1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 640a2e821dSHuang Ying select CRYPTO_WORKQUEUE 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1098cd579d2SBart Van Assche select SGL_ALLOC 1102ebda74fSGiovanni Cabiddu 1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1122ebda74fSGiovanni Cabiddu tristate 1132ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1142ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1152ebda74fSGiovanni Cabiddu 1162b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1172b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1186a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1192b8c19dbSHerbert Xu help 1202b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1212b8c19dbSHerbert Xu cbc(aes). 1222b8c19dbSHerbert Xu 1236a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1246a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1256a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1266a0fcbb4SHerbert Xu select CRYPTO_HASH2 1276a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 128946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1294e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1302ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1316a0fcbb4SHerbert Xu 132a38f7907SSteffen Klassertconfig CRYPTO_USER 133a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1345db017aaSHerbert Xu depends on NET 135a38f7907SSteffen Klassert select CRYPTO_MANAGER 136a38f7907SSteffen Klassert help 137d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 138a38f7907SSteffen Klassert cbc(aes). 139a38f7907SSteffen Klassert 140326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 141326a6346SHerbert Xu bool "Disable run-time self tests" 14200ca28a5SHerbert Xu default y 14300ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1440b767f96SAlexander Shishkin help 145326a6346SHerbert Xu Disable run-time self tests that normally take place at 146326a6346SHerbert Xu algorithm registration. 1470b767f96SAlexander Shishkin 1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1495b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1505b2706a4SEric Biggers depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 1515b2706a4SEric Biggers help 1525b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1535b2706a4SEric Biggers including randomized fuzz tests. 1545b2706a4SEric Biggers 1555b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1565b2706a4SEric Biggers longer to run than the normal self tests. 1575b2706a4SEric Biggers 158584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 15908c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 160584fffc8SSebastian Siewior help 161584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 162584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 163584fffc8SSebastian Siewior option will be selected automatically if you select such a 164584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 165584fffc8SSebastian Siewior an external module that requires these functions. 166584fffc8SSebastian Siewior 167584fffc8SSebastian Siewiorconfig CRYPTO_NULL 168584fffc8SSebastian Siewior tristate "Null algorithms" 169149a3971SHerbert Xu select CRYPTO_NULL2 170584fffc8SSebastian Siewior help 171584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 172584fffc8SSebastian Siewior 173149a3971SHerbert Xuconfig CRYPTO_NULL2 174dd43c4e9SHerbert Xu tristate 175149a3971SHerbert Xu select CRYPTO_ALGAPI2 176149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 177149a3971SHerbert Xu select CRYPTO_HASH2 178149a3971SHerbert Xu 1795068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1803b4afaf2SKees Cook tristate "Parallel crypto engine" 1813b4afaf2SKees Cook depends on SMP 1825068c7a8SSteffen Klassert select PADATA 1835068c7a8SSteffen Klassert select CRYPTO_MANAGER 1845068c7a8SSteffen Klassert select CRYPTO_AEAD 1855068c7a8SSteffen Klassert help 1865068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1875068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1885068c7a8SSteffen Klassert 18925c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 19025c38d3fSHuang Ying tristate 19125c38d3fSHuang Ying 192584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 193584fffc8SSebastian Siewior tristate "Software async crypto daemon" 194584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 195b8a28251SLoc Ho select CRYPTO_HASH 196584fffc8SSebastian Siewior select CRYPTO_MANAGER 197254eff77SHuang Ying select CRYPTO_WORKQUEUE 198584fffc8SSebastian Siewior help 199584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 200584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 201584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 202584fffc8SSebastian Siewior 203584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 204584fffc8SSebastian Siewior tristate "Authenc support" 205584fffc8SSebastian Siewior select CRYPTO_AEAD 206584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 207584fffc8SSebastian Siewior select CRYPTO_MANAGER 208584fffc8SSebastian Siewior select CRYPTO_HASH 209e94c6a7aSHerbert Xu select CRYPTO_NULL 210584fffc8SSebastian Siewior help 211584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 212584fffc8SSebastian Siewior This is required for IPSec. 213584fffc8SSebastian Siewior 214584fffc8SSebastian Siewiorconfig CRYPTO_TEST 215584fffc8SSebastian Siewior tristate "Testing module" 216584fffc8SSebastian Siewior depends on m 217da7f033dSHerbert Xu select CRYPTO_MANAGER 218584fffc8SSebastian Siewior help 219584fffc8SSebastian Siewior Quick & dirty crypto test module. 220584fffc8SSebastian Siewior 221266d0516SHerbert Xuconfig CRYPTO_SIMD 222266d0516SHerbert Xu tristate 223266d0516SHerbert Xu select CRYPTO_CRYPTD 224266d0516SHerbert Xu 225596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 226596d8750SJussi Kivilinna tristate 227596d8750SJussi Kivilinna depends on X86 228065ce327SHerbert Xu select CRYPTO_BLKCIPHER 229596d8750SJussi Kivilinna 230735d37b5SBaolin Wangconfig CRYPTO_ENGINE 231735d37b5SBaolin Wang tristate 232735d37b5SBaolin Wang 2333d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2343d6228a5SVitaly Chikunov 2353d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2363d6228a5SVitaly Chikunov tristate "RSA algorithm" 2373d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2383d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2393d6228a5SVitaly Chikunov select MPILIB 2403d6228a5SVitaly Chikunov select ASN1 2413d6228a5SVitaly Chikunov help 2423d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2433d6228a5SVitaly Chikunov 2443d6228a5SVitaly Chikunovconfig CRYPTO_DH 2453d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2463d6228a5SVitaly Chikunov select CRYPTO_KPP 2473d6228a5SVitaly Chikunov select MPILIB 2483d6228a5SVitaly Chikunov help 2493d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2503d6228a5SVitaly Chikunov 2514a2289daSVitaly Chikunovconfig CRYPTO_ECC 2524a2289daSVitaly Chikunov tristate 2534a2289daSVitaly Chikunov 2543d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2553d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2564a2289daSVitaly Chikunov select CRYPTO_ECC 2573d6228a5SVitaly Chikunov select CRYPTO_KPP 2583d6228a5SVitaly Chikunov select CRYPTO_RNG_DEFAULT 2593d6228a5SVitaly Chikunov help 2603d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2613d6228a5SVitaly Chikunov 2620d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2630d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2640d7a7864SVitaly Chikunov select CRYPTO_ECC 2650d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2660d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 267*1036633eSVitaly Chikunov select OID_REGISTRY 268*1036633eSVitaly Chikunov select ASN1 2690d7a7864SVitaly Chikunov help 2700d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2710d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2720d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2730d7a7864SVitaly Chikunov is implemented. 2740d7a7864SVitaly Chikunov 275584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 276584fffc8SSebastian Siewior 277584fffc8SSebastian Siewiorconfig CRYPTO_CCM 278584fffc8SSebastian Siewior tristate "CCM support" 279584fffc8SSebastian Siewior select CRYPTO_CTR 280f15f05b0SArd Biesheuvel select CRYPTO_HASH 281584fffc8SSebastian Siewior select CRYPTO_AEAD 282584fffc8SSebastian Siewior help 283584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 284584fffc8SSebastian Siewior 285584fffc8SSebastian Siewiorconfig CRYPTO_GCM 286584fffc8SSebastian Siewior tristate "GCM/GMAC support" 287584fffc8SSebastian Siewior select CRYPTO_CTR 288584fffc8SSebastian Siewior select CRYPTO_AEAD 2899382d97aSHuang Ying select CRYPTO_GHASH 2909489667dSJussi Kivilinna select CRYPTO_NULL 291584fffc8SSebastian Siewior help 292584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 293584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 294584fffc8SSebastian Siewior 29571ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 29671ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 29771ebc4d1SMartin Willi select CRYPTO_CHACHA20 29871ebc4d1SMartin Willi select CRYPTO_POLY1305 29971ebc4d1SMartin Willi select CRYPTO_AEAD 30071ebc4d1SMartin Willi help 30171ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 30271ebc4d1SMartin Willi 30371ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 30471ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 30571ebc4d1SMartin Willi IETF protocols. 30671ebc4d1SMartin Willi 307f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 308f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 309f606a88eSOndrej Mosnacek select CRYPTO_AEAD 310f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 311f606a88eSOndrej Mosnacek help 312f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 313f606a88eSOndrej Mosnacek 314f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L 315f606a88eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm" 316f606a88eSOndrej Mosnacek select CRYPTO_AEAD 317f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 318f606a88eSOndrej Mosnacek help 319f606a88eSOndrej Mosnacek Support for the AEGIS-128L dedicated AEAD algorithm. 320f606a88eSOndrej Mosnacek 321f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256 322f606a88eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm" 323f606a88eSOndrej Mosnacek select CRYPTO_AEAD 324f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 325f606a88eSOndrej Mosnacek help 326f606a88eSOndrej Mosnacek Support for the AEGIS-256 dedicated AEAD algorithm. 327f606a88eSOndrej Mosnacek 3281d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3291d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3301d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3311d373d4eSOndrej Mosnacek select CRYPTO_AEAD 332de272ca7SEric Biggers select CRYPTO_SIMD 3331d373d4eSOndrej Mosnacek help 3344e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3351d373d4eSOndrej Mosnacek 3361d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2 3371d373d4eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3381d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3391d373d4eSOndrej Mosnacek select CRYPTO_AEAD 340d628132aSEric Biggers select CRYPTO_SIMD 3411d373d4eSOndrej Mosnacek help 3424e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm. 3431d373d4eSOndrej Mosnacek 3441d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2 3451d373d4eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3461d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3471d373d4eSOndrej Mosnacek select CRYPTO_AEAD 348b6708c2dSEric Biggers select CRYPTO_SIMD 3491d373d4eSOndrej Mosnacek help 3504e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm. 3511d373d4eSOndrej Mosnacek 352396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640 353396be41fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm" 354396be41fSOndrej Mosnacek select CRYPTO_AEAD 355396be41fSOndrej Mosnacek help 356396be41fSOndrej Mosnacek Support for the MORUS-640 dedicated AEAD algorithm. 357396be41fSOndrej Mosnacek 35856e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE 3592808f173SOndrej Mosnacek tristate 3602808f173SOndrej Mosnacek depends on X86 36156e8e57fSOndrej Mosnacek select CRYPTO_AEAD 36247730958SEric Biggers select CRYPTO_SIMD 36356e8e57fSOndrej Mosnacek help 36456e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD 36556e8e57fSOndrej Mosnacek algorithm. 36656e8e57fSOndrej Mosnacek 3676ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2 3686ecc9d9fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)" 3696ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3706ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3716ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS640_GLUE 3726ecc9d9fSOndrej Mosnacek help 3736ecc9d9fSOndrej Mosnacek SSE2 implementation of the MORUS-640 dedicated AEAD algorithm. 3746ecc9d9fSOndrej Mosnacek 375396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280 376396be41fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm" 377396be41fSOndrej Mosnacek select CRYPTO_AEAD 378396be41fSOndrej Mosnacek help 379396be41fSOndrej Mosnacek Support for the MORUS-1280 dedicated AEAD algorithm. 380396be41fSOndrej Mosnacek 38156e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE 3822808f173SOndrej Mosnacek tristate 3832808f173SOndrej Mosnacek depends on X86 38456e8e57fSOndrej Mosnacek select CRYPTO_AEAD 385e151a8d2SEric Biggers select CRYPTO_SIMD 38656e8e57fSOndrej Mosnacek help 38756e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD 38856e8e57fSOndrej Mosnacek algorithm. 38956e8e57fSOndrej Mosnacek 3906ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2 3916ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)" 3926ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3936ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3946ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 3956ecc9d9fSOndrej Mosnacek help 3966ecc9d9fSOndrej Mosnacek SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD 3976ecc9d9fSOndrej Mosnacek algorithm. 3986ecc9d9fSOndrej Mosnacek 3996ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2 4006ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)" 4016ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 4026ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 4036ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 4046ecc9d9fSOndrej Mosnacek help 4056ecc9d9fSOndrej Mosnacek AVX2 optimized implementation of the MORUS-1280 dedicated AEAD 4066ecc9d9fSOndrej Mosnacek algorithm. 4076ecc9d9fSOndrej Mosnacek 408584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 409584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 410584fffc8SSebastian Siewior select CRYPTO_AEAD 411584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 412856e3f40SHerbert Xu select CRYPTO_NULL 413401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 414584fffc8SSebastian Siewior help 415584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 416584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 417584fffc8SSebastian Siewior 418a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 419a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 420a10f554fSHerbert Xu select CRYPTO_AEAD 421a10f554fSHerbert Xu select CRYPTO_NULL 422401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 4233491244cSHerbert Xu default m 424a10f554fSHerbert Xu help 425a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 426a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 427a10f554fSHerbert Xu algorithm for CBC. 428a10f554fSHerbert Xu 429584fffc8SSebastian Siewiorcomment "Block modes" 430584fffc8SSebastian Siewior 431584fffc8SSebastian Siewiorconfig CRYPTO_CBC 432584fffc8SSebastian Siewior tristate "CBC support" 433584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 434584fffc8SSebastian Siewior select CRYPTO_MANAGER 435584fffc8SSebastian Siewior help 436584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 437584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 438584fffc8SSebastian Siewior 439a7d85e06SJames Bottomleyconfig CRYPTO_CFB 440a7d85e06SJames Bottomley tristate "CFB support" 441a7d85e06SJames Bottomley select CRYPTO_BLKCIPHER 442a7d85e06SJames Bottomley select CRYPTO_MANAGER 443a7d85e06SJames Bottomley help 444a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 445a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 446a7d85e06SJames Bottomley 447584fffc8SSebastian Siewiorconfig CRYPTO_CTR 448584fffc8SSebastian Siewior tristate "CTR support" 449584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 450584fffc8SSebastian Siewior select CRYPTO_SEQIV 451584fffc8SSebastian Siewior select CRYPTO_MANAGER 452584fffc8SSebastian Siewior help 453584fffc8SSebastian Siewior CTR: Counter mode 454584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 455584fffc8SSebastian Siewior 456584fffc8SSebastian Siewiorconfig CRYPTO_CTS 457584fffc8SSebastian Siewior tristate "CTS support" 458584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 459584fffc8SSebastian Siewior help 460584fffc8SSebastian Siewior CTS: Cipher Text Stealing 461584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 462ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 463ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 464ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 465584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 466584fffc8SSebastian Siewior for AES encryption. 467584fffc8SSebastian Siewior 468ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 469ecd6d5c9SGilad Ben-Yossef 470584fffc8SSebastian Siewiorconfig CRYPTO_ECB 471584fffc8SSebastian Siewior tristate "ECB support" 472584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 473584fffc8SSebastian Siewior select CRYPTO_MANAGER 474584fffc8SSebastian Siewior help 475584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 476584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 477584fffc8SSebastian Siewior the input block by block. 478584fffc8SSebastian Siewior 479584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4802470a2b2SJussi Kivilinna tristate "LRW support" 481584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 482584fffc8SSebastian Siewior select CRYPTO_MANAGER 483584fffc8SSebastian Siewior select CRYPTO_GF128MUL 484584fffc8SSebastian Siewior help 485584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 486584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 487584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 488584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 489584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 490584fffc8SSebastian Siewior 491e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 492e497c518SGilad Ben-Yossef tristate "OFB support" 493e497c518SGilad Ben-Yossef select CRYPTO_BLKCIPHER 494e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 495e497c518SGilad Ben-Yossef help 496e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 497e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 498e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 499e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 500e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 501e497c518SGilad Ben-Yossef normally even when applied before encryption. 502e497c518SGilad Ben-Yossef 503584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 504584fffc8SSebastian Siewior tristate "PCBC support" 505584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 506584fffc8SSebastian Siewior select CRYPTO_MANAGER 507584fffc8SSebastian Siewior help 508584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 509584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 510584fffc8SSebastian Siewior 511584fffc8SSebastian Siewiorconfig CRYPTO_XTS 5125bcf8e6dSJussi Kivilinna tristate "XTS support" 513584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 514584fffc8SSebastian Siewior select CRYPTO_MANAGER 51512cb3a1cSMilan Broz select CRYPTO_ECB 516584fffc8SSebastian Siewior help 517584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 518584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 519584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 520584fffc8SSebastian Siewior 5211c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 5221c49678eSStephan Mueller tristate "Key wrapping support" 5231c49678eSStephan Mueller select CRYPTO_BLKCIPHER 5241c49678eSStephan Mueller help 5251c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 5261c49678eSStephan Mueller padding. 5271c49678eSStephan Mueller 52826609a21SEric Biggersconfig CRYPTO_NHPOLY1305 52926609a21SEric Biggers tristate 53026609a21SEric Biggers select CRYPTO_HASH 53126609a21SEric Biggers select CRYPTO_POLY1305 53226609a21SEric Biggers 533012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 534012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 535012c8238SEric Biggers depends on X86 && 64BIT 536012c8238SEric Biggers select CRYPTO_NHPOLY1305 537012c8238SEric Biggers help 538012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 539012c8238SEric Biggers Adiantum encryption mode. 540012c8238SEric Biggers 5410f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 5420f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 5430f961f9fSEric Biggers depends on X86 && 64BIT 5440f961f9fSEric Biggers select CRYPTO_NHPOLY1305 5450f961f9fSEric Biggers help 5460f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 5470f961f9fSEric Biggers Adiantum encryption mode. 5480f961f9fSEric Biggers 549059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 550059c2a4dSEric Biggers tristate "Adiantum support" 551059c2a4dSEric Biggers select CRYPTO_CHACHA20 552059c2a4dSEric Biggers select CRYPTO_POLY1305 553059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 554059c2a4dSEric Biggers help 555059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 556059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 557059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 558059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 559059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 560059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 561059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 562059c2a4dSEric Biggers AES-XTS. 563059c2a4dSEric Biggers 564059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 565059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 566059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 567059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 568059c2a4dSEric Biggers security than XTS, subject to the security bound. 569059c2a4dSEric Biggers 570059c2a4dSEric Biggers If unsure, say N. 571059c2a4dSEric Biggers 572584fffc8SSebastian Siewiorcomment "Hash modes" 573584fffc8SSebastian Siewior 57493b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 57593b5e86aSJussi Kivilinna tristate "CMAC support" 57693b5e86aSJussi Kivilinna select CRYPTO_HASH 57793b5e86aSJussi Kivilinna select CRYPTO_MANAGER 57893b5e86aSJussi Kivilinna help 57993b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 58093b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 58193b5e86aSJussi Kivilinna 58293b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 58393b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 58493b5e86aSJussi Kivilinna 5851da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5868425165dSHerbert Xu tristate "HMAC support" 5870796ae06SHerbert Xu select CRYPTO_HASH 58843518407SHerbert Xu select CRYPTO_MANAGER 5891da177e4SLinus Torvalds help 5901da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5911da177e4SLinus Torvalds This is required for IPSec. 5921da177e4SLinus Torvalds 593333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 594333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 595333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 596333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 597333b0d7eSKazunori MIYAZAWA help 598333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 599333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 600333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 601333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 602333b0d7eSKazunori MIYAZAWA 603f1939f7cSShane Wangconfig CRYPTO_VMAC 604f1939f7cSShane Wang tristate "VMAC support" 605f1939f7cSShane Wang select CRYPTO_HASH 606f1939f7cSShane Wang select CRYPTO_MANAGER 607f1939f7cSShane Wang help 608f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 609f1939f7cSShane Wang very high speed on 64-bit architectures. 610f1939f7cSShane Wang 611f1939f7cSShane Wang See also: 612f1939f7cSShane Wang <http://fastcrypto.org/vmac> 613f1939f7cSShane Wang 614584fffc8SSebastian Siewiorcomment "Digest" 615584fffc8SSebastian Siewior 616584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 617584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 6185773a3e6SHerbert Xu select CRYPTO_HASH 6196a0962b2SDarrick J. Wong select CRC32 6201da177e4SLinus Torvalds help 621584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 622584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 62369c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 6241da177e4SLinus Torvalds 6258cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 6268cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 6278cb51ba8SAustin Zhang depends on X86 6288cb51ba8SAustin Zhang select CRYPTO_HASH 6298cb51ba8SAustin Zhang help 6308cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 6318cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 6328cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 6338cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 6348cb51ba8SAustin Zhang gain performance compared with software implementation. 6358cb51ba8SAustin Zhang Module will be crc32c-intel. 6368cb51ba8SAustin Zhang 6377cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6386dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 639c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6406dd7a82cSAnton Blanchard select CRYPTO_HASH 6416dd7a82cSAnton Blanchard select CRC32 6426dd7a82cSAnton Blanchard help 6436dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6446dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6456dd7a82cSAnton Blanchard and newer processors for improved performance. 6466dd7a82cSAnton Blanchard 6476dd7a82cSAnton Blanchard 648442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 649442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 650442a7c40SDavid S. Miller depends on SPARC64 651442a7c40SDavid S. Miller select CRYPTO_HASH 652442a7c40SDavid S. Miller select CRC32 653442a7c40SDavid S. Miller help 654442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 655442a7c40SDavid S. Miller when available. 656442a7c40SDavid S. Miller 65778c37d19SAlexander Boykoconfig CRYPTO_CRC32 65878c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 65978c37d19SAlexander Boyko select CRYPTO_HASH 66078c37d19SAlexander Boyko select CRC32 66178c37d19SAlexander Boyko help 66278c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 66378c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 66478c37d19SAlexander Boyko 66578c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 66678c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 66778c37d19SAlexander Boyko depends on X86 66878c37d19SAlexander Boyko select CRYPTO_HASH 66978c37d19SAlexander Boyko select CRC32 67078c37d19SAlexander Boyko help 67178c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 67278c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 67378c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 674af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 67578c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 67678c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 67778c37d19SAlexander Boyko 6784a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6794a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6804a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6814a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6824a5dc51eSMarcin Nowakowski help 6834a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6844a5dc51eSMarcin Nowakowski instructions, when available. 6854a5dc51eSMarcin Nowakowski 6864a5dc51eSMarcin Nowakowski 68768411521SHerbert Xuconfig CRYPTO_CRCT10DIF 68868411521SHerbert Xu tristate "CRCT10DIF algorithm" 68968411521SHerbert Xu select CRYPTO_HASH 69068411521SHerbert Xu help 69168411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 69268411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 69368411521SHerbert Xu transforms to be used if they are available. 69468411521SHerbert Xu 69568411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 69668411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 69768411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 69868411521SHerbert Xu select CRYPTO_HASH 69968411521SHerbert Xu help 70068411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 70168411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 70268411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 703af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 70468411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 70568411521SHerbert Xu 706b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 707b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 708b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 709b01df1c1SDaniel Axtens select CRYPTO_HASH 710b01df1c1SDaniel Axtens help 711b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 712b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 713b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 714b01df1c1SDaniel Axtens 715146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 716146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 717146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 718146c8688SDaniel Axtens help 719146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 720146c8688SDaniel Axtens POWER8 vpmsum instructions. 721146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 722146c8688SDaniel Axtens 7232cdc6899SHuang Yingconfig CRYPTO_GHASH 7242cdc6899SHuang Ying tristate "GHASH digest algorithm" 7252cdc6899SHuang Ying select CRYPTO_GF128MUL 726578c60fbSArnd Bergmann select CRYPTO_HASH 7272cdc6899SHuang Ying help 7282cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 7292cdc6899SHuang Ying 730f979e014SMartin Williconfig CRYPTO_POLY1305 731f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 732578c60fbSArnd Bergmann select CRYPTO_HASH 733f979e014SMartin Willi help 734f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 735f979e014SMartin Willi 736f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 737f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 738f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 739f979e014SMartin Willi 740c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 741b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 742c70f4abeSMartin Willi depends on X86 && 64BIT 743c70f4abeSMartin Willi select CRYPTO_POLY1305 744c70f4abeSMartin Willi help 745c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 746c70f4abeSMartin Willi 747c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 748c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 749c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 750c70f4abeSMartin Willi instructions. 751c70f4abeSMartin Willi 7521da177e4SLinus Torvaldsconfig CRYPTO_MD4 7531da177e4SLinus Torvalds tristate "MD4 digest algorithm" 754808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7551da177e4SLinus Torvalds help 7561da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7571da177e4SLinus Torvalds 7581da177e4SLinus Torvaldsconfig CRYPTO_MD5 7591da177e4SLinus Torvalds tristate "MD5 digest algorithm" 76014b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7611da177e4SLinus Torvalds help 7621da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 7631da177e4SLinus Torvalds 764d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 765d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 766d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 767d69e75deSAaro Koskinen select CRYPTO_MD5 768d69e75deSAaro Koskinen select CRYPTO_HASH 769d69e75deSAaro Koskinen help 770d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 771d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 772d69e75deSAaro Koskinen 773e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 774e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 775e8e59953SMarkus Stockhausen depends on PPC 776e8e59953SMarkus Stockhausen select CRYPTO_HASH 777e8e59953SMarkus Stockhausen help 778e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 779e8e59953SMarkus Stockhausen in PPC assembler. 780e8e59953SMarkus Stockhausen 781fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 782fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 783fa4dfedcSDavid S. Miller depends on SPARC64 784fa4dfedcSDavid S. Miller select CRYPTO_MD5 785fa4dfedcSDavid S. Miller select CRYPTO_HASH 786fa4dfedcSDavid S. Miller help 787fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 788fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 789fa4dfedcSDavid S. Miller 790584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 791584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 79219e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 793584fffc8SSebastian Siewior help 794584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 795584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 796584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 797584fffc8SSebastian Siewior of the algorithm. 798584fffc8SSebastian Siewior 79982798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 80082798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 8017c4468bcSHerbert Xu select CRYPTO_HASH 80282798f90SAdrian-Ken Rueegsegger help 80382798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 80482798f90SAdrian-Ken Rueegsegger 80582798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 80635ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 80782798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 80882798f90SAdrian-Ken Rueegsegger 80982798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8106d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 81182798f90SAdrian-Ken Rueegsegger 81282798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 81382798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 814e5835fbaSHerbert Xu select CRYPTO_HASH 81582798f90SAdrian-Ken Rueegsegger help 81682798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 81782798f90SAdrian-Ken Rueegsegger 81882798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 81982798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 820b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 821b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 82282798f90SAdrian-Ken Rueegsegger 823b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 824b6d44341SAdrian Bunk against RIPEMD-160. 825534fe2c1SAdrian-Ken Rueegsegger 826534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8276d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 828534fe2c1SAdrian-Ken Rueegsegger 829534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 830534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 831d8a5e2e9SHerbert Xu select CRYPTO_HASH 832534fe2c1SAdrian-Ken Rueegsegger help 833b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 834b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 835b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 836b6d44341SAdrian Bunk (than RIPEMD-128). 837534fe2c1SAdrian-Ken Rueegsegger 838534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8396d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 840534fe2c1SAdrian-Ken Rueegsegger 841534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 842534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 8433b8efb4cSHerbert Xu select CRYPTO_HASH 844534fe2c1SAdrian-Ken Rueegsegger help 845b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 846b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 847b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 848b6d44341SAdrian Bunk (than RIPEMD-160). 849534fe2c1SAdrian-Ken Rueegsegger 85082798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8516d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 85282798f90SAdrian-Ken Rueegsegger 8531da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8541da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 85554ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8561da177e4SLinus Torvalds help 8571da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8581da177e4SLinus Torvalds 85966be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 860e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 86166be8951SMathias Krause depends on X86 && 64BIT 86266be8951SMathias Krause select CRYPTO_SHA1 86366be8951SMathias Krause select CRYPTO_HASH 86466be8951SMathias Krause help 86566be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 86666be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 867e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 868e38b6b7fStim when available. 86966be8951SMathias Krause 8708275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 871e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8728275d1aaSTim Chen depends on X86 && 64BIT 8738275d1aaSTim Chen select CRYPTO_SHA256 8748275d1aaSTim Chen select CRYPTO_HASH 8758275d1aaSTim Chen help 8768275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8778275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8788275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 879e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 880e38b6b7fStim Instructions) when available. 8818275d1aaSTim Chen 88287de4579STim Chenconfig CRYPTO_SHA512_SSSE3 88387de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 88487de4579STim Chen depends on X86 && 64BIT 88587de4579STim Chen select CRYPTO_SHA512 88687de4579STim Chen select CRYPTO_HASH 88787de4579STim Chen help 88887de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 88987de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 89087de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 89187de4579STim Chen version 2 (AVX2) instructions, when available. 89287de4579STim Chen 893efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 894efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 895efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 896efdb6f6eSAaro Koskinen select CRYPTO_SHA1 897efdb6f6eSAaro Koskinen select CRYPTO_HASH 898efdb6f6eSAaro Koskinen help 899efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 900efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 901efdb6f6eSAaro Koskinen 9024ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 9034ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 9044ff28d4cSDavid S. Miller depends on SPARC64 9054ff28d4cSDavid S. Miller select CRYPTO_SHA1 9064ff28d4cSDavid S. Miller select CRYPTO_HASH 9074ff28d4cSDavid S. Miller help 9084ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9094ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9104ff28d4cSDavid S. Miller 911323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 912323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 913323a6bf1SMichael Ellerman depends on PPC 914323a6bf1SMichael Ellerman help 915323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 916323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 917323a6bf1SMichael Ellerman 918d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 919d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 920d9850fc5SMarkus Stockhausen depends on PPC && SPE 921d9850fc5SMarkus Stockhausen help 922d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 923d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 924d9850fc5SMarkus Stockhausen 9251da177e4SLinus Torvaldsconfig CRYPTO_SHA256 926cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 92750e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 9281da177e4SLinus Torvalds help 9291da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9301da177e4SLinus Torvalds 9311da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9321da177e4SLinus Torvalds security against collision attacks. 9331da177e4SLinus Torvalds 934cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 935cd12fb90SJonathan Lynch of security against collision attacks. 936cd12fb90SJonathan Lynch 9372ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9382ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9392ecc1e95SMarkus Stockhausen depends on PPC && SPE 9402ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9412ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9422ecc1e95SMarkus Stockhausen help 9432ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9442ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9452ecc1e95SMarkus Stockhausen 946efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 947efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 948efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 949efdb6f6eSAaro Koskinen select CRYPTO_SHA256 950efdb6f6eSAaro Koskinen select CRYPTO_HASH 951efdb6f6eSAaro Koskinen help 952efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 953efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 954efdb6f6eSAaro Koskinen 95586c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 95686c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 95786c93b24SDavid S. Miller depends on SPARC64 95886c93b24SDavid S. Miller select CRYPTO_SHA256 95986c93b24SDavid S. Miller select CRYPTO_HASH 96086c93b24SDavid S. Miller help 96186c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 96286c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 96386c93b24SDavid S. Miller 9641da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9651da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 966bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9671da177e4SLinus Torvalds help 9681da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9691da177e4SLinus Torvalds 9701da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9711da177e4SLinus Torvalds security against collision attacks. 9721da177e4SLinus Torvalds 9731da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9741da177e4SLinus Torvalds of security against collision attacks. 9751da177e4SLinus Torvalds 976efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 977efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 978efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 979efdb6f6eSAaro Koskinen select CRYPTO_SHA512 980efdb6f6eSAaro Koskinen select CRYPTO_HASH 981efdb6f6eSAaro Koskinen help 982efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 983efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 984efdb6f6eSAaro Koskinen 985775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 986775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 987775e0c69SDavid S. Miller depends on SPARC64 988775e0c69SDavid S. Miller select CRYPTO_SHA512 989775e0c69SDavid S. Miller select CRYPTO_HASH 990775e0c69SDavid S. Miller help 991775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 992775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 993775e0c69SDavid S. Miller 99453964b9eSJeff Garzikconfig CRYPTO_SHA3 99553964b9eSJeff Garzik tristate "SHA3 digest algorithm" 99653964b9eSJeff Garzik select CRYPTO_HASH 99753964b9eSJeff Garzik help 99853964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 99953964b9eSJeff Garzik cryptographic sponge function family called Keccak. 100053964b9eSJeff Garzik 100153964b9eSJeff Garzik References: 100253964b9eSJeff Garzik http://keccak.noekeon.org/ 100353964b9eSJeff Garzik 10044f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 10054f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 10064f0fc160SGilad Ben-Yossef select CRYPTO_HASH 10074f0fc160SGilad Ben-Yossef help 10084f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 10094f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 10104f0fc160SGilad Ben-Yossef 10114f0fc160SGilad Ben-Yossef References: 10124f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 10134f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 10144f0fc160SGilad Ben-Yossef 1015fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1016fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1017fe18957eSVitaly Chikunov select CRYPTO_HASH 1018fe18957eSVitaly Chikunov help 1019fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1020fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1021fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1022fe18957eSVitaly Chikunov 1023fe18957eSVitaly Chikunov References: 1024fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1025fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1026fe18957eSVitaly Chikunov 10271da177e4SLinus Torvaldsconfig CRYPTO_TGR192 10281da177e4SLinus Torvalds tristate "Tiger digest algorithms" 1029f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 10301da177e4SLinus Torvalds help 10311da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 10321da177e4SLinus Torvalds 10331da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 10341da177e4SLinus Torvalds still having decent performance on 32-bit processors. 10351da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 10361da177e4SLinus Torvalds 10371da177e4SLinus Torvalds See also: 10381da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 10391da177e4SLinus Torvalds 1040584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1041584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10424946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10431da177e4SLinus Torvalds help 1044584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10451da177e4SLinus Torvalds 1046584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1047584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10481da177e4SLinus Torvalds 10491da177e4SLinus Torvalds See also: 10506d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10511da177e4SLinus Torvalds 10520e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10530e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 10548af00860SRichard Weinberger depends on X86 && 64BIT 10550e1227d3SHuang Ying select CRYPTO_CRYPTD 10560e1227d3SHuang Ying help 10570e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 10580e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 10590e1227d3SHuang Ying 1060584fffc8SSebastian Siewiorcomment "Ciphers" 10611da177e4SLinus Torvalds 10621da177e4SLinus Torvaldsconfig CRYPTO_AES 10631da177e4SLinus Torvalds tristate "AES cipher algorithms" 1064cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10651da177e4SLinus Torvalds help 10661da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10671da177e4SLinus Torvalds algorithm. 10681da177e4SLinus Torvalds 10691da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10701da177e4SLinus Torvalds both hardware and software across a wide range of computing 10711da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10721da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10731da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10741da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10751da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10761da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10771da177e4SLinus Torvalds 10781da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10791da177e4SLinus Torvalds 10801da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10811da177e4SLinus Torvalds 1082b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1083b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1084b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1085b5e0b032SArd Biesheuvel help 1086b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1087b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1088b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1089b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1090b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1091b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1092b5e0b032SArd Biesheuvel 1093b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1094b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1095b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1096b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 10970a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 10980a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1099b5e0b032SArd Biesheuvel 11001da177e4SLinus Torvaldsconfig CRYPTO_AES_586 11011da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 1102cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 1103cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11045157dea8SSebastian Siewior select CRYPTO_AES 11051da177e4SLinus Torvalds help 11061da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 11071da177e4SLinus Torvalds algorithm. 11081da177e4SLinus Torvalds 11091da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 11101da177e4SLinus Torvalds both hardware and software across a wide range of computing 11111da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 11121da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 11131da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 11141da177e4SLinus Torvalds suited for restricted-space environments, in which it also 11151da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 11161da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 11171da177e4SLinus Torvalds 11181da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 11191da177e4SLinus Torvalds 11201da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 11211da177e4SLinus Torvalds 1122a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 1123a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 1124cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 1125cce9e06dSHerbert Xu select CRYPTO_ALGAPI 112681190b32SSebastian Siewior select CRYPTO_AES 1127a2a892a2SAndreas Steinmetz help 1128a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 1129a2a892a2SAndreas Steinmetz algorithm. 1130a2a892a2SAndreas Steinmetz 1131a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 1132a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 1133a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 1134a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 1135a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 1136a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 1137a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 1138a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 1139a2a892a2SAndreas Steinmetz 1140a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 1141a2a892a2SAndreas Steinmetz 1142a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 1143a2a892a2SAndreas Steinmetz 114454b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 114554b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11468af00860SRichard Weinberger depends on X86 114785671860SHerbert Xu select CRYPTO_AEAD 11480d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 11490d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 115054b6a1bdSHuang Ying select CRYPTO_ALGAPI 115185671860SHerbert Xu select CRYPTO_BLKCIPHER 11527643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 115385671860SHerbert Xu select CRYPTO_SIMD 115454b6a1bdSHuang Ying help 115554b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 115654b6a1bdSHuang Ying 115754b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 115854b6a1bdSHuang Ying algorithm. 115954b6a1bdSHuang Ying 116054b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 116154b6a1bdSHuang Ying both hardware and software across a wide range of computing 116254b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 116354b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 116454b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 116554b6a1bdSHuang Ying suited for restricted-space environments, in which it also 116654b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 116754b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 116854b6a1bdSHuang Ying 116954b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 117054b6a1bdSHuang Ying 117154b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 117254b6a1bdSHuang Ying 11730d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11740d258efbSMathias Krause for some popular block cipher mode is supported too, including 1175944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11760d258efbSMathias Krause acceleration for CTR. 11772cf4ac8bSHuang Ying 11789bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11799bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11809bf4852dSDavid S. Miller depends on SPARC64 11819bf4852dSDavid S. Miller select CRYPTO_CRYPTD 11829bf4852dSDavid S. Miller select CRYPTO_ALGAPI 11839bf4852dSDavid S. Miller help 11849bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11859bf4852dSDavid S. Miller 11869bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11879bf4852dSDavid S. Miller algorithm. 11889bf4852dSDavid S. Miller 11899bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11909bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11919bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11929bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11939bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11949bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11959bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11969bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11979bf4852dSDavid S. Miller 11989bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11999bf4852dSDavid S. Miller 12009bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 12019bf4852dSDavid S. Miller 12029bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 12039bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 12049bf4852dSDavid S. Miller ECB and CBC. 12059bf4852dSDavid S. Miller 1206504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1207504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1208504c6143SMarkus Stockhausen depends on PPC && SPE 1209504c6143SMarkus Stockhausen help 1210504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1211504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1212504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1213504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1214504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1215504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1216504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1217504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1218504c6143SMarkus Stockhausen 12191da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 12201da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1221cce9e06dSHerbert Xu select CRYPTO_ALGAPI 12221da177e4SLinus Torvalds help 12231da177e4SLinus Torvalds Anubis cipher algorithm. 12241da177e4SLinus Torvalds 12251da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 12261da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 12271da177e4SLinus Torvalds in the NESSIE competition. 12281da177e4SLinus Torvalds 12291da177e4SLinus Torvalds See also: 12306d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 12316d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 12321da177e4SLinus Torvalds 1233584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1234584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1235b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1236e2ee95b8SHye-Shik Chang help 1237584fffc8SSebastian Siewior ARC4 cipher algorithm. 1238e2ee95b8SHye-Shik Chang 1239584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1240584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1241584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1242584fffc8SSebastian Siewior weakness of the algorithm. 1243584fffc8SSebastian Siewior 1244584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1245584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1246584fffc8SSebastian Siewior select CRYPTO_ALGAPI 124752ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1248584fffc8SSebastian Siewior help 1249584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1250584fffc8SSebastian Siewior 1251584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1252584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1253584fffc8SSebastian Siewior designed for use on "large microprocessors". 1254e2ee95b8SHye-Shik Chang 1255e2ee95b8SHye-Shik Chang See also: 1256584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1257584fffc8SSebastian Siewior 125852ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 125952ba867cSJussi Kivilinna tristate 126052ba867cSJussi Kivilinna help 126152ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 126252ba867cSJussi Kivilinna generic c and the assembler implementations. 126352ba867cSJussi Kivilinna 126452ba867cSJussi Kivilinna See also: 126552ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 126652ba867cSJussi Kivilinna 126764b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 126864b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1269f21a7c19SAl Viro depends on X86 && 64BIT 1270c1679171SEric Biggers select CRYPTO_BLKCIPHER 127164b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 127264b94ceaSJussi Kivilinna help 127364b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 127464b94ceaSJussi Kivilinna 127564b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 127664b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 127764b94ceaSJussi Kivilinna designed for use on "large microprocessors". 127864b94ceaSJussi Kivilinna 127964b94ceaSJussi Kivilinna See also: 128064b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 128164b94ceaSJussi Kivilinna 1282584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1283584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1284584fffc8SSebastian Siewior depends on CRYPTO 1285584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1286584fffc8SSebastian Siewior help 1287584fffc8SSebastian Siewior Camellia cipher algorithms module. 1288584fffc8SSebastian Siewior 1289584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1290584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1291584fffc8SSebastian Siewior 1292584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1293584fffc8SSebastian Siewior 1294584fffc8SSebastian Siewior See also: 1295584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1296584fffc8SSebastian Siewior 12970b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12980b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1299f21a7c19SAl Viro depends on X86 && 64BIT 13000b95ec56SJussi Kivilinna depends on CRYPTO 13011af6d037SEric Biggers select CRYPTO_BLKCIPHER 1302964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 13030b95ec56SJussi Kivilinna help 13040b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 13050b95ec56SJussi Kivilinna 13060b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 13070b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 13080b95ec56SJussi Kivilinna 13090b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 13100b95ec56SJussi Kivilinna 13110b95ec56SJussi Kivilinna See also: 13120b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 13130b95ec56SJussi Kivilinna 1314d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1315d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1316d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1317d9b1d2e7SJussi Kivilinna depends on CRYPTO 131844893bc2SEric Biggers select CRYPTO_BLKCIPHER 1319d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 132044893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 132144893bc2SEric Biggers select CRYPTO_SIMD 1322d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1323d9b1d2e7SJussi Kivilinna help 1324d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1325d9b1d2e7SJussi Kivilinna 1326d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1327d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1328d9b1d2e7SJussi Kivilinna 1329d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1330d9b1d2e7SJussi Kivilinna 1331d9b1d2e7SJussi Kivilinna See also: 1332d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1333d9b1d2e7SJussi Kivilinna 1334f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1335f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1336f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1337f3f935a7SJussi Kivilinna depends on CRYPTO 1338f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1339f3f935a7SJussi Kivilinna help 1340f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1341f3f935a7SJussi Kivilinna 1342f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1343f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1344f3f935a7SJussi Kivilinna 1345f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1346f3f935a7SJussi Kivilinna 1347f3f935a7SJussi Kivilinna See also: 1348f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1349f3f935a7SJussi Kivilinna 135081658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 135181658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 135281658ad0SDavid S. Miller depends on SPARC64 135381658ad0SDavid S. Miller depends on CRYPTO 135481658ad0SDavid S. Miller select CRYPTO_ALGAPI 135581658ad0SDavid S. Miller help 135681658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 135781658ad0SDavid S. Miller 135881658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 135981658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 136081658ad0SDavid S. Miller 136181658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 136281658ad0SDavid S. Miller 136381658ad0SDavid S. Miller See also: 136481658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 136581658ad0SDavid S. Miller 1366044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1367044ab525SJussi Kivilinna tristate 1368044ab525SJussi Kivilinna help 1369044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1370044ab525SJussi Kivilinna generic c and the assembler implementations. 1371044ab525SJussi Kivilinna 1372584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1373584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1374584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1375044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1376584fffc8SSebastian Siewior help 1377584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1378584fffc8SSebastian Siewior described in RFC2144. 1379584fffc8SSebastian Siewior 13804d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13814d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13824d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 13831e63183aSEric Biggers select CRYPTO_BLKCIPHER 13844d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13851e63183aSEric Biggers select CRYPTO_CAST_COMMON 13861e63183aSEric Biggers select CRYPTO_SIMD 13874d6d6a2cSJohannes Goetzfried help 13884d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13894d6d6a2cSJohannes Goetzfried described in RFC2144. 13904d6d6a2cSJohannes Goetzfried 13914d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13924d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13934d6d6a2cSJohannes Goetzfried 1394584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1395584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1396584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1397044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1398584fffc8SSebastian Siewior help 1399584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1400584fffc8SSebastian Siewior described in RFC2612. 1401584fffc8SSebastian Siewior 14024ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 14034ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 14044ea1277dSJohannes Goetzfried depends on X86 && 64BIT 14054bd96924SEric Biggers select CRYPTO_BLKCIPHER 14064ea1277dSJohannes Goetzfried select CRYPTO_CAST6 14074bd96924SEric Biggers select CRYPTO_CAST_COMMON 14084bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 14094bd96924SEric Biggers select CRYPTO_SIMD 14104ea1277dSJohannes Goetzfried select CRYPTO_XTS 14114ea1277dSJohannes Goetzfried help 14124ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 14134ea1277dSJohannes Goetzfried described in RFC2612. 14144ea1277dSJohannes Goetzfried 14154ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 14164ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14174ea1277dSJohannes Goetzfried 1418584fffc8SSebastian Siewiorconfig CRYPTO_DES 1419584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1420584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1421584fffc8SSebastian Siewior help 1422584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1423584fffc8SSebastian Siewior 1424c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1425c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 142697da37b3SDave Jones depends on SPARC64 1427c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1428c5aac2dfSDavid S. Miller select CRYPTO_DES 1429c5aac2dfSDavid S. Miller help 1430c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1431c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1432c5aac2dfSDavid S. Miller 14336574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 14346574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 14356574e6c6SJussi Kivilinna depends on X86 && 64BIT 143609c0f03bSEric Biggers select CRYPTO_BLKCIPHER 14376574e6c6SJussi Kivilinna select CRYPTO_DES 14386574e6c6SJussi Kivilinna help 14396574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14406574e6c6SJussi Kivilinna 14416574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14426574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14436574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14446574e6c6SJussi Kivilinna one that processes three blocks parallel. 14456574e6c6SJussi Kivilinna 1446584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1447584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1448584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1449584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1450584fffc8SSebastian Siewior help 1451584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1452584fffc8SSebastian Siewior 1453584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1454584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1455584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1456584fffc8SSebastian Siewior help 1457584fffc8SSebastian Siewior Khazad cipher algorithm. 1458584fffc8SSebastian Siewior 1459584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1460584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1461584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1462584fffc8SSebastian Siewior 1463584fffc8SSebastian Siewior See also: 14646d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1465e2ee95b8SHye-Shik Chang 14662407d608STan Swee Hengconfig CRYPTO_SALSA20 14673b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 14682407d608STan Swee Heng select CRYPTO_BLKCIPHER 14692407d608STan Swee Heng help 14702407d608STan Swee Heng Salsa20 stream cipher algorithm. 14712407d608STan Swee Heng 14722407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 14732407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 14742407d608STan Swee Heng 14752407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 14762407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 14771da177e4SLinus Torvalds 1478c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1479aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 1480c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1481c08d0e64SMartin Willi help 1482aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1483c08d0e64SMartin Willi 1484c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1485c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1486de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 1487c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1488c08d0e64SMartin Willi 1489de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1490de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1491de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1492de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1493de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1494de61d7aeSEric Biggers 1495aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1496aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1497aa762409SEric Biggers in some performance-sensitive scenarios. 1498aa762409SEric Biggers 1499c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 15004af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1501c9320b6dSMartin Willi depends on X86 && 64BIT 1502c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1503c9320b6dSMartin Willi select CRYPTO_CHACHA20 1504c9320b6dSMartin Willi help 15057a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 15067a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1507c9320b6dSMartin Willi 1508584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1509584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1510584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1511584fffc8SSebastian Siewior help 1512584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1513584fffc8SSebastian Siewior 1514584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1515584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1516584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1517584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1518584fffc8SSebastian Siewior 1519584fffc8SSebastian Siewior See also: 1520584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1521584fffc8SSebastian Siewior 1522584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1523584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1524584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1525584fffc8SSebastian Siewior help 1526584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1527584fffc8SSebastian Siewior 1528584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1529584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1530584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1531584fffc8SSebastian Siewior 1532584fffc8SSebastian Siewior See also: 1533584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1534584fffc8SSebastian Siewior 1535937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1536937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1537937c30d7SJussi Kivilinna depends on X86 && 64BIT 1538e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1539596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1540937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1541e0f409dcSEric Biggers select CRYPTO_SIMD 1542937c30d7SJussi Kivilinna help 1543937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1544937c30d7SJussi Kivilinna 1545937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1546937c30d7SJussi Kivilinna of 8 bits. 1547937c30d7SJussi Kivilinna 15481e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1549937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1550937c30d7SJussi Kivilinna 1551937c30d7SJussi Kivilinna See also: 1552937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1553937c30d7SJussi Kivilinna 1554251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1555251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1556251496dbSJussi Kivilinna depends on X86 && !64BIT 1557e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1558596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1559251496dbSJussi Kivilinna select CRYPTO_SERPENT 1560e0f409dcSEric Biggers select CRYPTO_SIMD 1561251496dbSJussi Kivilinna help 1562251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1563251496dbSJussi Kivilinna 1564251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1565251496dbSJussi Kivilinna of 8 bits. 1566251496dbSJussi Kivilinna 1567251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1568251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1569251496dbSJussi Kivilinna 1570251496dbSJussi Kivilinna See also: 1571251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1572251496dbSJussi Kivilinna 15737efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15747efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15757efe4076SJohannes Goetzfried depends on X86 && 64BIT 1576e16bf974SEric Biggers select CRYPTO_BLKCIPHER 15771d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15787efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1579e16bf974SEric Biggers select CRYPTO_SIMD 15807efe4076SJohannes Goetzfried select CRYPTO_XTS 15817efe4076SJohannes Goetzfried help 15827efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15837efe4076SJohannes Goetzfried 15847efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15857efe4076SJohannes Goetzfried of 8 bits. 15867efe4076SJohannes Goetzfried 15877efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15887efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15897efe4076SJohannes Goetzfried 15907efe4076SJohannes Goetzfried See also: 15917efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 15927efe4076SJohannes Goetzfried 159356d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 159456d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 159556d76c96SJussi Kivilinna depends on X86 && 64BIT 159656d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 159756d76c96SJussi Kivilinna help 159856d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 159956d76c96SJussi Kivilinna 160056d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 160156d76c96SJussi Kivilinna of 8 bits. 160256d76c96SJussi Kivilinna 160356d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 160456d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 160556d76c96SJussi Kivilinna 160656d76c96SJussi Kivilinna See also: 160756d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 160856d76c96SJussi Kivilinna 1609747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1610747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1611747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1612747c8ce4SGilad Ben-Yossef help 1613747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1614747c8ce4SGilad Ben-Yossef 1615747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1616747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1617747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1618747c8ce4SGilad Ben-Yossef 1619747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1620747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1621747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1622747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1623747c8ce4SGilad Ben-Yossef 1624747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1625747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1626747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1627747c8ce4SGilad Ben-Yossef 1628747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1629747c8ce4SGilad Ben-Yossef 1630747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1631747c8ce4SGilad Ben-Yossef 1632747c8ce4SGilad Ben-Yossef If unsure, say N. 1633747c8ce4SGilad Ben-Yossef 1634584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1635584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1636584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1637584fffc8SSebastian Siewior help 1638584fffc8SSebastian Siewior TEA cipher algorithm. 1639584fffc8SSebastian Siewior 1640584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1641584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1642584fffc8SSebastian Siewior little memory. 1643584fffc8SSebastian Siewior 1644584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1645584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1646584fffc8SSebastian Siewior in the TEA algorithm. 1647584fffc8SSebastian Siewior 1648584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1649584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1650584fffc8SSebastian Siewior 1651584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1652584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1653584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1654584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1655584fffc8SSebastian Siewior help 1656584fffc8SSebastian Siewior Twofish cipher algorithm. 1657584fffc8SSebastian Siewior 1658584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1659584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1660584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1661584fffc8SSebastian Siewior bits. 1662584fffc8SSebastian Siewior 1663584fffc8SSebastian Siewior See also: 1664584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1665584fffc8SSebastian Siewior 1666584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1667584fffc8SSebastian Siewior tristate 1668584fffc8SSebastian Siewior help 1669584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1670584fffc8SSebastian Siewior generic c and the assembler implementations. 1671584fffc8SSebastian Siewior 1672584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1673584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1674584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1675584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1676584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1677584fffc8SSebastian Siewior help 1678584fffc8SSebastian Siewior Twofish cipher algorithm. 1679584fffc8SSebastian Siewior 1680584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1681584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1682584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1683584fffc8SSebastian Siewior bits. 1684584fffc8SSebastian Siewior 1685584fffc8SSebastian Siewior See also: 1686584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1687584fffc8SSebastian Siewior 1688584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1689584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1690584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1691584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1692584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1693584fffc8SSebastian Siewior help 1694584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1695584fffc8SSebastian Siewior 1696584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1697584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1698584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1699584fffc8SSebastian Siewior bits. 1700584fffc8SSebastian Siewior 1701584fffc8SSebastian Siewior See also: 1702584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1703584fffc8SSebastian Siewior 17048280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 17058280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1706f21a7c19SAl Viro depends on X86 && 64BIT 170737992fa4SEric Biggers select CRYPTO_BLKCIPHER 17088280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 17098280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1710414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17118280daadSJussi Kivilinna help 17128280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 17138280daadSJussi Kivilinna 17148280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 17158280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 17168280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 17178280daadSJussi Kivilinna bits. 17188280daadSJussi Kivilinna 17198280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 17208280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 17218280daadSJussi Kivilinna 17228280daadSJussi Kivilinna See also: 17238280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 17248280daadSJussi Kivilinna 1725107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1726107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1727107778b5SJohannes Goetzfried depends on X86 && 64BIT 17280e6ab46dSEric Biggers select CRYPTO_BLKCIPHER 1729a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17300e6ab46dSEric Biggers select CRYPTO_SIMD 1731107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1732107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1733107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1734107778b5SJohannes Goetzfried help 1735107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1736107778b5SJohannes Goetzfried 1737107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1738107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1739107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1740107778b5SJohannes Goetzfried bits. 1741107778b5SJohannes Goetzfried 1742107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1743107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1744107778b5SJohannes Goetzfried 1745107778b5SJohannes Goetzfried See also: 1746107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1747107778b5SJohannes Goetzfried 1748584fffc8SSebastian Siewiorcomment "Compression" 1749584fffc8SSebastian Siewior 17501da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17511da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1752cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1753f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17541da177e4SLinus Torvalds select ZLIB_INFLATE 17551da177e4SLinus Torvalds select ZLIB_DEFLATE 17561da177e4SLinus Torvalds help 17571da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17581da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17591da177e4SLinus Torvalds 17601da177e4SLinus Torvalds You will most probably want this if using IPSec. 17611da177e4SLinus Torvalds 17620b77abb3SZoltan Sogorconfig CRYPTO_LZO 17630b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17640b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1765ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17660b77abb3SZoltan Sogor select LZO_COMPRESS 17670b77abb3SZoltan Sogor select LZO_DECOMPRESS 17680b77abb3SZoltan Sogor help 17690b77abb3SZoltan Sogor This is the LZO algorithm. 17700b77abb3SZoltan Sogor 177135a1fc18SSeth Jenningsconfig CRYPTO_842 177235a1fc18SSeth Jennings tristate "842 compression algorithm" 17732062c5b6SDan Streetman select CRYPTO_ALGAPI 17746a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17752062c5b6SDan Streetman select 842_COMPRESS 17762062c5b6SDan Streetman select 842_DECOMPRESS 177735a1fc18SSeth Jennings help 177835a1fc18SSeth Jennings This is the 842 algorithm. 177935a1fc18SSeth Jennings 17800ea8530dSChanho Minconfig CRYPTO_LZ4 17810ea8530dSChanho Min tristate "LZ4 compression algorithm" 17820ea8530dSChanho Min select CRYPTO_ALGAPI 17838cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17840ea8530dSChanho Min select LZ4_COMPRESS 17850ea8530dSChanho Min select LZ4_DECOMPRESS 17860ea8530dSChanho Min help 17870ea8530dSChanho Min This is the LZ4 algorithm. 17880ea8530dSChanho Min 17890ea8530dSChanho Minconfig CRYPTO_LZ4HC 17900ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17910ea8530dSChanho Min select CRYPTO_ALGAPI 179291d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17930ea8530dSChanho Min select LZ4HC_COMPRESS 17940ea8530dSChanho Min select LZ4_DECOMPRESS 17950ea8530dSChanho Min help 17960ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 17970ea8530dSChanho Min 1798d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1799d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1800d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1801d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1802d28fc3dbSNick Terrell select ZSTD_COMPRESS 1803d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1804d28fc3dbSNick Terrell help 1805d28fc3dbSNick Terrell This is the zstd algorithm. 1806d28fc3dbSNick Terrell 180717f0f4a4SNeil Hormancomment "Random Number Generation" 180817f0f4a4SNeil Horman 180917f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 181017f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 181117f0f4a4SNeil Horman select CRYPTO_AES 181217f0f4a4SNeil Horman select CRYPTO_RNG 181317f0f4a4SNeil Horman help 181417f0f4a4SNeil Horman This option enables the generic pseudo random number generator 181517f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 18167dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 18177dd607e8SJiri Kosina CRYPTO_FIPS is selected 181817f0f4a4SNeil Horman 1819f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1820419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1821419090c6SStephan Mueller help 1822419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1823419090c6SStephan Mueller more of the DRBG types must be selected. 1824419090c6SStephan Mueller 1825f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1826419090c6SStephan Mueller 1827419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1828401e4238SHerbert Xu bool 1829419090c6SStephan Mueller default y 1830419090c6SStephan Mueller select CRYPTO_HMAC 1831826775bbSHerbert Xu select CRYPTO_SHA256 1832419090c6SStephan Mueller 1833419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1834419090c6SStephan Mueller bool "Enable Hash DRBG" 1835826775bbSHerbert Xu select CRYPTO_SHA256 1836419090c6SStephan Mueller help 1837419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1838419090c6SStephan Mueller 1839419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1840419090c6SStephan Mueller bool "Enable CTR DRBG" 1841419090c6SStephan Mueller select CRYPTO_AES 184235591285SStephan Mueller depends on CRYPTO_CTR 1843419090c6SStephan Mueller help 1844419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1845419090c6SStephan Mueller 1846f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1847f2c89a10SHerbert Xu tristate 1848401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1849f2c89a10SHerbert Xu select CRYPTO_RNG 1850bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1851f2c89a10SHerbert Xu 1852f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1853419090c6SStephan Mueller 1854bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1855bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18562f313e02SArnd Bergmann select CRYPTO_RNG 1857bb5530e4SStephan Mueller help 1858bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1859bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1860bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1861bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1862bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1863bb5530e4SStephan Mueller 186403c8efc1SHerbert Xuconfig CRYPTO_USER_API 186503c8efc1SHerbert Xu tristate 186603c8efc1SHerbert Xu 1867fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1868fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18697451708fSHerbert Xu depends on NET 1870fe869cdbSHerbert Xu select CRYPTO_HASH 1871fe869cdbSHerbert Xu select CRYPTO_USER_API 1872fe869cdbSHerbert Xu help 1873fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1874fe869cdbSHerbert Xu algorithms. 1875fe869cdbSHerbert Xu 18768ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18778ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18787451708fSHerbert Xu depends on NET 18798ff59090SHerbert Xu select CRYPTO_BLKCIPHER 18808ff59090SHerbert Xu select CRYPTO_USER_API 18818ff59090SHerbert Xu help 18828ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18838ff59090SHerbert Xu key cipher algorithms. 18848ff59090SHerbert Xu 18852f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18862f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18872f375538SStephan Mueller depends on NET 18882f375538SStephan Mueller select CRYPTO_RNG 18892f375538SStephan Mueller select CRYPTO_USER_API 18902f375538SStephan Mueller help 18912f375538SStephan Mueller This option enables the user-spaces interface for random 18922f375538SStephan Mueller number generator algorithms. 18932f375538SStephan Mueller 1894b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1895b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1896b64a2d95SHerbert Xu depends on NET 1897b64a2d95SHerbert Xu select CRYPTO_AEAD 189872548b09SStephan Mueller select CRYPTO_BLKCIPHER 189972548b09SStephan Mueller select CRYPTO_NULL 1900b64a2d95SHerbert Xu select CRYPTO_USER_API 1901b64a2d95SHerbert Xu help 1902b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1903b64a2d95SHerbert Xu cipher algorithms. 1904b64a2d95SHerbert Xu 1905cac5818cSCorentin Labbeconfig CRYPTO_STATS 1906cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1907a6a31385SCorentin Labbe depends on CRYPTO_USER 1908cac5818cSCorentin Labbe help 1909cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1910cac5818cSCorentin Labbe This will collect: 1911cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1912cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1913cac5818cSCorentin Labbe - size and numbers of hash operations 1914cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1915cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1916cac5818cSCorentin Labbe 1917ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1918ee08997fSDmitry Kasatkin bool 1919ee08997fSDmitry Kasatkin 19201da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 19218636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 19228636a1f9SMasahiro Yamadasource "certs/Kconfig" 19231da177e4SLinus Torvalds 1924cce9e06dSHerbert Xuendif # if CRYPTO 1925