136081658ad0SDavid S. Miller
136181658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
136281658ad0SDavid S. Miller
136381658ad0SDavid S. Miller	  See also:
136481658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
136581658ad0SDavid S. Miller
1366044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1367044ab525SJussi Kivilinna	tristate
1368044ab525SJussi Kivilinna	help
1369044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1370044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1371044ab525SJussi Kivilinna
1372584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1373584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1374584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1375044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1376584fffc8SSebastian Siewior	help
1377584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1378584fffc8SSebastian Siewior	  described in RFC2144.
1379584fffc8SSebastian Siewior
13804d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13814d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13824d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
13831e63183aSEric Biggers	select CRYPTO_BLKCIPHER
13844d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13851e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13861e63183aSEric Biggers	select CRYPTO_SIMD
13874d6d6a2cSJohannes Goetzfried	help
13884d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13894d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13904d6d6a2cSJohannes Goetzfried
13914d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13924d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13934d6d6a2cSJohannes Goetzfried
1394584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1395584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1396584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1397044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1398584fffc8SSebastian Siewior	help
1399584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1400584fffc8SSebastian Siewior	  described in RFC2612.
1401584fffc8SSebastian Siewior
14024ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
14034ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
14044ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
14054bd96924SEric Biggers	select CRYPTO_BLKCIPHER
14064ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
14074bd96924SEric Biggers	select CRYPTO_CAST_COMMON
14084bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
14094bd96924SEric Biggers	select CRYPTO_SIMD
14104ea1277dSJohannes Goetzfried	select CRYPTO_XTS
14114ea1277dSJohannes Goetzfried	help
14124ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
14134ea1277dSJohannes Goetzfried	  described in RFC2612.
14144ea1277dSJohannes Goetzfried
14154ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
14164ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14174ea1277dSJohannes Goetzfried
1418584fffc8SSebastian Siewiorconfig CRYPTO_DES
1419584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1420584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1421584fffc8SSebastian Siewior	help
1422584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1423584fffc8SSebastian Siewior
1424c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1425c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
142697da37b3SDave Jones	depends on SPARC64
1427c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1428c5aac2dfSDavid S. Miller	select CRYPTO_DES
1429c5aac2dfSDavid S. Miller	help
1430c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1431c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1432c5aac2dfSDavid S. Miller
14336574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
14346574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
14356574e6c6SJussi Kivilinna	depends on X86 && 64BIT
143609c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
14376574e6c6SJussi Kivilinna	select CRYPTO_DES
14386574e6c6SJussi Kivilinna	help
14396574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
14406574e6c6SJussi Kivilinna
14416574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
14426574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
14436574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
14446574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14456574e6c6SJussi Kivilinna
1446584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1447584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1448584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1449584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1450584fffc8SSebastian Siewior	help
1451584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1452584fffc8SSebastian Siewior
1453584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1454584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1455584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1456584fffc8SSebastian Siewior	help
1457584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1458584fffc8SSebastian Siewior
1459584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1460584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1461584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1462584fffc8SSebastian Siewior
1463584fffc8SSebastian Siewior	  See also:
14646d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1465e2ee95b8SHye-Shik Chang
14662407d608STan Swee Hengconfig CRYPTO_SALSA20
14673b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
14682407d608STan Swee Heng	select CRYPTO_BLKCIPHER
14692407d608STan Swee Heng	help
14702407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
14712407d608STan Swee Heng
14722407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14732407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14742407d608STan Swee Heng
14752407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14762407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14771da177e4SLinus Torvalds
1478c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1479aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
1480c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1481c08d0e64SMartin Willi	help
1482aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1483c08d0e64SMartin Willi
1484c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1485c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1486de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
1487c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1488c08d0e64SMartin Willi
1489de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1490de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1491de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1492de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1493de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1494de61d7aeSEric Biggers
1495aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1496aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1497aa762409SEric Biggers	  in some performance-sensitive scenarios.
1498aa762409SEric Biggers
1499c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
15004af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1501c9320b6dSMartin Willi	depends on X86 && 64BIT
1502c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1503c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1504c9320b6dSMartin Willi	help
15057a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
15067a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1507c9320b6dSMartin Willi
1508584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1509584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1510584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1511584fffc8SSebastian Siewior	help
1512584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1513584fffc8SSebastian Siewior
1514584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1515584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1516584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1517584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1518584fffc8SSebastian Siewior
1519584fffc8SSebastian Siewior	  See also:
1520584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1521584fffc8SSebastian Siewior
1522584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1523584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1524584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1525584fffc8SSebastian Siewior	help
1526584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1527584fffc8SSebastian Siewior
1528584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1529584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1530584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1531584fffc8SSebastian Siewior
1532584fffc8SSebastian Siewior	  See also:
1533584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1534584fffc8SSebastian Siewior
1535937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1536937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1537937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1538e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1539596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1540937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1541e0f409dcSEric Biggers	select CRYPTO_SIMD
1542937c30d7SJussi Kivilinna	help
1543937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1544937c30d7SJussi Kivilinna
1545937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1546937c30d7SJussi Kivilinna	  of 8 bits.
1547937c30d7SJussi Kivilinna
15481e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1549937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1550937c30d7SJussi Kivilinna
1551937c30d7SJussi Kivilinna	  See also:
1552937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1553937c30d7SJussi Kivilinna
1554251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1555251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1556251496dbSJussi Kivilinna	depends on X86 && !64BIT
1557e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1558596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1559251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1560e0f409dcSEric Biggers	select CRYPTO_SIMD
1561251496dbSJussi Kivilinna	help
1562251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1563251496dbSJussi Kivilinna
1564251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1565251496dbSJussi Kivilinna	  of 8 bits.
1566251496dbSJussi Kivilinna
1567251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1568251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1569251496dbSJussi Kivilinna
1570251496dbSJussi Kivilinna	  See also:
1571251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1572251496dbSJussi Kivilinna
15737efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15747efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15757efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1576e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
15771d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15787efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1579e16bf974SEric Biggers	select CRYPTO_SIMD
15807efe4076SJohannes Goetzfried	select CRYPTO_XTS
15817efe4076SJohannes Goetzfried	help
15827efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15837efe4076SJohannes Goetzfried
15847efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15857efe4076SJohannes Goetzfried	  of 8 bits.
15867efe4076SJohannes Goetzfried
15877efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15887efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15897efe4076SJohannes Goetzfried
15907efe4076SJohannes Goetzfried	  See also:
15917efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15927efe4076SJohannes Goetzfried
159356d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
159456d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
159556d76c96SJussi Kivilinna	depends on X86 && 64BIT
159656d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
159756d76c96SJussi Kivilinna	help
159856d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
159956d76c96SJussi Kivilinna
160056d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
160156d76c96SJussi Kivilinna	  of 8 bits.
160256d76c96SJussi Kivilinna
160356d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
160456d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
160556d76c96SJussi Kivilinna
160656d76c96SJussi Kivilinna	  See also:
160756d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
160856d76c96SJussi Kivilinna
1609747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1610747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1611747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1612747c8ce4SGilad Ben-Yossef	help
1613747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1614747c8ce4SGilad Ben-Yossef
1615747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1616747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1617747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1618747c8ce4SGilad Ben-Yossef
1619747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1620747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1621747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1622747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1623747c8ce4SGilad Ben-Yossef
1624747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1625747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1626747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1627747c8ce4SGilad Ben-Yossef
1628747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1629747c8ce4SGilad Ben-Yossef
1630747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1631747c8ce4SGilad Ben-Yossef
1632747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1633747c8ce4SGilad Ben-Yossef
1634584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1635584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1636584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1637584fffc8SSebastian Siewior	help
1638584fffc8SSebastian Siewior	  TEA cipher algorithm.
1639584fffc8SSebastian Siewior
1640584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1641584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1642584fffc8SSebastian Siewior	  little memory.
1643584fffc8SSebastian Siewior
1644584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1645584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1646584fffc8SSebastian Siewior	  in the TEA algorithm.
1647584fffc8SSebastian Siewior
1648584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1649584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1650584fffc8SSebastian Siewior
1651584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1652584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1653584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1654584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1655584fffc8SSebastian Siewior	help
1656584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1657584fffc8SSebastian Siewior
1658584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1659584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1660584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1661584fffc8SSebastian Siewior	  bits.
1662584fffc8SSebastian Siewior
1663584fffc8SSebastian Siewior	  See also:
1664584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1665584fffc8SSebastian Siewior
1666584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1667584fffc8SSebastian Siewior	tristate
1668584fffc8SSebastian Siewior	help
1669584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1670584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1671584fffc8SSebastian Siewior
1672584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1673584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1674584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1675584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1676584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1677584fffc8SSebastian Siewior	help
1678584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1679584fffc8SSebastian Siewior
1680584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1681584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1682584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1683584fffc8SSebastian Siewior	  bits.
1684584fffc8SSebastian Siewior
1685584fffc8SSebastian Siewior	  See also:
1686584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1687584fffc8SSebastian Siewior
1688584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1689584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1690584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1691584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1692584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1693584fffc8SSebastian Siewior	help
1694584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1695584fffc8SSebastian Siewior
1696584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1697584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1698584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1699584fffc8SSebastian Siewior	  bits.
1700584fffc8SSebastian Siewior
1701584fffc8SSebastian Siewior	  See also:
1702584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1703584fffc8SSebastian Siewior
17048280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
17058280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1706f21a7c19SAl Viro	depends on X86 && 64BIT
170737992fa4SEric Biggers	select CRYPTO_BLKCIPHER
17088280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
17098280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1710414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17118280daadSJussi Kivilinna	help
17128280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
17138280daadSJussi Kivilinna
17148280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
17158280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
17168280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
17178280daadSJussi Kivilinna	  bits.
17188280daadSJussi Kivilinna
17198280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
17208280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
17218280daadSJussi Kivilinna
17228280daadSJussi Kivilinna	  See also:
17238280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
17248280daadSJussi Kivilinna
1725107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1726107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1727107778b5SJohannes Goetzfried	depends on X86 && 64BIT
17280e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1729a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17300e6ab46dSEric Biggers	select CRYPTO_SIMD
1731107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1732107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1733107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1734107778b5SJohannes Goetzfried	help
1735107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1736107778b5SJohannes Goetzfried
1737107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1738107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1739107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1740107778b5SJohannes Goetzfried	  bits.
1741107778b5SJohannes Goetzfried
1742107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1743107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1744107778b5SJohannes Goetzfried
1745107778b5SJohannes Goetzfried	  See also:
1746107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1747107778b5SJohannes Goetzfried
1748584fffc8SSebastian Siewiorcomment "Compression"
1749584fffc8SSebastian Siewior
17501da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17511da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1752cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1753f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17541da177e4SLinus Torvalds	select ZLIB_INFLATE
17551da177e4SLinus Torvalds	select ZLIB_DEFLATE
17561da177e4SLinus Torvalds	help
17571da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17581da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17591da177e4SLinus Torvalds
17601da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17611da177e4SLinus Torvalds
17620b77abb3SZoltan Sogorconfig CRYPTO_LZO
17630b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17640b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1765ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17660b77abb3SZoltan Sogor	select LZO_COMPRESS
17670b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17680b77abb3SZoltan Sogor	help
17690b77abb3SZoltan Sogor	  This is the LZO algorithm.
17700b77abb3SZoltan Sogor
177135a1fc18SSeth Jenningsconfig CRYPTO_842
177235a1fc18SSeth Jennings	tristate "842 compression algorithm"
17732062c5b6SDan Streetman	select CRYPTO_ALGAPI
17746a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17752062c5b6SDan Streetman	select 842_COMPRESS
17762062c5b6SDan Streetman	select 842_DECOMPRESS
177735a1fc18SSeth Jennings	help
177835a1fc18SSeth Jennings	  This is the 842 algorithm.
177935a1fc18SSeth Jennings
17800ea8530dSChanho Minconfig CRYPTO_LZ4
17810ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17820ea8530dSChanho Min	select CRYPTO_ALGAPI
17838cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17840ea8530dSChanho Min	select LZ4_COMPRESS
17850ea8530dSChanho Min	select LZ4_DECOMPRESS
17860ea8530dSChanho Min	help
17870ea8530dSChanho Min	  This is the LZ4 algorithm.
17880ea8530dSChanho Min
17890ea8530dSChanho Minconfig CRYPTO_LZ4HC
17900ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17910ea8530dSChanho Min	select CRYPTO_ALGAPI
179291d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17930ea8530dSChanho Min	select LZ4HC_COMPRESS
17940ea8530dSChanho Min	select LZ4_DECOMPRESS
17950ea8530dSChanho Min	help
17960ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17970ea8530dSChanho Min
1798d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1799d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1800d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1801d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1802d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1803d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1804d28fc3dbSNick Terrell	help
1805d28fc3dbSNick Terrell	  This is the zstd algorithm.
1806d28fc3dbSNick Terrell
180717f0f4a4SNeil Hormancomment "Random Number Generation"
180817f0f4a4SNeil Horman
180917f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
181017f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
181117f0f4a4SNeil Horman	select CRYPTO_AES
181217f0f4a4SNeil Horman	select CRYPTO_RNG
181317f0f4a4SNeil Horman	help
181417f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
181517f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
18167dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
18177dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
181817f0f4a4SNeil Horman
1819f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1820419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1821419090c6SStephan Mueller	help
1822419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1823419090c6SStephan Mueller	  more of the DRBG types must be selected.
1824419090c6SStephan Mueller
1825f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1826419090c6SStephan Mueller
1827419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1828401e4238SHerbert Xu	bool
1829419090c6SStephan Mueller	default y
1830419090c6SStephan Mueller	select CRYPTO_HMAC
1831826775bbSHerbert Xu	select CRYPTO_SHA256
1832419090c6SStephan Mueller
1833419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1834419090c6SStephan Mueller	bool "Enable Hash DRBG"
1835826775bbSHerbert Xu	select CRYPTO_SHA256
1836419090c6SStephan Mueller	help
1837419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1838419090c6SStephan Mueller
1839419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1840419090c6SStephan Mueller	bool "Enable CTR DRBG"
1841419090c6SStephan Mueller	select CRYPTO_AES
184235591285SStephan Mueller	depends on CRYPTO_CTR
1843419090c6SStephan Mueller	help
1844419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1845419090c6SStephan Mueller
1846f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1847f2c89a10SHerbert Xu	tristate
1848401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1849f2c89a10SHerbert Xu	select CRYPTO_RNG
1850bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1851f2c89a10SHerbert Xu
1852f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1853419090c6SStephan Mueller
1854bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1855bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18562f313e02SArnd Bergmann	select CRYPTO_RNG
1857bb5530e4SStephan Mueller	help
1858bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1859bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1860bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1861bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1862bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1863bb5530e4SStephan Mueller
186403c8efc1SHerbert Xuconfig CRYPTO_USER_API
186503c8efc1SHerbert Xu	tristate
186603c8efc1SHerbert Xu
1867fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1868fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18697451708fSHerbert Xu	depends on NET
1870fe869cdbSHerbert Xu	select CRYPTO_HASH
1871fe869cdbSHerbert Xu	select CRYPTO_USER_API
1872fe869cdbSHerbert Xu	help
1873fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1874fe869cdbSHerbert Xu	  algorithms.
1875fe869cdbSHerbert Xu
18768ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18778ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18787451708fSHerbert Xu	depends on NET
18798ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
18808ff59090SHerbert Xu	select CRYPTO_USER_API
18818ff59090SHerbert Xu	help
18828ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18838ff59090SHerbert Xu	  key cipher algorithms.
18848ff59090SHerbert Xu
18852f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18862f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18872f375538SStephan Mueller	depends on NET
18882f375538SStephan Mueller	select CRYPTO_RNG
18892f375538SStephan Mueller	select CRYPTO_USER_API
18902f375538SStephan Mueller	help
18912f375538SStephan Mueller	  This option enables the user-spaces interface for random
18922f375538SStephan Mueller	  number generator algorithms.
18932f375538SStephan Mueller
1894b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1895b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1896b64a2d95SHerbert Xu	depends on NET
1897b64a2d95SHerbert Xu	select CRYPTO_AEAD
189872548b09SStephan Mueller	select CRYPTO_BLKCIPHER
189972548b09SStephan Mueller	select CRYPTO_NULL
1900b64a2d95SHerbert Xu	select CRYPTO_USER_API
1901b64a2d95SHerbert Xu	help
1902b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1903b64a2d95SHerbert Xu	  cipher algorithms.
1904b64a2d95SHerbert Xu
1905cac5818cSCorentin Labbeconfig CRYPTO_STATS
1906cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1907a6a31385SCorentin Labbe	depends on CRYPTO_USER
1908cac5818cSCorentin Labbe	help
1909cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1910cac5818cSCorentin Labbe	  This will collect:
1911cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1912cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1913cac5818cSCorentin Labbe	  - size and numbers of hash operations
1914cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1915cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1916cac5818cSCorentin Labbe
1917ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1918ee08997fSDmitry Kasatkin	bool
1919ee08997fSDmitry Kasatkin
19201da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
19218636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
19228636a1f9SMasahiro Yamadasource "certs/Kconfig"
19231da177e4SLinus Torvalds
1924cce9e06dSHerbert Xuendif	# if CRYPTO
1925