xref: /linux/crypto/Kconfig (revision 0d7a78643f6972214e99205b364e508f8ea9598e)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
31d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
1162b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1172b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1186a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1192b8c19dbSHerbert Xu	help
1202b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1212b8c19dbSHerbert Xu	  cbc(aes).
1222b8c19dbSHerbert Xu
1236a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1246a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1256a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1266a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1276a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
128946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1294e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1302ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1316a0fcbb4SHerbert Xu
132a38f7907SSteffen Klassertconfig CRYPTO_USER
133a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1345db017aaSHerbert Xu	depends on NET
135a38f7907SSteffen Klassert	select CRYPTO_MANAGER
136a38f7907SSteffen Klassert	help
137d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
138a38f7907SSteffen Klassert	  cbc(aes).
139a38f7907SSteffen Klassert
140326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
141326a6346SHerbert Xu	bool "Disable run-time self tests"
14200ca28a5SHerbert Xu	default y
14300ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1440b767f96SAlexander Shishkin	help
145326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
146326a6346SHerbert Xu	  algorithm registration.
1470b767f96SAlexander Shishkin
1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1495b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1505b2706a4SEric Biggers	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
1515b2706a4SEric Biggers	help
1525b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1535b2706a4SEric Biggers	  including randomized fuzz tests.
1545b2706a4SEric Biggers
1555b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1565b2706a4SEric Biggers	  longer to run than the normal self tests.
1575b2706a4SEric Biggers
158584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
15908c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
160584fffc8SSebastian Siewior	help
161584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
162584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
163584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
164584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
165584fffc8SSebastian Siewior	  an external module that requires these functions.
166584fffc8SSebastian Siewior
167584fffc8SSebastian Siewiorconfig CRYPTO_NULL
168584fffc8SSebastian Siewior	tristate "Null algorithms"
169149a3971SHerbert Xu	select CRYPTO_NULL2
170584fffc8SSebastian Siewior	help
171584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
172584fffc8SSebastian Siewior
173149a3971SHerbert Xuconfig CRYPTO_NULL2
174dd43c4e9SHerbert Xu	tristate
175149a3971SHerbert Xu	select CRYPTO_ALGAPI2
176149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
177149a3971SHerbert Xu	select CRYPTO_HASH2
178149a3971SHerbert Xu
1795068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1803b4afaf2SKees Cook	tristate "Parallel crypto engine"
1813b4afaf2SKees Cook	depends on SMP
1825068c7a8SSteffen Klassert	select PADATA
1835068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1845068c7a8SSteffen Klassert	select CRYPTO_AEAD
1855068c7a8SSteffen Klassert	help
1865068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1875068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1885068c7a8SSteffen Klassert
18925c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
19025c38d3fSHuang Ying       tristate
19125c38d3fSHuang Ying
192584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
193584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
194584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
195b8a28251SLoc Ho	select CRYPTO_HASH
196584fffc8SSebastian Siewior	select CRYPTO_MANAGER
197254eff77SHuang Ying	select CRYPTO_WORKQUEUE
198584fffc8SSebastian Siewior	help
199584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
200584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
201584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
202584fffc8SSebastian Siewior
203584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
204584fffc8SSebastian Siewior	tristate "Authenc support"
205584fffc8SSebastian Siewior	select CRYPTO_AEAD
206584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
207584fffc8SSebastian Siewior	select CRYPTO_MANAGER
208584fffc8SSebastian Siewior	select CRYPTO_HASH
209e94c6a7aSHerbert Xu	select CRYPTO_NULL
210584fffc8SSebastian Siewior	help
211584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
212584fffc8SSebastian Siewior	  This is required for IPSec.
213584fffc8SSebastian Siewior
214584fffc8SSebastian Siewiorconfig CRYPTO_TEST
215584fffc8SSebastian Siewior	tristate "Testing module"
216584fffc8SSebastian Siewior	depends on m
217da7f033dSHerbert Xu	select CRYPTO_MANAGER
218584fffc8SSebastian Siewior	help
219584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
220584fffc8SSebastian Siewior
221266d0516SHerbert Xuconfig CRYPTO_SIMD
222266d0516SHerbert Xu	tristate
223266d0516SHerbert Xu	select CRYPTO_CRYPTD
224266d0516SHerbert Xu
225596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
226596d8750SJussi Kivilinna	tristate
227596d8750SJussi Kivilinna	depends on X86
228065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
229596d8750SJussi Kivilinna
230735d37b5SBaolin Wangconfig CRYPTO_ENGINE
231735d37b5SBaolin Wang	tristate
232735d37b5SBaolin Wang
2333d6228a5SVitaly Chikunovcomment "Public-key cryptography"
2343d6228a5SVitaly Chikunov
2353d6228a5SVitaly Chikunovconfig CRYPTO_RSA
2363d6228a5SVitaly Chikunov	tristate "RSA algorithm"
2373d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
2383d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
2393d6228a5SVitaly Chikunov	select MPILIB
2403d6228a5SVitaly Chikunov	select ASN1
2413d6228a5SVitaly Chikunov	help
2423d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
2433d6228a5SVitaly Chikunov
2443d6228a5SVitaly Chikunovconfig CRYPTO_DH
2453d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
2463d6228a5SVitaly Chikunov	select CRYPTO_KPP
2473d6228a5SVitaly Chikunov	select MPILIB
2483d6228a5SVitaly Chikunov	help
2493d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
2503d6228a5SVitaly Chikunov
2514a2289daSVitaly Chikunovconfig CRYPTO_ECC
2524a2289daSVitaly Chikunov	tristate
2534a2289daSVitaly Chikunov
2543d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
2553d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
2564a2289daSVitaly Chikunov	select CRYPTO_ECC
2573d6228a5SVitaly Chikunov	select CRYPTO_KPP
2583d6228a5SVitaly Chikunov	select CRYPTO_RNG_DEFAULT
2593d6228a5SVitaly Chikunov	help
2603d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
2613d6228a5SVitaly Chikunov
262*0d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA
263*0d7a7864SVitaly Chikunov	tristate "EC-RDSA (GOST 34.10) algorithm"
264*0d7a7864SVitaly Chikunov	select CRYPTO_ECC
265*0d7a7864SVitaly Chikunov	select CRYPTO_AKCIPHER
266*0d7a7864SVitaly Chikunov	select CRYPTO_STREEBOG
267*0d7a7864SVitaly Chikunov	help
268*0d7a7864SVitaly Chikunov	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
269*0d7a7864SVitaly Chikunov	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
270*0d7a7864SVitaly Chikunov	  standard algorithms (called GOST algorithms). Only signature verification
271*0d7a7864SVitaly Chikunov	  is implemented.
272*0d7a7864SVitaly Chikunov
273584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
274584fffc8SSebastian Siewior
275584fffc8SSebastian Siewiorconfig CRYPTO_CCM
276584fffc8SSebastian Siewior	tristate "CCM support"
277584fffc8SSebastian Siewior	select CRYPTO_CTR
278f15f05b0SArd Biesheuvel	select CRYPTO_HASH
279584fffc8SSebastian Siewior	select CRYPTO_AEAD
280584fffc8SSebastian Siewior	help
281584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
282584fffc8SSebastian Siewior
283584fffc8SSebastian Siewiorconfig CRYPTO_GCM
284584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
285584fffc8SSebastian Siewior	select CRYPTO_CTR
286584fffc8SSebastian Siewior	select CRYPTO_AEAD
2879382d97aSHuang Ying	select CRYPTO_GHASH
2889489667dSJussi Kivilinna	select CRYPTO_NULL
289584fffc8SSebastian Siewior	help
290584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
291584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
292584fffc8SSebastian Siewior
29371ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
29471ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
29571ebc4d1SMartin Willi	select CRYPTO_CHACHA20
29671ebc4d1SMartin Willi	select CRYPTO_POLY1305
29771ebc4d1SMartin Willi	select CRYPTO_AEAD
29871ebc4d1SMartin Willi	help
29971ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
30071ebc4d1SMartin Willi
30171ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
30271ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
30371ebc4d1SMartin Willi	  IETF protocols.
30471ebc4d1SMartin Willi
305f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
306f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
307f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
308f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
309f606a88eSOndrej Mosnacek	help
310f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
311f606a88eSOndrej Mosnacek
312f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L
313f606a88eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm"
314f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
315f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
316f606a88eSOndrej Mosnacek	help
317f606a88eSOndrej Mosnacek	 Support for the AEGIS-128L dedicated AEAD algorithm.
318f606a88eSOndrej Mosnacek
319f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256
320f606a88eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm"
321f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
322f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
323f606a88eSOndrej Mosnacek	help
324f606a88eSOndrej Mosnacek	 Support for the AEGIS-256 dedicated AEAD algorithm.
325f606a88eSOndrej Mosnacek
3261d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3271d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3281d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3291d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
330de272ca7SEric Biggers	select CRYPTO_SIMD
3311d373d4eSOndrej Mosnacek	help
3324e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3331d373d4eSOndrej Mosnacek
3341d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2
3351d373d4eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3361d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3371d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
338d628132aSEric Biggers	select CRYPTO_SIMD
3391d373d4eSOndrej Mosnacek	help
3404e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm.
3411d373d4eSOndrej Mosnacek
3421d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2
3431d373d4eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3441d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3451d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
346b6708c2dSEric Biggers	select CRYPTO_SIMD
3471d373d4eSOndrej Mosnacek	help
3484e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm.
3491d373d4eSOndrej Mosnacek
350396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640
351396be41fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm"
352396be41fSOndrej Mosnacek	select CRYPTO_AEAD
353396be41fSOndrej Mosnacek	help
354396be41fSOndrej Mosnacek	  Support for the MORUS-640 dedicated AEAD algorithm.
355396be41fSOndrej Mosnacek
35656e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE
3572808f173SOndrej Mosnacek	tristate
3582808f173SOndrej Mosnacek	depends on X86
35956e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
36047730958SEric Biggers	select CRYPTO_SIMD
36156e8e57fSOndrej Mosnacek	help
36256e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
36356e8e57fSOndrej Mosnacek	  algorithm.
36456e8e57fSOndrej Mosnacek
3656ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2
3666ecc9d9fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
3676ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3686ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3696ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS640_GLUE
3706ecc9d9fSOndrej Mosnacek	help
3716ecc9d9fSOndrej Mosnacek	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.
3726ecc9d9fSOndrej Mosnacek
373396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280
374396be41fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm"
375396be41fSOndrej Mosnacek	select CRYPTO_AEAD
376396be41fSOndrej Mosnacek	help
377396be41fSOndrej Mosnacek	  Support for the MORUS-1280 dedicated AEAD algorithm.
378396be41fSOndrej Mosnacek
37956e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE
3802808f173SOndrej Mosnacek	tristate
3812808f173SOndrej Mosnacek	depends on X86
38256e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
383e151a8d2SEric Biggers	select CRYPTO_SIMD
38456e8e57fSOndrej Mosnacek	help
38556e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
38656e8e57fSOndrej Mosnacek	  algorithm.
38756e8e57fSOndrej Mosnacek
3886ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2
3896ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
3906ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3916ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3926ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3936ecc9d9fSOndrej Mosnacek	help
3946ecc9d9fSOndrej Mosnacek	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
3956ecc9d9fSOndrej Mosnacek	  algorithm.
3966ecc9d9fSOndrej Mosnacek
3976ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2
3986ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
3996ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
4006ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
4016ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
4026ecc9d9fSOndrej Mosnacek	help
4036ecc9d9fSOndrej Mosnacek	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
4046ecc9d9fSOndrej Mosnacek	  algorithm.
4056ecc9d9fSOndrej Mosnacek
406584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
407584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
408584fffc8SSebastian Siewior	select CRYPTO_AEAD
409584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
410856e3f40SHerbert Xu	select CRYPTO_NULL
411401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
412584fffc8SSebastian Siewior	help
413584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
414584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
415584fffc8SSebastian Siewior
416a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
417a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
418a10f554fSHerbert Xu	select CRYPTO_AEAD
419a10f554fSHerbert Xu	select CRYPTO_NULL
420401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
4213491244cSHerbert Xu	default m
422a10f554fSHerbert Xu	help
423a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
424a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
425a10f554fSHerbert Xu	  algorithm for CBC.
426a10f554fSHerbert Xu
427584fffc8SSebastian Siewiorcomment "Block modes"
428584fffc8SSebastian Siewior
429584fffc8SSebastian Siewiorconfig CRYPTO_CBC
430584fffc8SSebastian Siewior	tristate "CBC support"
431584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
432584fffc8SSebastian Siewior	select CRYPTO_MANAGER
433584fffc8SSebastian Siewior	help
434584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
435584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
436584fffc8SSebastian Siewior
437a7d85e06SJames Bottomleyconfig CRYPTO_CFB
438a7d85e06SJames Bottomley	tristate "CFB support"
439a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
440a7d85e06SJames Bottomley	select CRYPTO_MANAGER
441a7d85e06SJames Bottomley	help
442a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
443a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
444a7d85e06SJames Bottomley
445584fffc8SSebastian Siewiorconfig CRYPTO_CTR
446584fffc8SSebastian Siewior	tristate "CTR support"
447584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
448584fffc8SSebastian Siewior	select CRYPTO_SEQIV
449584fffc8SSebastian Siewior	select CRYPTO_MANAGER
450584fffc8SSebastian Siewior	help
451584fffc8SSebastian Siewior	  CTR: Counter mode
452584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
453584fffc8SSebastian Siewior
454584fffc8SSebastian Siewiorconfig CRYPTO_CTS
455584fffc8SSebastian Siewior	tristate "CTS support"
456584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
457584fffc8SSebastian Siewior	help
458584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
459584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
460ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
461ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
462ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
463584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
464584fffc8SSebastian Siewior	  for AES encryption.
465584fffc8SSebastian Siewior
466ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
467ecd6d5c9SGilad Ben-Yossef
468584fffc8SSebastian Siewiorconfig CRYPTO_ECB
469584fffc8SSebastian Siewior	tristate "ECB support"
470584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
471584fffc8SSebastian Siewior	select CRYPTO_MANAGER
472584fffc8SSebastian Siewior	help
473584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
474584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
475584fffc8SSebastian Siewior	  the input block by block.
476584fffc8SSebastian Siewior
477584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4782470a2b2SJussi Kivilinna	tristate "LRW support"
479584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
480584fffc8SSebastian Siewior	select CRYPTO_MANAGER
481584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
482584fffc8SSebastian Siewior	help
483584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
484584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
485584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
486584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
487584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
488584fffc8SSebastian Siewior
489e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
490e497c518SGilad Ben-Yossef	tristate "OFB support"
491e497c518SGilad Ben-Yossef	select CRYPTO_BLKCIPHER
492e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
493e497c518SGilad Ben-Yossef	help
494e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
495e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
496e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
497e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
498e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
499e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
500e497c518SGilad Ben-Yossef
501584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
502584fffc8SSebastian Siewior	tristate "PCBC support"
503584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
504584fffc8SSebastian Siewior	select CRYPTO_MANAGER
505584fffc8SSebastian Siewior	help
506584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
507584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
508584fffc8SSebastian Siewior
509584fffc8SSebastian Siewiorconfig CRYPTO_XTS
5105bcf8e6dSJussi Kivilinna	tristate "XTS support"
511584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
512584fffc8SSebastian Siewior	select CRYPTO_MANAGER
51312cb3a1cSMilan Broz	select CRYPTO_ECB
514584fffc8SSebastian Siewior	help
515584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
516584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
517584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
518584fffc8SSebastian Siewior
5191c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
5201c49678eSStephan Mueller	tristate "Key wrapping support"
5211c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
5221c49678eSStephan Mueller	help
5231c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
5241c49678eSStephan Mueller	  padding.
5251c49678eSStephan Mueller
52626609a21SEric Biggersconfig CRYPTO_NHPOLY1305
52726609a21SEric Biggers	tristate
52826609a21SEric Biggers	select CRYPTO_HASH
52926609a21SEric Biggers	select CRYPTO_POLY1305
53026609a21SEric Biggers
531012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
532012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
533012c8238SEric Biggers	depends on X86 && 64BIT
534012c8238SEric Biggers	select CRYPTO_NHPOLY1305
535012c8238SEric Biggers	help
536012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
537012c8238SEric Biggers	  Adiantum encryption mode.
538012c8238SEric Biggers
5390f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
5400f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
5410f961f9fSEric Biggers	depends on X86 && 64BIT
5420f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
5430f961f9fSEric Biggers	help
5440f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
5450f961f9fSEric Biggers	  Adiantum encryption mode.
5460f961f9fSEric Biggers
547059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
548059c2a4dSEric Biggers	tristate "Adiantum support"
549059c2a4dSEric Biggers	select CRYPTO_CHACHA20
550059c2a4dSEric Biggers	select CRYPTO_POLY1305
551059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
552059c2a4dSEric Biggers	help
553059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
554059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
555059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
556059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
557059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
558059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
559059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
560059c2a4dSEric Biggers	  AES-XTS.
561059c2a4dSEric Biggers
562059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
563059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
564059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
565059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
566059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
567059c2a4dSEric Biggers
568059c2a4dSEric Biggers	  If unsure, say N.
569059c2a4dSEric Biggers
570584fffc8SSebastian Siewiorcomment "Hash modes"
571584fffc8SSebastian Siewior
57293b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
57393b5e86aSJussi Kivilinna	tristate "CMAC support"
57493b5e86aSJussi Kivilinna	select CRYPTO_HASH
57593b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
57693b5e86aSJussi Kivilinna	help
57793b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
57893b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
57993b5e86aSJussi Kivilinna
58093b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
58193b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
58293b5e86aSJussi Kivilinna
5831da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5848425165dSHerbert Xu	tristate "HMAC support"
5850796ae06SHerbert Xu	select CRYPTO_HASH
58643518407SHerbert Xu	select CRYPTO_MANAGER
5871da177e4SLinus Torvalds	help
5881da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5891da177e4SLinus Torvalds	  This is required for IPSec.
5901da177e4SLinus Torvalds
591333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
592333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
593333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
594333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
595333b0d7eSKazunori MIYAZAWA	help
596333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
597333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
598333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
599333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
600333b0d7eSKazunori MIYAZAWA
601f1939f7cSShane Wangconfig CRYPTO_VMAC
602f1939f7cSShane Wang	tristate "VMAC support"
603f1939f7cSShane Wang	select CRYPTO_HASH
604f1939f7cSShane Wang	select CRYPTO_MANAGER
605f1939f7cSShane Wang	help
606f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
607f1939f7cSShane Wang	  very high speed on 64-bit architectures.
608f1939f7cSShane Wang
609f1939f7cSShane Wang	  See also:
610f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
611f1939f7cSShane Wang
612584fffc8SSebastian Siewiorcomment "Digest"
613584fffc8SSebastian Siewior
614584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
615584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
6165773a3e6SHerbert Xu	select CRYPTO_HASH
6176a0962b2SDarrick J. Wong	select CRC32
6181da177e4SLinus Torvalds	help
619584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
620584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
62169c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
6221da177e4SLinus Torvalds
6238cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
6248cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
6258cb51ba8SAustin Zhang	depends on X86
6268cb51ba8SAustin Zhang	select CRYPTO_HASH
6278cb51ba8SAustin Zhang	help
6288cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
6298cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
6308cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
6318cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
6328cb51ba8SAustin Zhang	  gain performance compared with software implementation.
6338cb51ba8SAustin Zhang	  Module will be crc32c-intel.
6348cb51ba8SAustin Zhang
6357cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
6366dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
637c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
6386dd7a82cSAnton Blanchard	select CRYPTO_HASH
6396dd7a82cSAnton Blanchard	select CRC32
6406dd7a82cSAnton Blanchard	help
6416dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
6426dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
6436dd7a82cSAnton Blanchard	  and newer processors for improved performance.
6446dd7a82cSAnton Blanchard
6456dd7a82cSAnton Blanchard
646442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
647442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
648442a7c40SDavid S. Miller	depends on SPARC64
649442a7c40SDavid S. Miller	select CRYPTO_HASH
650442a7c40SDavid S. Miller	select CRC32
651442a7c40SDavid S. Miller	help
652442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
653442a7c40SDavid S. Miller	  when available.
654442a7c40SDavid S. Miller
65578c37d19SAlexander Boykoconfig CRYPTO_CRC32
65678c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
65778c37d19SAlexander Boyko	select CRYPTO_HASH
65878c37d19SAlexander Boyko	select CRC32
65978c37d19SAlexander Boyko	help
66078c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
66178c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
66278c37d19SAlexander Boyko
66378c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
66478c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
66578c37d19SAlexander Boyko	depends on X86
66678c37d19SAlexander Boyko	select CRYPTO_HASH
66778c37d19SAlexander Boyko	select CRC32
66878c37d19SAlexander Boyko	help
66978c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
67078c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
67178c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
672af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
67378c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
67478c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
67578c37d19SAlexander Boyko
6764a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6774a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6784a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6794a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6804a5dc51eSMarcin Nowakowski	help
6814a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6824a5dc51eSMarcin Nowakowski	  instructions, when available.
6834a5dc51eSMarcin Nowakowski
6844a5dc51eSMarcin Nowakowski
68568411521SHerbert Xuconfig CRYPTO_CRCT10DIF
68668411521SHerbert Xu	tristate "CRCT10DIF algorithm"
68768411521SHerbert Xu	select CRYPTO_HASH
68868411521SHerbert Xu	help
68968411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
69068411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
69168411521SHerbert Xu	  transforms to be used if they are available.
69268411521SHerbert Xu
69368411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
69468411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
69568411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
69668411521SHerbert Xu	select CRYPTO_HASH
69768411521SHerbert Xu	help
69868411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
69968411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
70068411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
701af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
70268411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
70368411521SHerbert Xu
704b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
705b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
706b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
707b01df1c1SDaniel Axtens	select CRYPTO_HASH
708b01df1c1SDaniel Axtens	help
709b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
710b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
711b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
712b01df1c1SDaniel Axtens
713146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
714146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
715146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
716146c8688SDaniel Axtens	help
717146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
718146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
719146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
720146c8688SDaniel Axtens
7212cdc6899SHuang Yingconfig CRYPTO_GHASH
7222cdc6899SHuang Ying	tristate "GHASH digest algorithm"
7232cdc6899SHuang Ying	select CRYPTO_GF128MUL
724578c60fbSArnd Bergmann	select CRYPTO_HASH
7252cdc6899SHuang Ying	help
7262cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
7272cdc6899SHuang Ying
728f979e014SMartin Williconfig CRYPTO_POLY1305
729f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
730578c60fbSArnd Bergmann	select CRYPTO_HASH
731f979e014SMartin Willi	help
732f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
733f979e014SMartin Willi
734f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
735f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
736f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
737f979e014SMartin Willi
738c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
739b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
740c70f4abeSMartin Willi	depends on X86 && 64BIT
741c70f4abeSMartin Willi	select CRYPTO_POLY1305
742c70f4abeSMartin Willi	help
743c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
744c70f4abeSMartin Willi
745c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
746c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
747c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
748c70f4abeSMartin Willi	  instructions.
749c70f4abeSMartin Willi
7501da177e4SLinus Torvaldsconfig CRYPTO_MD4
7511da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
752808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7531da177e4SLinus Torvalds	help
7541da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
7551da177e4SLinus Torvalds
7561da177e4SLinus Torvaldsconfig CRYPTO_MD5
7571da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
75814b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7591da177e4SLinus Torvalds	help
7601da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
7611da177e4SLinus Torvalds
762d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
763d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
764d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
765d69e75deSAaro Koskinen	select CRYPTO_MD5
766d69e75deSAaro Koskinen	select CRYPTO_HASH
767d69e75deSAaro Koskinen	help
768d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
769d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
770d69e75deSAaro Koskinen
771e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
772e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
773e8e59953SMarkus Stockhausen	depends on PPC
774e8e59953SMarkus Stockhausen	select CRYPTO_HASH
775e8e59953SMarkus Stockhausen	help
776e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
777e8e59953SMarkus Stockhausen	  in PPC assembler.
778e8e59953SMarkus Stockhausen
779fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
780fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
781fa4dfedcSDavid S. Miller	depends on SPARC64
782fa4dfedcSDavid S. Miller	select CRYPTO_MD5
783fa4dfedcSDavid S. Miller	select CRYPTO_HASH
784fa4dfedcSDavid S. Miller	help
785fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
786fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
787fa4dfedcSDavid S. Miller
788584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
789584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
79019e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
791584fffc8SSebastian Siewior	help
792584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
793584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
794584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
795584fffc8SSebastian Siewior	  of the algorithm.
796584fffc8SSebastian Siewior
79782798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
79882798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
7997c4468bcSHerbert Xu	select CRYPTO_HASH
80082798f90SAdrian-Ken Rueegsegger	help
80182798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
80282798f90SAdrian-Ken Rueegsegger
80382798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
80435ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
80582798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
80682798f90SAdrian-Ken Rueegsegger
80782798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8086d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
80982798f90SAdrian-Ken Rueegsegger
81082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
81182798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
812e5835fbaSHerbert Xu	select CRYPTO_HASH
81382798f90SAdrian-Ken Rueegsegger	help
81482798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
81582798f90SAdrian-Ken Rueegsegger
81682798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
81782798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
818b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
819b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
82082798f90SAdrian-Ken Rueegsegger
821b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
822b6d44341SAdrian Bunk	  against RIPEMD-160.
823534fe2c1SAdrian-Ken Rueegsegger
824534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8256d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
826534fe2c1SAdrian-Ken Rueegsegger
827534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
828534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
829d8a5e2e9SHerbert Xu	select CRYPTO_HASH
830534fe2c1SAdrian-Ken Rueegsegger	help
831b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
832b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
833b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
834b6d44341SAdrian Bunk	  (than RIPEMD-128).
835534fe2c1SAdrian-Ken Rueegsegger
836534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8376d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
838534fe2c1SAdrian-Ken Rueegsegger
839534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
840534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
8413b8efb4cSHerbert Xu	select CRYPTO_HASH
842534fe2c1SAdrian-Ken Rueegsegger	help
843b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
844b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
845b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
846b6d44341SAdrian Bunk	  (than RIPEMD-160).
847534fe2c1SAdrian-Ken Rueegsegger
84882798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8496d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
85082798f90SAdrian-Ken Rueegsegger
8511da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8521da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
85354ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8541da177e4SLinus Torvalds	help
8551da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8561da177e4SLinus Torvalds
85766be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
858e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
85966be8951SMathias Krause	depends on X86 && 64BIT
86066be8951SMathias Krause	select CRYPTO_SHA1
86166be8951SMathias Krause	select CRYPTO_HASH
86266be8951SMathias Krause	help
86366be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
86466be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
865e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
866e38b6b7fStim	  when available.
86766be8951SMathias Krause
8688275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
869e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8708275d1aaSTim Chen	depends on X86 && 64BIT
8718275d1aaSTim Chen	select CRYPTO_SHA256
8728275d1aaSTim Chen	select CRYPTO_HASH
8738275d1aaSTim Chen	help
8748275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8758275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8768275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
877e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
878e38b6b7fStim	  Instructions) when available.
8798275d1aaSTim Chen
88087de4579STim Chenconfig CRYPTO_SHA512_SSSE3
88187de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
88287de4579STim Chen	depends on X86 && 64BIT
88387de4579STim Chen	select CRYPTO_SHA512
88487de4579STim Chen	select CRYPTO_HASH
88587de4579STim Chen	help
88687de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
88787de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
88887de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
88987de4579STim Chen	  version 2 (AVX2) instructions, when available.
89087de4579STim Chen
891efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
892efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
893efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
894efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
895efdb6f6eSAaro Koskinen	select CRYPTO_HASH
896efdb6f6eSAaro Koskinen	help
897efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
898efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
899efdb6f6eSAaro Koskinen
9004ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
9014ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
9024ff28d4cSDavid S. Miller	depends on SPARC64
9034ff28d4cSDavid S. Miller	select CRYPTO_SHA1
9044ff28d4cSDavid S. Miller	select CRYPTO_HASH
9054ff28d4cSDavid S. Miller	help
9064ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
9074ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
9084ff28d4cSDavid S. Miller
909323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
910323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
911323a6bf1SMichael Ellerman	depends on PPC
912323a6bf1SMichael Ellerman	help
913323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
914323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
915323a6bf1SMichael Ellerman
916d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
917d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
918d9850fc5SMarkus Stockhausen	depends on PPC && SPE
919d9850fc5SMarkus Stockhausen	help
920d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
921d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
922d9850fc5SMarkus Stockhausen
9231da177e4SLinus Torvaldsconfig CRYPTO_SHA256
924cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
92550e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
9261da177e4SLinus Torvalds	help
9271da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9281da177e4SLinus Torvalds
9291da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9301da177e4SLinus Torvalds	  security against collision attacks.
9311da177e4SLinus Torvalds
932cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
933cd12fb90SJonathan Lynch	  of security against collision attacks.
934cd12fb90SJonathan Lynch
9352ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9362ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9372ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9382ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9392ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9402ecc1e95SMarkus Stockhausen	help
9412ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9422ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9432ecc1e95SMarkus Stockhausen
944efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
945efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
946efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
947efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
948efdb6f6eSAaro Koskinen	select CRYPTO_HASH
949efdb6f6eSAaro Koskinen	help
950efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
951efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
952efdb6f6eSAaro Koskinen
95386c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
95486c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
95586c93b24SDavid S. Miller	depends on SPARC64
95686c93b24SDavid S. Miller	select CRYPTO_SHA256
95786c93b24SDavid S. Miller	select CRYPTO_HASH
95886c93b24SDavid S. Miller	help
95986c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
96086c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
96186c93b24SDavid S. Miller
9621da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9631da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
964bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9651da177e4SLinus Torvalds	help
9661da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9671da177e4SLinus Torvalds
9681da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9691da177e4SLinus Torvalds	  security against collision attacks.
9701da177e4SLinus Torvalds
9711da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9721da177e4SLinus Torvalds	  of security against collision attacks.
9731da177e4SLinus Torvalds
974efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
975efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
976efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
977efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
978efdb6f6eSAaro Koskinen	select CRYPTO_HASH
979efdb6f6eSAaro Koskinen	help
980efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
981efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
982efdb6f6eSAaro Koskinen
983775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
984775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
985775e0c69SDavid S. Miller	depends on SPARC64
986775e0c69SDavid S. Miller	select CRYPTO_SHA512
987775e0c69SDavid S. Miller	select CRYPTO_HASH
988775e0c69SDavid S. Miller	help
989775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
990775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
991775e0c69SDavid S. Miller
99253964b9eSJeff Garzikconfig CRYPTO_SHA3
99353964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
99453964b9eSJeff Garzik	select CRYPTO_HASH
99553964b9eSJeff Garzik	help
99653964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
99753964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
99853964b9eSJeff Garzik
99953964b9eSJeff Garzik	  References:
100053964b9eSJeff Garzik	  http://keccak.noekeon.org/
100153964b9eSJeff Garzik
10024f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
10034f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
10044f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
10054f0fc160SGilad Ben-Yossef	help
10064f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
10074f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
10084f0fc160SGilad Ben-Yossef
10094f0fc160SGilad Ben-Yossef	  References:
10104f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
10114f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
10124f0fc160SGilad Ben-Yossef
1013fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
1014fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
1015fe18957eSVitaly Chikunov	select CRYPTO_HASH
1016fe18957eSVitaly Chikunov	help
1017fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1018fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
1019fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
1020fe18957eSVitaly Chikunov
1021fe18957eSVitaly Chikunov	  References:
1022fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1023fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1024fe18957eSVitaly Chikunov
10251da177e4SLinus Torvaldsconfig CRYPTO_TGR192
10261da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
1027f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10281da177e4SLinus Torvalds	help
10291da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
10301da177e4SLinus Torvalds
10311da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
10321da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
10331da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
10341da177e4SLinus Torvalds
10351da177e4SLinus Torvalds	  See also:
10361da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
10371da177e4SLinus Torvalds
1038584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1039584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10404946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10411da177e4SLinus Torvalds	help
1042584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10431da177e4SLinus Torvalds
1044584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1045584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10461da177e4SLinus Torvalds
10471da177e4SLinus Torvalds	  See also:
10486d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10491da177e4SLinus Torvalds
10500e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10510e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
10528af00860SRichard Weinberger	depends on X86 && 64BIT
10530e1227d3SHuang Ying	select CRYPTO_CRYPTD
10540e1227d3SHuang Ying	help
10550e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
10560e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
10570e1227d3SHuang Ying
1058584fffc8SSebastian Siewiorcomment "Ciphers"
10591da177e4SLinus Torvalds
10601da177e4SLinus Torvaldsconfig CRYPTO_AES
10611da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1062cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10631da177e4SLinus Torvalds	help
10641da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10651da177e4SLinus Torvalds	  algorithm.
10661da177e4SLinus Torvalds
10671da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10681da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10691da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10701da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10711da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10721da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10731da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10741da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10751da177e4SLinus Torvalds
10761da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10771da177e4SLinus Torvalds
10781da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10791da177e4SLinus Torvalds
1080b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1081b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1082b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1083b5e0b032SArd Biesheuvel	help
1084b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1085b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1086b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1087b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1088b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1089b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1090b5e0b032SArd Biesheuvel
1091b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1092b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1093b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1094b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
10950a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
10960a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1097b5e0b032SArd Biesheuvel
10981da177e4SLinus Torvaldsconfig CRYPTO_AES_586
10991da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
1100cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
1101cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11025157dea8SSebastian Siewior	select CRYPTO_AES
11031da177e4SLinus Torvalds	help
11041da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11051da177e4SLinus Torvalds	  algorithm.
11061da177e4SLinus Torvalds
11071da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
11081da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
11091da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
11101da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
11111da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
11121da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
11131da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
11141da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
11151da177e4SLinus Torvalds
11161da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
11171da177e4SLinus Torvalds
11181da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11191da177e4SLinus Torvalds
1120a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
1121a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
1122cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
1123cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
112481190b32SSebastian Siewior	select CRYPTO_AES
1125a2a892a2SAndreas Steinmetz	help
1126a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1127a2a892a2SAndreas Steinmetz	  algorithm.
1128a2a892a2SAndreas Steinmetz
1129a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
1130a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
1131a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
1132a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
1133a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
1134a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
1135a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
1136a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
1137a2a892a2SAndreas Steinmetz
1138a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
1139a2a892a2SAndreas Steinmetz
1140a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1141a2a892a2SAndreas Steinmetz
114254b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
114354b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11448af00860SRichard Weinberger	depends on X86
114585671860SHerbert Xu	select CRYPTO_AEAD
11460d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
11470d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
114854b6a1bdSHuang Ying	select CRYPTO_ALGAPI
114985671860SHerbert Xu	select CRYPTO_BLKCIPHER
11507643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
115185671860SHerbert Xu	select CRYPTO_SIMD
115254b6a1bdSHuang Ying	help
115354b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
115454b6a1bdSHuang Ying
115554b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
115654b6a1bdSHuang Ying	  algorithm.
115754b6a1bdSHuang Ying
115854b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
115954b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
116054b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
116154b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
116254b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
116354b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
116454b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
116554b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
116654b6a1bdSHuang Ying
116754b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
116854b6a1bdSHuang Ying
116954b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
117054b6a1bdSHuang Ying
11710d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11720d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1173944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
11740d258efbSMathias Krause	  acceleration for CTR.
11752cf4ac8bSHuang Ying
11769bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11779bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11789bf4852dSDavid S. Miller	depends on SPARC64
11799bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
11809bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
11819bf4852dSDavid S. Miller	help
11829bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11839bf4852dSDavid S. Miller
11849bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11859bf4852dSDavid S. Miller	  algorithm.
11869bf4852dSDavid S. Miller
11879bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11889bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11899bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11909bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11919bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11929bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11939bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11949bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11959bf4852dSDavid S. Miller
11969bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11979bf4852dSDavid S. Miller
11989bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11999bf4852dSDavid S. Miller
12009bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
12019bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
12029bf4852dSDavid S. Miller	  ECB and CBC.
12039bf4852dSDavid S. Miller
1204504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1205504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1206504c6143SMarkus Stockhausen	depends on PPC && SPE
1207504c6143SMarkus Stockhausen	help
1208504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1209504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1210504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1211504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1212504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1213504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1214504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1215504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1216504c6143SMarkus Stockhausen
12171da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
12181da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1219cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
12201da177e4SLinus Torvalds	help
12211da177e4SLinus Torvalds	  Anubis cipher algorithm.
12221da177e4SLinus Torvalds
12231da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
12241da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
12251da177e4SLinus Torvalds	  in the NESSIE competition.
12261da177e4SLinus Torvalds
12271da177e4SLinus Torvalds	  See also:
12286d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
12296d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
12301da177e4SLinus Torvalds
1231584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1232584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1233b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1234e2ee95b8SHye-Shik Chang	help
1235584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1236e2ee95b8SHye-Shik Chang
1237584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1238584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1239584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1240584fffc8SSebastian Siewior	  weakness of the algorithm.
1241584fffc8SSebastian Siewior
1242584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1243584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1244584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
124552ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1246584fffc8SSebastian Siewior	help
1247584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1248584fffc8SSebastian Siewior
1249584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1250584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1251584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1252e2ee95b8SHye-Shik Chang
1253e2ee95b8SHye-Shik Chang	  See also:
1254584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1255584fffc8SSebastian Siewior
125652ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
125752ba867cSJussi Kivilinna	tristate
125852ba867cSJussi Kivilinna	help
125952ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
126052ba867cSJussi Kivilinna	  generic c and the assembler implementations.
126152ba867cSJussi Kivilinna
126252ba867cSJussi Kivilinna	  See also:
126352ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
126452ba867cSJussi Kivilinna
126564b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
126664b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1267f21a7c19SAl Viro	depends on X86 && 64BIT
1268c1679171SEric Biggers	select CRYPTO_BLKCIPHER
126964b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
127064b94ceaSJussi Kivilinna	help
127164b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
127264b94ceaSJussi Kivilinna
127364b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
127464b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
127564b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
127664b94ceaSJussi Kivilinna
127764b94ceaSJussi Kivilinna	  See also:
127864b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
127964b94ceaSJussi Kivilinna
1280584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1281584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1282584fffc8SSebastian Siewior	depends on CRYPTO
1283584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1284584fffc8SSebastian Siewior	help
1285584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1286584fffc8SSebastian Siewior
1287584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1288584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1289584fffc8SSebastian Siewior
1290584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1291584fffc8SSebastian Siewior
1292584fffc8SSebastian Siewior	  See also:
1293584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1294584fffc8SSebastian Siewior
12950b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12960b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1297f21a7c19SAl Viro	depends on X86 && 64BIT
12980b95ec56SJussi Kivilinna	depends on CRYPTO
12991af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1300964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
13010b95ec56SJussi Kivilinna	help
13020b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
13030b95ec56SJussi Kivilinna
13040b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
13050b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
13060b95ec56SJussi Kivilinna
13070b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
13080b95ec56SJussi Kivilinna
13090b95ec56SJussi Kivilinna	  See also:
13100b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
13110b95ec56SJussi Kivilinna
1312d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1313d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1314d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1315d9b1d2e7SJussi Kivilinna	depends on CRYPTO
131644893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1317d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
131844893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
131944893bc2SEric Biggers	select CRYPTO_SIMD
1320d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1321d9b1d2e7SJussi Kivilinna	help
1322d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1323d9b1d2e7SJussi Kivilinna
1324d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1325d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1326d9b1d2e7SJussi Kivilinna
1327d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1328d9b1d2e7SJussi Kivilinna
1329d9b1d2e7SJussi Kivilinna	  See also:
1330d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1331d9b1d2e7SJussi Kivilinna
1332f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1333f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1334f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1335f3f935a7SJussi Kivilinna	depends on CRYPTO
1336f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1337f3f935a7SJussi Kivilinna	help
1338f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1339f3f935a7SJussi Kivilinna
1340f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1341f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1342f3f935a7SJussi Kivilinna
1343f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1344f3f935a7SJussi Kivilinna
1345f3f935a7SJussi Kivilinna	  See also:
1346f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1347f3f935a7SJussi Kivilinna
134881658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
134981658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
135081658ad0SDavid S. Miller	depends on SPARC64
135181658ad0SDavid S. Miller	depends on CRYPTO
135281658ad0SDavid S. Miller	select CRYPTO_ALGAPI
135381658ad0SDavid S. Miller	help
135481658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
135581658ad0SDavid S. Miller
135681658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
135781658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
135881658ad0SDavid S. Miller
135981658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
136081658ad0SDavid S. Miller
136181658ad0SDavid S. Miller	  See also:
136281658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
136381658ad0SDavid S. Miller
1364044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1365044ab525SJussi Kivilinna	tristate
1366044ab525SJussi Kivilinna	help
1367044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1368044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1369044ab525SJussi Kivilinna
1370584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1371584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1372584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1373044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1374584fffc8SSebastian Siewior	help
1375584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1376584fffc8SSebastian Siewior	  described in RFC2144.
1377584fffc8SSebastian Siewior
13784d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13794d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13804d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
13811e63183aSEric Biggers	select CRYPTO_BLKCIPHER
13824d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13831e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13841e63183aSEric Biggers	select CRYPTO_SIMD
13854d6d6a2cSJohannes Goetzfried	help
13864d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13874d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13884d6d6a2cSJohannes Goetzfried
13894d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13904d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13914d6d6a2cSJohannes Goetzfried
1392584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1393584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1394584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1395044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1396584fffc8SSebastian Siewior	help
1397584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1398584fffc8SSebastian Siewior	  described in RFC2612.
1399584fffc8SSebastian Siewior
14004ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
14014ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
14024ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
14034bd96924SEric Biggers	select CRYPTO_BLKCIPHER
14044ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
14054bd96924SEric Biggers	select CRYPTO_CAST_COMMON
14064bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
14074bd96924SEric Biggers	select CRYPTO_SIMD
14084ea1277dSJohannes Goetzfried	select CRYPTO_XTS
14094ea1277dSJohannes Goetzfried	help
14104ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
14114ea1277dSJohannes Goetzfried	  described in RFC2612.
14124ea1277dSJohannes Goetzfried
14134ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
14144ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14154ea1277dSJohannes Goetzfried
1416584fffc8SSebastian Siewiorconfig CRYPTO_DES
1417584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1418584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1419584fffc8SSebastian Siewior	help
1420584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1421584fffc8SSebastian Siewior
1422c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1423c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
142497da37b3SDave Jones	depends on SPARC64
1425c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1426c5aac2dfSDavid S. Miller	select CRYPTO_DES
1427c5aac2dfSDavid S. Miller	help
1428c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1429c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1430c5aac2dfSDavid S. Miller
14316574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
14326574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
14336574e6c6SJussi Kivilinna	depends on X86 && 64BIT
143409c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
14356574e6c6SJussi Kivilinna	select CRYPTO_DES
14366574e6c6SJussi Kivilinna	help
14376574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
14386574e6c6SJussi Kivilinna
14396574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
14406574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
14416574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
14426574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14436574e6c6SJussi Kivilinna
1444584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1445584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1446584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1447584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1448584fffc8SSebastian Siewior	help
1449584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1450584fffc8SSebastian Siewior
1451584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1452584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1453584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1454584fffc8SSebastian Siewior	help
1455584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1456584fffc8SSebastian Siewior
1457584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1458584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1459584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1460584fffc8SSebastian Siewior
1461584fffc8SSebastian Siewior	  See also:
14626d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1463e2ee95b8SHye-Shik Chang
14642407d608STan Swee Hengconfig CRYPTO_SALSA20
14653b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
14662407d608STan Swee Heng	select CRYPTO_BLKCIPHER
14672407d608STan Swee Heng	help
14682407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
14692407d608STan Swee Heng
14702407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14712407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14722407d608STan Swee Heng
14732407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14742407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14751da177e4SLinus Torvalds
1476c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1477aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
1478c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1479c08d0e64SMartin Willi	help
1480aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1481c08d0e64SMartin Willi
1482c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1483c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1484de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
1485c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1486c08d0e64SMartin Willi
1487de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1488de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1489de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1490de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1491de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1492de61d7aeSEric Biggers
1493aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1494aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1495aa762409SEric Biggers	  in some performance-sensitive scenarios.
1496aa762409SEric Biggers
1497c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14984af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1499c9320b6dSMartin Willi	depends on X86 && 64BIT
1500c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1501c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1502c9320b6dSMartin Willi	help
15037a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
15047a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1505c9320b6dSMartin Willi
1506584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1507584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1508584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1509584fffc8SSebastian Siewior	help
1510584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1511584fffc8SSebastian Siewior
1512584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1513584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1514584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1515584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1516584fffc8SSebastian Siewior
1517584fffc8SSebastian Siewior	  See also:
1518584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1519584fffc8SSebastian Siewior
1520584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1521584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1522584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1523584fffc8SSebastian Siewior	help
1524584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1525584fffc8SSebastian Siewior
1526584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1527584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1528584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1529584fffc8SSebastian Siewior
1530584fffc8SSebastian Siewior	  See also:
1531584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1532584fffc8SSebastian Siewior
1533937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1534937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1535937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1536e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1537596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1538937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1539e0f409dcSEric Biggers	select CRYPTO_SIMD
1540937c30d7SJussi Kivilinna	help
1541937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1542937c30d7SJussi Kivilinna
1543937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1544937c30d7SJussi Kivilinna	  of 8 bits.
1545937c30d7SJussi Kivilinna
15461e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1547937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1548937c30d7SJussi Kivilinna
1549937c30d7SJussi Kivilinna	  See also:
1550937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1551937c30d7SJussi Kivilinna
1552251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1553251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1554251496dbSJussi Kivilinna	depends on X86 && !64BIT
1555e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1556596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1557251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1558e0f409dcSEric Biggers	select CRYPTO_SIMD
1559251496dbSJussi Kivilinna	help
1560251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1561251496dbSJussi Kivilinna
1562251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1563251496dbSJussi Kivilinna	  of 8 bits.
1564251496dbSJussi Kivilinna
1565251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1566251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1567251496dbSJussi Kivilinna
1568251496dbSJussi Kivilinna	  See also:
1569251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1570251496dbSJussi Kivilinna
15717efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15727efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15737efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1574e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
15751d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15767efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1577e16bf974SEric Biggers	select CRYPTO_SIMD
15787efe4076SJohannes Goetzfried	select CRYPTO_XTS
15797efe4076SJohannes Goetzfried	help
15807efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15817efe4076SJohannes Goetzfried
15827efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15837efe4076SJohannes Goetzfried	  of 8 bits.
15847efe4076SJohannes Goetzfried
15857efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15867efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15877efe4076SJohannes Goetzfried
15887efe4076SJohannes Goetzfried	  See also:
15897efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15907efe4076SJohannes Goetzfried
159156d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
159256d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
159356d76c96SJussi Kivilinna	depends on X86 && 64BIT
159456d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
159556d76c96SJussi Kivilinna	help
159656d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
159756d76c96SJussi Kivilinna
159856d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
159956d76c96SJussi Kivilinna	  of 8 bits.
160056d76c96SJussi Kivilinna
160156d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
160256d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
160356d76c96SJussi Kivilinna
160456d76c96SJussi Kivilinna	  See also:
160556d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
160656d76c96SJussi Kivilinna
1607747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1608747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1609747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1610747c8ce4SGilad Ben-Yossef	help
1611747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1612747c8ce4SGilad Ben-Yossef
1613747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1614747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1615747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1616747c8ce4SGilad Ben-Yossef
1617747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1618747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1619747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1620747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1621747c8ce4SGilad Ben-Yossef
1622747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1623747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1624747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1625747c8ce4SGilad Ben-Yossef
1626747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1627747c8ce4SGilad Ben-Yossef
1628747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1629747c8ce4SGilad Ben-Yossef
1630747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1631747c8ce4SGilad Ben-Yossef
1632584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1633584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1634584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1635584fffc8SSebastian Siewior	help
1636584fffc8SSebastian Siewior	  TEA cipher algorithm.
1637584fffc8SSebastian Siewior
1638584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1639584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1640584fffc8SSebastian Siewior	  little memory.
1641584fffc8SSebastian Siewior
1642584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1643584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1644584fffc8SSebastian Siewior	  in the TEA algorithm.
1645584fffc8SSebastian Siewior
1646584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1647584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1648584fffc8SSebastian Siewior
1649584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1650584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1651584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1652584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1653584fffc8SSebastian Siewior	help
1654584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1655584fffc8SSebastian Siewior
1656584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1657584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1658584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1659584fffc8SSebastian Siewior	  bits.
1660584fffc8SSebastian Siewior
1661584fffc8SSebastian Siewior	  See also:
1662584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1663584fffc8SSebastian Siewior
1664584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1665584fffc8SSebastian Siewior	tristate
1666584fffc8SSebastian Siewior	help
1667584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1668584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1669584fffc8SSebastian Siewior
1670584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1671584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1672584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1673584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1674584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1675584fffc8SSebastian Siewior	help
1676584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1677584fffc8SSebastian Siewior
1678584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1679584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1680584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1681584fffc8SSebastian Siewior	  bits.
1682584fffc8SSebastian Siewior
1683584fffc8SSebastian Siewior	  See also:
1684584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1685584fffc8SSebastian Siewior
1686584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1687584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1688584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1689584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1690584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1691584fffc8SSebastian Siewior	help
1692584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1693584fffc8SSebastian Siewior
1694584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1695584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1696584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1697584fffc8SSebastian Siewior	  bits.
1698584fffc8SSebastian Siewior
1699584fffc8SSebastian Siewior	  See also:
1700584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1701584fffc8SSebastian Siewior
17028280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
17038280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1704f21a7c19SAl Viro	depends on X86 && 64BIT
170537992fa4SEric Biggers	select CRYPTO_BLKCIPHER
17068280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
17078280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1708414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17098280daadSJussi Kivilinna	help
17108280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
17118280daadSJussi Kivilinna
17128280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
17138280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
17148280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
17158280daadSJussi Kivilinna	  bits.
17168280daadSJussi Kivilinna
17178280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
17188280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
17198280daadSJussi Kivilinna
17208280daadSJussi Kivilinna	  See also:
17218280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
17228280daadSJussi Kivilinna
1723107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1724107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1725107778b5SJohannes Goetzfried	depends on X86 && 64BIT
17260e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1727a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17280e6ab46dSEric Biggers	select CRYPTO_SIMD
1729107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1730107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1731107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1732107778b5SJohannes Goetzfried	help
1733107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1734107778b5SJohannes Goetzfried
1735107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1736107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1737107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1738107778b5SJohannes Goetzfried	  bits.
1739107778b5SJohannes Goetzfried
1740107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1741107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1742107778b5SJohannes Goetzfried
1743107778b5SJohannes Goetzfried	  See also:
1744107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1745107778b5SJohannes Goetzfried
1746584fffc8SSebastian Siewiorcomment "Compression"
1747584fffc8SSebastian Siewior
17481da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17491da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1750cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1751f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17521da177e4SLinus Torvalds	select ZLIB_INFLATE
17531da177e4SLinus Torvalds	select ZLIB_DEFLATE
17541da177e4SLinus Torvalds	help
17551da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17561da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17571da177e4SLinus Torvalds
17581da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17591da177e4SLinus Torvalds
17600b77abb3SZoltan Sogorconfig CRYPTO_LZO
17610b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17620b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1763ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17640b77abb3SZoltan Sogor	select LZO_COMPRESS
17650b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17660b77abb3SZoltan Sogor	help
17670b77abb3SZoltan Sogor	  This is the LZO algorithm.
17680b77abb3SZoltan Sogor
176935a1fc18SSeth Jenningsconfig CRYPTO_842
177035a1fc18SSeth Jennings	tristate "842 compression algorithm"
17712062c5b6SDan Streetman	select CRYPTO_ALGAPI
17726a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17732062c5b6SDan Streetman	select 842_COMPRESS
17742062c5b6SDan Streetman	select 842_DECOMPRESS
177535a1fc18SSeth Jennings	help
177635a1fc18SSeth Jennings	  This is the 842 algorithm.
177735a1fc18SSeth Jennings
17780ea8530dSChanho Minconfig CRYPTO_LZ4
17790ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17800ea8530dSChanho Min	select CRYPTO_ALGAPI
17818cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17820ea8530dSChanho Min	select LZ4_COMPRESS
17830ea8530dSChanho Min	select LZ4_DECOMPRESS
17840ea8530dSChanho Min	help
17850ea8530dSChanho Min	  This is the LZ4 algorithm.
17860ea8530dSChanho Min
17870ea8530dSChanho Minconfig CRYPTO_LZ4HC
17880ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17890ea8530dSChanho Min	select CRYPTO_ALGAPI
179091d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17910ea8530dSChanho Min	select LZ4HC_COMPRESS
17920ea8530dSChanho Min	select LZ4_DECOMPRESS
17930ea8530dSChanho Min	help
17940ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17950ea8530dSChanho Min
1796d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1797d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1798d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1799d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1800d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1801d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1802d28fc3dbSNick Terrell	help
1803d28fc3dbSNick Terrell	  This is the zstd algorithm.
1804d28fc3dbSNick Terrell
180517f0f4a4SNeil Hormancomment "Random Number Generation"
180617f0f4a4SNeil Horman
180717f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
180817f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
180917f0f4a4SNeil Horman	select CRYPTO_AES
181017f0f4a4SNeil Horman	select CRYPTO_RNG
181117f0f4a4SNeil Horman	help
181217f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
181317f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
18147dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
18157dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
181617f0f4a4SNeil Horman
1817f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1818419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1819419090c6SStephan Mueller	help
1820419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1821419090c6SStephan Mueller	  more of the DRBG types must be selected.
1822419090c6SStephan Mueller
1823f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1824419090c6SStephan Mueller
1825419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1826401e4238SHerbert Xu	bool
1827419090c6SStephan Mueller	default y
1828419090c6SStephan Mueller	select CRYPTO_HMAC
1829826775bbSHerbert Xu	select CRYPTO_SHA256
1830419090c6SStephan Mueller
1831419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1832419090c6SStephan Mueller	bool "Enable Hash DRBG"
1833826775bbSHerbert Xu	select CRYPTO_SHA256
1834419090c6SStephan Mueller	help
1835419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1836419090c6SStephan Mueller
1837419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1838419090c6SStephan Mueller	bool "Enable CTR DRBG"
1839419090c6SStephan Mueller	select CRYPTO_AES
184035591285SStephan Mueller	depends on CRYPTO_CTR
1841419090c6SStephan Mueller	help
1842419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1843419090c6SStephan Mueller
1844f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1845f2c89a10SHerbert Xu	tristate
1846401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1847f2c89a10SHerbert Xu	select CRYPTO_RNG
1848bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1849f2c89a10SHerbert Xu
1850f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1851419090c6SStephan Mueller
1852bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1853bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18542f313e02SArnd Bergmann	select CRYPTO_RNG
1855bb5530e4SStephan Mueller	help
1856bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1857bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1858bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1859bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1860bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1861bb5530e4SStephan Mueller
186203c8efc1SHerbert Xuconfig CRYPTO_USER_API
186303c8efc1SHerbert Xu	tristate
186403c8efc1SHerbert Xu
1865fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1866fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18677451708fSHerbert Xu	depends on NET
1868fe869cdbSHerbert Xu	select CRYPTO_HASH
1869fe869cdbSHerbert Xu	select CRYPTO_USER_API
1870fe869cdbSHerbert Xu	help
1871fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1872fe869cdbSHerbert Xu	  algorithms.
1873fe869cdbSHerbert Xu
18748ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18758ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18767451708fSHerbert Xu	depends on NET
18778ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
18788ff59090SHerbert Xu	select CRYPTO_USER_API
18798ff59090SHerbert Xu	help
18808ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18818ff59090SHerbert Xu	  key cipher algorithms.
18828ff59090SHerbert Xu
18832f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18842f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18852f375538SStephan Mueller	depends on NET
18862f375538SStephan Mueller	select CRYPTO_RNG
18872f375538SStephan Mueller	select CRYPTO_USER_API
18882f375538SStephan Mueller	help
18892f375538SStephan Mueller	  This option enables the user-spaces interface for random
18902f375538SStephan Mueller	  number generator algorithms.
18912f375538SStephan Mueller
1892b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1893b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1894b64a2d95SHerbert Xu	depends on NET
1895b64a2d95SHerbert Xu	select CRYPTO_AEAD
189672548b09SStephan Mueller	select CRYPTO_BLKCIPHER
189772548b09SStephan Mueller	select CRYPTO_NULL
1898b64a2d95SHerbert Xu	select CRYPTO_USER_API
1899b64a2d95SHerbert Xu	help
1900b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1901b64a2d95SHerbert Xu	  cipher algorithms.
1902b64a2d95SHerbert Xu
1903cac5818cSCorentin Labbeconfig CRYPTO_STATS
1904cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1905a6a31385SCorentin Labbe	depends on CRYPTO_USER
1906cac5818cSCorentin Labbe	help
1907cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1908cac5818cSCorentin Labbe	  This will collect:
1909cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1910cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1911cac5818cSCorentin Labbe	  - size and numbers of hash operations
1912cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1913cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1914cac5818cSCorentin Labbe
1915ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1916ee08997fSDmitry Kasatkin	bool
1917ee08997fSDmitry Kasatkin
19181da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
19198636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
19208636a1f9SMasahiro Yamadasource "certs/Kconfig"
19211da177e4SLinus Torvalds
1922cce9e06dSHerbert Xuendif	# if CRYPTO
1923