1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 640a2e821dSHuang Ying select CRYPTO_WORKQUEUE 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1098cd579d2SBart Van Assche select SGL_ALLOC 1102ebda74fSGiovanni Cabiddu 1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1122ebda74fSGiovanni Cabiddu tristate 1132ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1142ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1152ebda74fSGiovanni Cabiddu 1162b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1172b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1186a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1192b8c19dbSHerbert Xu help 1202b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1212b8c19dbSHerbert Xu cbc(aes). 1222b8c19dbSHerbert Xu 1236a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1246a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1256a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1266a0fcbb4SHerbert Xu select CRYPTO_HASH2 1276a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 128946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1294e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1302ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1316a0fcbb4SHerbert Xu 132a38f7907SSteffen Klassertconfig CRYPTO_USER 133a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1345db017aaSHerbert Xu depends on NET 135a38f7907SSteffen Klassert select CRYPTO_MANAGER 136a38f7907SSteffen Klassert help 137d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 138a38f7907SSteffen Klassert cbc(aes). 139a38f7907SSteffen Klassert 140326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 141326a6346SHerbert Xu bool "Disable run-time self tests" 14200ca28a5SHerbert Xu default y 14300ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1440b767f96SAlexander Shishkin help 145326a6346SHerbert Xu Disable run-time self tests that normally take place at 146326a6346SHerbert Xu algorithm registration. 1470b767f96SAlexander Shishkin 1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1495b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1505b2706a4SEric Biggers depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 1515b2706a4SEric Biggers help 1525b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1535b2706a4SEric Biggers including randomized fuzz tests. 1545b2706a4SEric Biggers 1555b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1565b2706a4SEric Biggers longer to run than the normal self tests. 1575b2706a4SEric Biggers 158584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 15908c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 160584fffc8SSebastian Siewior help 161584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 162584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 163584fffc8SSebastian Siewior option will be selected automatically if you select such a 164584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 165584fffc8SSebastian Siewior an external module that requires these functions. 166584fffc8SSebastian Siewior 167584fffc8SSebastian Siewiorconfig CRYPTO_NULL 168584fffc8SSebastian Siewior tristate "Null algorithms" 169149a3971SHerbert Xu select CRYPTO_NULL2 170584fffc8SSebastian Siewior help 171584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 172584fffc8SSebastian Siewior 173149a3971SHerbert Xuconfig CRYPTO_NULL2 174dd43c4e9SHerbert Xu tristate 175149a3971SHerbert Xu select CRYPTO_ALGAPI2 176149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 177149a3971SHerbert Xu select CRYPTO_HASH2 178149a3971SHerbert Xu 1795068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1803b4afaf2SKees Cook tristate "Parallel crypto engine" 1813b4afaf2SKees Cook depends on SMP 1825068c7a8SSteffen Klassert select PADATA 1835068c7a8SSteffen Klassert select CRYPTO_MANAGER 1845068c7a8SSteffen Klassert select CRYPTO_AEAD 1855068c7a8SSteffen Klassert help 1865068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1875068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1885068c7a8SSteffen Klassert 18925c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 19025c38d3fSHuang Ying tristate 19125c38d3fSHuang Ying 192584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 193584fffc8SSebastian Siewior tristate "Software async crypto daemon" 194584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 195b8a28251SLoc Ho select CRYPTO_HASH 196584fffc8SSebastian Siewior select CRYPTO_MANAGER 197254eff77SHuang Ying select CRYPTO_WORKQUEUE 198584fffc8SSebastian Siewior help 199584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 200584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 201584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 202584fffc8SSebastian Siewior 203584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 204584fffc8SSebastian Siewior tristate "Authenc support" 205584fffc8SSebastian Siewior select CRYPTO_AEAD 206584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 207584fffc8SSebastian Siewior select CRYPTO_MANAGER 208584fffc8SSebastian Siewior select CRYPTO_HASH 209e94c6a7aSHerbert Xu select CRYPTO_NULL 210584fffc8SSebastian Siewior help 211584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 212584fffc8SSebastian Siewior This is required for IPSec. 213584fffc8SSebastian Siewior 214584fffc8SSebastian Siewiorconfig CRYPTO_TEST 215584fffc8SSebastian Siewior tristate "Testing module" 216584fffc8SSebastian Siewior depends on m 217da7f033dSHerbert Xu select CRYPTO_MANAGER 218584fffc8SSebastian Siewior help 219584fffc8SSebastian Siewior Quick & dirty crypto test module. 220584fffc8SSebastian Siewior 221266d0516SHerbert Xuconfig CRYPTO_SIMD 222266d0516SHerbert Xu tristate 223266d0516SHerbert Xu select CRYPTO_CRYPTD 224266d0516SHerbert Xu 225596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 226596d8750SJussi Kivilinna tristate 227596d8750SJussi Kivilinna depends on X86 228065ce327SHerbert Xu select CRYPTO_BLKCIPHER 229596d8750SJussi Kivilinna 230735d37b5SBaolin Wangconfig CRYPTO_ENGINE 231735d37b5SBaolin Wang tristate 232735d37b5SBaolin Wang 2333d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2343d6228a5SVitaly Chikunov 2353d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2363d6228a5SVitaly Chikunov tristate "RSA algorithm" 2373d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2383d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2393d6228a5SVitaly Chikunov select MPILIB 2403d6228a5SVitaly Chikunov select ASN1 2413d6228a5SVitaly Chikunov help 2423d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2433d6228a5SVitaly Chikunov 2443d6228a5SVitaly Chikunovconfig CRYPTO_DH 2453d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2463d6228a5SVitaly Chikunov select CRYPTO_KPP 2473d6228a5SVitaly Chikunov select MPILIB 2483d6228a5SVitaly Chikunov help 2493d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2503d6228a5SVitaly Chikunov 2514a2289daSVitaly Chikunovconfig CRYPTO_ECC 2524a2289daSVitaly Chikunov tristate 2534a2289daSVitaly Chikunov 2543d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2553d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2564a2289daSVitaly Chikunov select CRYPTO_ECC 2573d6228a5SVitaly Chikunov select CRYPTO_KPP 2583d6228a5SVitaly Chikunov select CRYPTO_RNG_DEFAULT 2593d6228a5SVitaly Chikunov help 2603d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2613d6228a5SVitaly Chikunov 262*0d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 263*0d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 264*0d7a7864SVitaly Chikunov select CRYPTO_ECC 265*0d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 266*0d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 267*0d7a7864SVitaly Chikunov help 268*0d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 269*0d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 270*0d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 271*0d7a7864SVitaly Chikunov is implemented. 272*0d7a7864SVitaly Chikunov 273584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 274584fffc8SSebastian Siewior 275584fffc8SSebastian Siewiorconfig CRYPTO_CCM 276584fffc8SSebastian Siewior tristate "CCM support" 277584fffc8SSebastian Siewior select CRYPTO_CTR 278f15f05b0SArd Biesheuvel select CRYPTO_HASH 279584fffc8SSebastian Siewior select CRYPTO_AEAD 280584fffc8SSebastian Siewior help 281584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 282584fffc8SSebastian Siewior 283584fffc8SSebastian Siewiorconfig CRYPTO_GCM 284584fffc8SSebastian Siewior tristate "GCM/GMAC support" 285584fffc8SSebastian Siewior select CRYPTO_CTR 286584fffc8SSebastian Siewior select CRYPTO_AEAD 2879382d97aSHuang Ying select CRYPTO_GHASH 2889489667dSJussi Kivilinna select CRYPTO_NULL 289584fffc8SSebastian Siewior help 290584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 291584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 292584fffc8SSebastian Siewior 29371ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 29471ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 29571ebc4d1SMartin Willi select CRYPTO_CHACHA20 29671ebc4d1SMartin Willi select CRYPTO_POLY1305 29771ebc4d1SMartin Willi select CRYPTO_AEAD 29871ebc4d1SMartin Willi help 29971ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 30071ebc4d1SMartin Willi 30171ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 30271ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 30371ebc4d1SMartin Willi IETF protocols. 30471ebc4d1SMartin Willi 305f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 306f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 307f606a88eSOndrej Mosnacek select CRYPTO_AEAD 308f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 309f606a88eSOndrej Mosnacek help 310f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 311f606a88eSOndrej Mosnacek 312f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L 313f606a88eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm" 314f606a88eSOndrej Mosnacek select CRYPTO_AEAD 315f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 316f606a88eSOndrej Mosnacek help 317f606a88eSOndrej Mosnacek Support for the AEGIS-128L dedicated AEAD algorithm. 318f606a88eSOndrej Mosnacek 319f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256 320f606a88eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm" 321f606a88eSOndrej Mosnacek select CRYPTO_AEAD 322f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 323f606a88eSOndrej Mosnacek help 324f606a88eSOndrej Mosnacek Support for the AEGIS-256 dedicated AEAD algorithm. 325f606a88eSOndrej Mosnacek 3261d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3271d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3281d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3291d373d4eSOndrej Mosnacek select CRYPTO_AEAD 330de272ca7SEric Biggers select CRYPTO_SIMD 3311d373d4eSOndrej Mosnacek help 3324e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3331d373d4eSOndrej Mosnacek 3341d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2 3351d373d4eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3361d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3371d373d4eSOndrej Mosnacek select CRYPTO_AEAD 338d628132aSEric Biggers select CRYPTO_SIMD 3391d373d4eSOndrej Mosnacek help 3404e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm. 3411d373d4eSOndrej Mosnacek 3421d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2 3431d373d4eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3441d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3451d373d4eSOndrej Mosnacek select CRYPTO_AEAD 346b6708c2dSEric Biggers select CRYPTO_SIMD 3471d373d4eSOndrej Mosnacek help 3484e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm. 3491d373d4eSOndrej Mosnacek 350396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640 351396be41fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm" 352396be41fSOndrej Mosnacek select CRYPTO_AEAD 353396be41fSOndrej Mosnacek help 354396be41fSOndrej Mosnacek Support for the MORUS-640 dedicated AEAD algorithm. 355396be41fSOndrej Mosnacek 35656e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE 3572808f173SOndrej Mosnacek tristate 3582808f173SOndrej Mosnacek depends on X86 35956e8e57fSOndrej Mosnacek select CRYPTO_AEAD 36047730958SEric Biggers select CRYPTO_SIMD 36156e8e57fSOndrej Mosnacek help 36256e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD 36356e8e57fSOndrej Mosnacek algorithm. 36456e8e57fSOndrej Mosnacek 3656ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2 3666ecc9d9fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)" 3676ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3686ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3696ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS640_GLUE 3706ecc9d9fSOndrej Mosnacek help 3716ecc9d9fSOndrej Mosnacek SSE2 implementation of the MORUS-640 dedicated AEAD algorithm. 3726ecc9d9fSOndrej Mosnacek 373396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280 374396be41fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm" 375396be41fSOndrej Mosnacek select CRYPTO_AEAD 376396be41fSOndrej Mosnacek help 377396be41fSOndrej Mosnacek Support for the MORUS-1280 dedicated AEAD algorithm. 378396be41fSOndrej Mosnacek 37956e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE 3802808f173SOndrej Mosnacek tristate 3812808f173SOndrej Mosnacek depends on X86 38256e8e57fSOndrej Mosnacek select CRYPTO_AEAD 383e151a8d2SEric Biggers select CRYPTO_SIMD 38456e8e57fSOndrej Mosnacek help 38556e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD 38656e8e57fSOndrej Mosnacek algorithm. 38756e8e57fSOndrej Mosnacek 3886ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2 3896ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)" 3906ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3916ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3926ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 3936ecc9d9fSOndrej Mosnacek help 3946ecc9d9fSOndrej Mosnacek SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD 3956ecc9d9fSOndrej Mosnacek algorithm. 3966ecc9d9fSOndrej Mosnacek 3976ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2 3986ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)" 3996ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 4006ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 4016ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 4026ecc9d9fSOndrej Mosnacek help 4036ecc9d9fSOndrej Mosnacek AVX2 optimized implementation of the MORUS-1280 dedicated AEAD 4046ecc9d9fSOndrej Mosnacek algorithm. 4056ecc9d9fSOndrej Mosnacek 406584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 407584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 408584fffc8SSebastian Siewior select CRYPTO_AEAD 409584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 410856e3f40SHerbert Xu select CRYPTO_NULL 411401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 412584fffc8SSebastian Siewior help 413584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 414584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 415584fffc8SSebastian Siewior 416a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 417a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 418a10f554fSHerbert Xu select CRYPTO_AEAD 419a10f554fSHerbert Xu select CRYPTO_NULL 420401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 4213491244cSHerbert Xu default m 422a10f554fSHerbert Xu help 423a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 424a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 425a10f554fSHerbert Xu algorithm for CBC. 426a10f554fSHerbert Xu 427584fffc8SSebastian Siewiorcomment "Block modes" 428584fffc8SSebastian Siewior 429584fffc8SSebastian Siewiorconfig CRYPTO_CBC 430584fffc8SSebastian Siewior tristate "CBC support" 431584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 432584fffc8SSebastian Siewior select CRYPTO_MANAGER 433584fffc8SSebastian Siewior help 434584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 435584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 436584fffc8SSebastian Siewior 437a7d85e06SJames Bottomleyconfig CRYPTO_CFB 438a7d85e06SJames Bottomley tristate "CFB support" 439a7d85e06SJames Bottomley select CRYPTO_BLKCIPHER 440a7d85e06SJames Bottomley select CRYPTO_MANAGER 441a7d85e06SJames Bottomley help 442a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 443a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 444a7d85e06SJames Bottomley 445584fffc8SSebastian Siewiorconfig CRYPTO_CTR 446584fffc8SSebastian Siewior tristate "CTR support" 447584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 448584fffc8SSebastian Siewior select CRYPTO_SEQIV 449584fffc8SSebastian Siewior select CRYPTO_MANAGER 450584fffc8SSebastian Siewior help 451584fffc8SSebastian Siewior CTR: Counter mode 452584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 453584fffc8SSebastian Siewior 454584fffc8SSebastian Siewiorconfig CRYPTO_CTS 455584fffc8SSebastian Siewior tristate "CTS support" 456584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 457584fffc8SSebastian Siewior help 458584fffc8SSebastian Siewior CTS: Cipher Text Stealing 459584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 460ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 461ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 462ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 463584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 464584fffc8SSebastian Siewior for AES encryption. 465584fffc8SSebastian Siewior 466ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 467ecd6d5c9SGilad Ben-Yossef 468584fffc8SSebastian Siewiorconfig CRYPTO_ECB 469584fffc8SSebastian Siewior tristate "ECB support" 470584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 471584fffc8SSebastian Siewior select CRYPTO_MANAGER 472584fffc8SSebastian Siewior help 473584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 474584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 475584fffc8SSebastian Siewior the input block by block. 476584fffc8SSebastian Siewior 477584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4782470a2b2SJussi Kivilinna tristate "LRW support" 479584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 480584fffc8SSebastian Siewior select CRYPTO_MANAGER 481584fffc8SSebastian Siewior select CRYPTO_GF128MUL 482584fffc8SSebastian Siewior help 483584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 484584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 485584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 486584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 487584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 488584fffc8SSebastian Siewior 489e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 490e497c518SGilad Ben-Yossef tristate "OFB support" 491e497c518SGilad Ben-Yossef select CRYPTO_BLKCIPHER 492e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 493e497c518SGilad Ben-Yossef help 494e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 495e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 496e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 497e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 498e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 499e497c518SGilad Ben-Yossef normally even when applied before encryption. 500e497c518SGilad Ben-Yossef 501584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 502584fffc8SSebastian Siewior tristate "PCBC support" 503584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 504584fffc8SSebastian Siewior select CRYPTO_MANAGER 505584fffc8SSebastian Siewior help 506584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 507584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 508584fffc8SSebastian Siewior 509584fffc8SSebastian Siewiorconfig CRYPTO_XTS 5105bcf8e6dSJussi Kivilinna tristate "XTS support" 511584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 512584fffc8SSebastian Siewior select CRYPTO_MANAGER 51312cb3a1cSMilan Broz select CRYPTO_ECB 514584fffc8SSebastian Siewior help 515584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 516584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 517584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 518584fffc8SSebastian Siewior 5191c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 5201c49678eSStephan Mueller tristate "Key wrapping support" 5211c49678eSStephan Mueller select CRYPTO_BLKCIPHER 5221c49678eSStephan Mueller help 5231c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 5241c49678eSStephan Mueller padding. 5251c49678eSStephan Mueller 52626609a21SEric Biggersconfig CRYPTO_NHPOLY1305 52726609a21SEric Biggers tristate 52826609a21SEric Biggers select CRYPTO_HASH 52926609a21SEric Biggers select CRYPTO_POLY1305 53026609a21SEric Biggers 531012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 532012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 533012c8238SEric Biggers depends on X86 && 64BIT 534012c8238SEric Biggers select CRYPTO_NHPOLY1305 535012c8238SEric Biggers help 536012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 537012c8238SEric Biggers Adiantum encryption mode. 538012c8238SEric Biggers 5390f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 5400f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 5410f961f9fSEric Biggers depends on X86 && 64BIT 5420f961f9fSEric Biggers select CRYPTO_NHPOLY1305 5430f961f9fSEric Biggers help 5440f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 5450f961f9fSEric Biggers Adiantum encryption mode. 5460f961f9fSEric Biggers 547059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 548059c2a4dSEric Biggers tristate "Adiantum support" 549059c2a4dSEric Biggers select CRYPTO_CHACHA20 550059c2a4dSEric Biggers select CRYPTO_POLY1305 551059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 552059c2a4dSEric Biggers help 553059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 554059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 555059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 556059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 557059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 558059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 559059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 560059c2a4dSEric Biggers AES-XTS. 561059c2a4dSEric Biggers 562059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 563059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 564059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 565059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 566059c2a4dSEric Biggers security than XTS, subject to the security bound. 567059c2a4dSEric Biggers 568059c2a4dSEric Biggers If unsure, say N. 569059c2a4dSEric Biggers 570584fffc8SSebastian Siewiorcomment "Hash modes" 571584fffc8SSebastian Siewior 57293b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 57393b5e86aSJussi Kivilinna tristate "CMAC support" 57493b5e86aSJussi Kivilinna select CRYPTO_HASH 57593b5e86aSJussi Kivilinna select CRYPTO_MANAGER 57693b5e86aSJussi Kivilinna help 57793b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 57893b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 57993b5e86aSJussi Kivilinna 58093b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 58193b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 58293b5e86aSJussi Kivilinna 5831da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5848425165dSHerbert Xu tristate "HMAC support" 5850796ae06SHerbert Xu select CRYPTO_HASH 58643518407SHerbert Xu select CRYPTO_MANAGER 5871da177e4SLinus Torvalds help 5881da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5891da177e4SLinus Torvalds This is required for IPSec. 5901da177e4SLinus Torvalds 591333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 592333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 593333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 594333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 595333b0d7eSKazunori MIYAZAWA help 596333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 597333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 598333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 599333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 600333b0d7eSKazunori MIYAZAWA 601f1939f7cSShane Wangconfig CRYPTO_VMAC 602f1939f7cSShane Wang tristate "VMAC support" 603f1939f7cSShane Wang select CRYPTO_HASH 604f1939f7cSShane Wang select CRYPTO_MANAGER 605f1939f7cSShane Wang help 606f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 607f1939f7cSShane Wang very high speed on 64-bit architectures. 608f1939f7cSShane Wang 609f1939f7cSShane Wang See also: 610f1939f7cSShane Wang <http://fastcrypto.org/vmac> 611f1939f7cSShane Wang 612584fffc8SSebastian Siewiorcomment "Digest" 613584fffc8SSebastian Siewior 614584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 615584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 6165773a3e6SHerbert Xu select CRYPTO_HASH 6176a0962b2SDarrick J. Wong select CRC32 6181da177e4SLinus Torvalds help 619584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 620584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 62169c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 6221da177e4SLinus Torvalds 6238cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 6248cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 6258cb51ba8SAustin Zhang depends on X86 6268cb51ba8SAustin Zhang select CRYPTO_HASH 6278cb51ba8SAustin Zhang help 6288cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 6298cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 6308cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 6318cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 6328cb51ba8SAustin Zhang gain performance compared with software implementation. 6338cb51ba8SAustin Zhang Module will be crc32c-intel. 6348cb51ba8SAustin Zhang 6357cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6366dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 637c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6386dd7a82cSAnton Blanchard select CRYPTO_HASH 6396dd7a82cSAnton Blanchard select CRC32 6406dd7a82cSAnton Blanchard help 6416dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6426dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6436dd7a82cSAnton Blanchard and newer processors for improved performance. 6446dd7a82cSAnton Blanchard 6456dd7a82cSAnton Blanchard 646442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 647442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 648442a7c40SDavid S. Miller depends on SPARC64 649442a7c40SDavid S. Miller select CRYPTO_HASH 650442a7c40SDavid S. Miller select CRC32 651442a7c40SDavid S. Miller help 652442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 653442a7c40SDavid S. Miller when available. 654442a7c40SDavid S. Miller 65578c37d19SAlexander Boykoconfig CRYPTO_CRC32 65678c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 65778c37d19SAlexander Boyko select CRYPTO_HASH 65878c37d19SAlexander Boyko select CRC32 65978c37d19SAlexander Boyko help 66078c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 66178c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 66278c37d19SAlexander Boyko 66378c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 66478c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 66578c37d19SAlexander Boyko depends on X86 66678c37d19SAlexander Boyko select CRYPTO_HASH 66778c37d19SAlexander Boyko select CRC32 66878c37d19SAlexander Boyko help 66978c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 67078c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 67178c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 672af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 67378c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 67478c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 67578c37d19SAlexander Boyko 6764a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6774a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6784a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6794a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6804a5dc51eSMarcin Nowakowski help 6814a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6824a5dc51eSMarcin Nowakowski instructions, when available. 6834a5dc51eSMarcin Nowakowski 6844a5dc51eSMarcin Nowakowski 68568411521SHerbert Xuconfig CRYPTO_CRCT10DIF 68668411521SHerbert Xu tristate "CRCT10DIF algorithm" 68768411521SHerbert Xu select CRYPTO_HASH 68868411521SHerbert Xu help 68968411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 69068411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 69168411521SHerbert Xu transforms to be used if they are available. 69268411521SHerbert Xu 69368411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 69468411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 69568411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 69668411521SHerbert Xu select CRYPTO_HASH 69768411521SHerbert Xu help 69868411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 69968411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 70068411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 701af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 70268411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 70368411521SHerbert Xu 704b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 705b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 706b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 707b01df1c1SDaniel Axtens select CRYPTO_HASH 708b01df1c1SDaniel Axtens help 709b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 710b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 711b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 712b01df1c1SDaniel Axtens 713146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 714146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 715146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 716146c8688SDaniel Axtens help 717146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 718146c8688SDaniel Axtens POWER8 vpmsum instructions. 719146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 720146c8688SDaniel Axtens 7212cdc6899SHuang Yingconfig CRYPTO_GHASH 7222cdc6899SHuang Ying tristate "GHASH digest algorithm" 7232cdc6899SHuang Ying select CRYPTO_GF128MUL 724578c60fbSArnd Bergmann select CRYPTO_HASH 7252cdc6899SHuang Ying help 7262cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 7272cdc6899SHuang Ying 728f979e014SMartin Williconfig CRYPTO_POLY1305 729f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 730578c60fbSArnd Bergmann select CRYPTO_HASH 731f979e014SMartin Willi help 732f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 733f979e014SMartin Willi 734f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 735f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 736f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 737f979e014SMartin Willi 738c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 739b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 740c70f4abeSMartin Willi depends on X86 && 64BIT 741c70f4abeSMartin Willi select CRYPTO_POLY1305 742c70f4abeSMartin Willi help 743c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 744c70f4abeSMartin Willi 745c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 746c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 747c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 748c70f4abeSMartin Willi instructions. 749c70f4abeSMartin Willi 7501da177e4SLinus Torvaldsconfig CRYPTO_MD4 7511da177e4SLinus Torvalds tristate "MD4 digest algorithm" 752808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7531da177e4SLinus Torvalds help 7541da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7551da177e4SLinus Torvalds 7561da177e4SLinus Torvaldsconfig CRYPTO_MD5 7571da177e4SLinus Torvalds tristate "MD5 digest algorithm" 75814b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7591da177e4SLinus Torvalds help 7601da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 7611da177e4SLinus Torvalds 762d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 763d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 764d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 765d69e75deSAaro Koskinen select CRYPTO_MD5 766d69e75deSAaro Koskinen select CRYPTO_HASH 767d69e75deSAaro Koskinen help 768d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 769d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 770d69e75deSAaro Koskinen 771e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 772e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 773e8e59953SMarkus Stockhausen depends on PPC 774e8e59953SMarkus Stockhausen select CRYPTO_HASH 775e8e59953SMarkus Stockhausen help 776e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 777e8e59953SMarkus Stockhausen in PPC assembler. 778e8e59953SMarkus Stockhausen 779fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 780fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 781fa4dfedcSDavid S. Miller depends on SPARC64 782fa4dfedcSDavid S. Miller select CRYPTO_MD5 783fa4dfedcSDavid S. Miller select CRYPTO_HASH 784fa4dfedcSDavid S. Miller help 785fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 786fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 787fa4dfedcSDavid S. Miller 788584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 789584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 79019e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 791584fffc8SSebastian Siewior help 792584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 793584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 794584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 795584fffc8SSebastian Siewior of the algorithm. 796584fffc8SSebastian Siewior 79782798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 79882798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 7997c4468bcSHerbert Xu select CRYPTO_HASH 80082798f90SAdrian-Ken Rueegsegger help 80182798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 80282798f90SAdrian-Ken Rueegsegger 80382798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 80435ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 80582798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 80682798f90SAdrian-Ken Rueegsegger 80782798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8086d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 80982798f90SAdrian-Ken Rueegsegger 81082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 81182798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 812e5835fbaSHerbert Xu select CRYPTO_HASH 81382798f90SAdrian-Ken Rueegsegger help 81482798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 81582798f90SAdrian-Ken Rueegsegger 81682798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 81782798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 818b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 819b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 82082798f90SAdrian-Ken Rueegsegger 821b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 822b6d44341SAdrian Bunk against RIPEMD-160. 823534fe2c1SAdrian-Ken Rueegsegger 824534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8256d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 826534fe2c1SAdrian-Ken Rueegsegger 827534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 828534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 829d8a5e2e9SHerbert Xu select CRYPTO_HASH 830534fe2c1SAdrian-Ken Rueegsegger help 831b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 832b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 833b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 834b6d44341SAdrian Bunk (than RIPEMD-128). 835534fe2c1SAdrian-Ken Rueegsegger 836534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8376d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 838534fe2c1SAdrian-Ken Rueegsegger 839534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 840534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 8413b8efb4cSHerbert Xu select CRYPTO_HASH 842534fe2c1SAdrian-Ken Rueegsegger help 843b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 844b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 845b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 846b6d44341SAdrian Bunk (than RIPEMD-160). 847534fe2c1SAdrian-Ken Rueegsegger 84882798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8496d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 85082798f90SAdrian-Ken Rueegsegger 8511da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8521da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 85354ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8541da177e4SLinus Torvalds help 8551da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8561da177e4SLinus Torvalds 85766be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 858e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 85966be8951SMathias Krause depends on X86 && 64BIT 86066be8951SMathias Krause select CRYPTO_SHA1 86166be8951SMathias Krause select CRYPTO_HASH 86266be8951SMathias Krause help 86366be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 86466be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 865e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 866e38b6b7fStim when available. 86766be8951SMathias Krause 8688275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 869e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8708275d1aaSTim Chen depends on X86 && 64BIT 8718275d1aaSTim Chen select CRYPTO_SHA256 8728275d1aaSTim Chen select CRYPTO_HASH 8738275d1aaSTim Chen help 8748275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8758275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8768275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 877e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 878e38b6b7fStim Instructions) when available. 8798275d1aaSTim Chen 88087de4579STim Chenconfig CRYPTO_SHA512_SSSE3 88187de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 88287de4579STim Chen depends on X86 && 64BIT 88387de4579STim Chen select CRYPTO_SHA512 88487de4579STim Chen select CRYPTO_HASH 88587de4579STim Chen help 88687de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 88787de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 88887de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 88987de4579STim Chen version 2 (AVX2) instructions, when available. 89087de4579STim Chen 891efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 892efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 893efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 894efdb6f6eSAaro Koskinen select CRYPTO_SHA1 895efdb6f6eSAaro Koskinen select CRYPTO_HASH 896efdb6f6eSAaro Koskinen help 897efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 898efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 899efdb6f6eSAaro Koskinen 9004ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 9014ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 9024ff28d4cSDavid S. Miller depends on SPARC64 9034ff28d4cSDavid S. Miller select CRYPTO_SHA1 9044ff28d4cSDavid S. Miller select CRYPTO_HASH 9054ff28d4cSDavid S. Miller help 9064ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9074ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9084ff28d4cSDavid S. Miller 909323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 910323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 911323a6bf1SMichael Ellerman depends on PPC 912323a6bf1SMichael Ellerman help 913323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 914323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 915323a6bf1SMichael Ellerman 916d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 917d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 918d9850fc5SMarkus Stockhausen depends on PPC && SPE 919d9850fc5SMarkus Stockhausen help 920d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 921d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 922d9850fc5SMarkus Stockhausen 9231da177e4SLinus Torvaldsconfig CRYPTO_SHA256 924cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 92550e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 9261da177e4SLinus Torvalds help 9271da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9281da177e4SLinus Torvalds 9291da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9301da177e4SLinus Torvalds security against collision attacks. 9311da177e4SLinus Torvalds 932cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 933cd12fb90SJonathan Lynch of security against collision attacks. 934cd12fb90SJonathan Lynch 9352ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9362ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9372ecc1e95SMarkus Stockhausen depends on PPC && SPE 9382ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9392ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9402ecc1e95SMarkus Stockhausen help 9412ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9422ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9432ecc1e95SMarkus Stockhausen 944efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 945efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 946efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 947efdb6f6eSAaro Koskinen select CRYPTO_SHA256 948efdb6f6eSAaro Koskinen select CRYPTO_HASH 949efdb6f6eSAaro Koskinen help 950efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 951efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 952efdb6f6eSAaro Koskinen 95386c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 95486c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 95586c93b24SDavid S. Miller depends on SPARC64 95686c93b24SDavid S. Miller select CRYPTO_SHA256 95786c93b24SDavid S. Miller select CRYPTO_HASH 95886c93b24SDavid S. Miller help 95986c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 96086c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 96186c93b24SDavid S. Miller 9621da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9631da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 964bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9651da177e4SLinus Torvalds help 9661da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9671da177e4SLinus Torvalds 9681da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9691da177e4SLinus Torvalds security against collision attacks. 9701da177e4SLinus Torvalds 9711da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9721da177e4SLinus Torvalds of security against collision attacks. 9731da177e4SLinus Torvalds 974efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 975efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 976efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 977efdb6f6eSAaro Koskinen select CRYPTO_SHA512 978efdb6f6eSAaro Koskinen select CRYPTO_HASH 979efdb6f6eSAaro Koskinen help 980efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 981efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 982efdb6f6eSAaro Koskinen 983775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 984775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 985775e0c69SDavid S. Miller depends on SPARC64 986775e0c69SDavid S. Miller select CRYPTO_SHA512 987775e0c69SDavid S. Miller select CRYPTO_HASH 988775e0c69SDavid S. Miller help 989775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 990775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 991775e0c69SDavid S. Miller 99253964b9eSJeff Garzikconfig CRYPTO_SHA3 99353964b9eSJeff Garzik tristate "SHA3 digest algorithm" 99453964b9eSJeff Garzik select CRYPTO_HASH 99553964b9eSJeff Garzik help 99653964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 99753964b9eSJeff Garzik cryptographic sponge function family called Keccak. 99853964b9eSJeff Garzik 99953964b9eSJeff Garzik References: 100053964b9eSJeff Garzik http://keccak.noekeon.org/ 100153964b9eSJeff Garzik 10024f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 10034f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 10044f0fc160SGilad Ben-Yossef select CRYPTO_HASH 10054f0fc160SGilad Ben-Yossef help 10064f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 10074f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 10084f0fc160SGilad Ben-Yossef 10094f0fc160SGilad Ben-Yossef References: 10104f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 10114f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 10124f0fc160SGilad Ben-Yossef 1013fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1014fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1015fe18957eSVitaly Chikunov select CRYPTO_HASH 1016fe18957eSVitaly Chikunov help 1017fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1018fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1019fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1020fe18957eSVitaly Chikunov 1021fe18957eSVitaly Chikunov References: 1022fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1023fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1024fe18957eSVitaly Chikunov 10251da177e4SLinus Torvaldsconfig CRYPTO_TGR192 10261da177e4SLinus Torvalds tristate "Tiger digest algorithms" 1027f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 10281da177e4SLinus Torvalds help 10291da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 10301da177e4SLinus Torvalds 10311da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 10321da177e4SLinus Torvalds still having decent performance on 32-bit processors. 10331da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 10341da177e4SLinus Torvalds 10351da177e4SLinus Torvalds See also: 10361da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 10371da177e4SLinus Torvalds 1038584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1039584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10404946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10411da177e4SLinus Torvalds help 1042584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10431da177e4SLinus Torvalds 1044584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1045584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10461da177e4SLinus Torvalds 10471da177e4SLinus Torvalds See also: 10486d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10491da177e4SLinus Torvalds 10500e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10510e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 10528af00860SRichard Weinberger depends on X86 && 64BIT 10530e1227d3SHuang Ying select CRYPTO_CRYPTD 10540e1227d3SHuang Ying help 10550e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 10560e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 10570e1227d3SHuang Ying 1058584fffc8SSebastian Siewiorcomment "Ciphers" 10591da177e4SLinus Torvalds 10601da177e4SLinus Torvaldsconfig CRYPTO_AES 10611da177e4SLinus Torvalds tristate "AES cipher algorithms" 1062cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10631da177e4SLinus Torvalds help 10641da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10651da177e4SLinus Torvalds algorithm. 10661da177e4SLinus Torvalds 10671da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10681da177e4SLinus Torvalds both hardware and software across a wide range of computing 10691da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10701da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10711da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10721da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10731da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10741da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10751da177e4SLinus Torvalds 10761da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10771da177e4SLinus Torvalds 10781da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10791da177e4SLinus Torvalds 1080b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1081b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1082b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1083b5e0b032SArd Biesheuvel help 1084b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1085b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1086b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1087b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1088b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1089b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1090b5e0b032SArd Biesheuvel 1091b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1092b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1093b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1094b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 10950a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 10960a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1097b5e0b032SArd Biesheuvel 10981da177e4SLinus Torvaldsconfig CRYPTO_AES_586 10991da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 1100cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 1101cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11025157dea8SSebastian Siewior select CRYPTO_AES 11031da177e4SLinus Torvalds help 11041da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 11051da177e4SLinus Torvalds algorithm. 11061da177e4SLinus Torvalds 11071da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 11081da177e4SLinus Torvalds both hardware and software across a wide range of computing 11091da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 11101da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 11111da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 11121da177e4SLinus Torvalds suited for restricted-space environments, in which it also 11131da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 11141da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 11151da177e4SLinus Torvalds 11161da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 11171da177e4SLinus Torvalds 11181da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 11191da177e4SLinus Torvalds 1120a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 1121a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 1122cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 1123cce9e06dSHerbert Xu select CRYPTO_ALGAPI 112481190b32SSebastian Siewior select CRYPTO_AES 1125a2a892a2SAndreas Steinmetz help 1126a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 1127a2a892a2SAndreas Steinmetz algorithm. 1128a2a892a2SAndreas Steinmetz 1129a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 1130a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 1131a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 1132a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 1133a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 1134a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 1135a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 1136a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 1137a2a892a2SAndreas Steinmetz 1138a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 1139a2a892a2SAndreas Steinmetz 1140a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 1141a2a892a2SAndreas Steinmetz 114254b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 114354b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11448af00860SRichard Weinberger depends on X86 114585671860SHerbert Xu select CRYPTO_AEAD 11460d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 11470d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 114854b6a1bdSHuang Ying select CRYPTO_ALGAPI 114985671860SHerbert Xu select CRYPTO_BLKCIPHER 11507643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 115185671860SHerbert Xu select CRYPTO_SIMD 115254b6a1bdSHuang Ying help 115354b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 115454b6a1bdSHuang Ying 115554b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 115654b6a1bdSHuang Ying algorithm. 115754b6a1bdSHuang Ying 115854b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 115954b6a1bdSHuang Ying both hardware and software across a wide range of computing 116054b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 116154b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 116254b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 116354b6a1bdSHuang Ying suited for restricted-space environments, in which it also 116454b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 116554b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 116654b6a1bdSHuang Ying 116754b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 116854b6a1bdSHuang Ying 116954b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 117054b6a1bdSHuang Ying 11710d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11720d258efbSMathias Krause for some popular block cipher mode is supported too, including 1173944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11740d258efbSMathias Krause acceleration for CTR. 11752cf4ac8bSHuang Ying 11769bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11779bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11789bf4852dSDavid S. Miller depends on SPARC64 11799bf4852dSDavid S. Miller select CRYPTO_CRYPTD 11809bf4852dSDavid S. Miller select CRYPTO_ALGAPI 11819bf4852dSDavid S. Miller help 11829bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11839bf4852dSDavid S. Miller 11849bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11859bf4852dSDavid S. Miller algorithm. 11869bf4852dSDavid S. Miller 11879bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11889bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11899bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11909bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11919bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11929bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11939bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11949bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11959bf4852dSDavid S. Miller 11969bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11979bf4852dSDavid S. Miller 11989bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11999bf4852dSDavid S. Miller 12009bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 12019bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 12029bf4852dSDavid S. Miller ECB and CBC. 12039bf4852dSDavid S. Miller 1204504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1205504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1206504c6143SMarkus Stockhausen depends on PPC && SPE 1207504c6143SMarkus Stockhausen help 1208504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1209504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1210504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1211504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1212504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1213504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1214504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1215504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1216504c6143SMarkus Stockhausen 12171da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 12181da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1219cce9e06dSHerbert Xu select CRYPTO_ALGAPI 12201da177e4SLinus Torvalds help 12211da177e4SLinus Torvalds Anubis cipher algorithm. 12221da177e4SLinus Torvalds 12231da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 12241da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 12251da177e4SLinus Torvalds in the NESSIE competition. 12261da177e4SLinus Torvalds 12271da177e4SLinus Torvalds See also: 12286d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 12296d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 12301da177e4SLinus Torvalds 1231584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1232584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1233b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1234e2ee95b8SHye-Shik Chang help 1235584fffc8SSebastian Siewior ARC4 cipher algorithm. 1236e2ee95b8SHye-Shik Chang 1237584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1238584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1239584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1240584fffc8SSebastian Siewior weakness of the algorithm. 1241584fffc8SSebastian Siewior 1242584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1243584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1244584fffc8SSebastian Siewior select CRYPTO_ALGAPI 124552ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1246584fffc8SSebastian Siewior help 1247584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1248584fffc8SSebastian Siewior 1249584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1250584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1251584fffc8SSebastian Siewior designed for use on "large microprocessors". 1252e2ee95b8SHye-Shik Chang 1253e2ee95b8SHye-Shik Chang See also: 1254584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1255584fffc8SSebastian Siewior 125652ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 125752ba867cSJussi Kivilinna tristate 125852ba867cSJussi Kivilinna help 125952ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 126052ba867cSJussi Kivilinna generic c and the assembler implementations. 126152ba867cSJussi Kivilinna 126252ba867cSJussi Kivilinna See also: 126352ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 126452ba867cSJussi Kivilinna 126564b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 126664b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1267f21a7c19SAl Viro depends on X86 && 64BIT 1268c1679171SEric Biggers select CRYPTO_BLKCIPHER 126964b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 127064b94ceaSJussi Kivilinna help 127164b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 127264b94ceaSJussi Kivilinna 127364b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 127464b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 127564b94ceaSJussi Kivilinna designed for use on "large microprocessors". 127664b94ceaSJussi Kivilinna 127764b94ceaSJussi Kivilinna See also: 127864b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 127964b94ceaSJussi Kivilinna 1280584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1281584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1282584fffc8SSebastian Siewior depends on CRYPTO 1283584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1284584fffc8SSebastian Siewior help 1285584fffc8SSebastian Siewior Camellia cipher algorithms module. 1286584fffc8SSebastian Siewior 1287584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1288584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1289584fffc8SSebastian Siewior 1290584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1291584fffc8SSebastian Siewior 1292584fffc8SSebastian Siewior See also: 1293584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1294584fffc8SSebastian Siewior 12950b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12960b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1297f21a7c19SAl Viro depends on X86 && 64BIT 12980b95ec56SJussi Kivilinna depends on CRYPTO 12991af6d037SEric Biggers select CRYPTO_BLKCIPHER 1300964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 13010b95ec56SJussi Kivilinna help 13020b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 13030b95ec56SJussi Kivilinna 13040b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 13050b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 13060b95ec56SJussi Kivilinna 13070b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 13080b95ec56SJussi Kivilinna 13090b95ec56SJussi Kivilinna See also: 13100b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 13110b95ec56SJussi Kivilinna 1312d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1313d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1314d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1315d9b1d2e7SJussi Kivilinna depends on CRYPTO 131644893bc2SEric Biggers select CRYPTO_BLKCIPHER 1317d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 131844893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 131944893bc2SEric Biggers select CRYPTO_SIMD 1320d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1321d9b1d2e7SJussi Kivilinna help 1322d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1323d9b1d2e7SJussi Kivilinna 1324d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1325d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1326d9b1d2e7SJussi Kivilinna 1327d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1328d9b1d2e7SJussi Kivilinna 1329d9b1d2e7SJussi Kivilinna See also: 1330d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1331d9b1d2e7SJussi Kivilinna 1332f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1333f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1334f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1335f3f935a7SJussi Kivilinna depends on CRYPTO 1336f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1337f3f935a7SJussi Kivilinna help 1338f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1339f3f935a7SJussi Kivilinna 1340f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1341f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1342f3f935a7SJussi Kivilinna 1343f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1344f3f935a7SJussi Kivilinna 1345f3f935a7SJussi Kivilinna See also: 1346f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1347f3f935a7SJussi Kivilinna 134881658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 134981658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 135081658ad0SDavid S. Miller depends on SPARC64 135181658ad0SDavid S. Miller depends on CRYPTO 135281658ad0SDavid S. Miller select CRYPTO_ALGAPI 135381658ad0SDavid S. Miller help 135481658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 135581658ad0SDavid S. Miller 135681658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 135781658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 135881658ad0SDavid S. Miller 135981658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 136081658ad0SDavid S. Miller 136181658ad0SDavid S. Miller See also: 136281658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 136381658ad0SDavid S. Miller 1364044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1365044ab525SJussi Kivilinna tristate 1366044ab525SJussi Kivilinna help 1367044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1368044ab525SJussi Kivilinna generic c and the assembler implementations. 1369044ab525SJussi Kivilinna 1370584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1371584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1372584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1373044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1374584fffc8SSebastian Siewior help 1375584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1376584fffc8SSebastian Siewior described in RFC2144. 1377584fffc8SSebastian Siewior 13784d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13794d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13804d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 13811e63183aSEric Biggers select CRYPTO_BLKCIPHER 13824d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13831e63183aSEric Biggers select CRYPTO_CAST_COMMON 13841e63183aSEric Biggers select CRYPTO_SIMD 13854d6d6a2cSJohannes Goetzfried help 13864d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13874d6d6a2cSJohannes Goetzfried described in RFC2144. 13884d6d6a2cSJohannes Goetzfried 13894d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13904d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13914d6d6a2cSJohannes Goetzfried 1392584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1393584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1394584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1395044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1396584fffc8SSebastian Siewior help 1397584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1398584fffc8SSebastian Siewior described in RFC2612. 1399584fffc8SSebastian Siewior 14004ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 14014ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 14024ea1277dSJohannes Goetzfried depends on X86 && 64BIT 14034bd96924SEric Biggers select CRYPTO_BLKCIPHER 14044ea1277dSJohannes Goetzfried select CRYPTO_CAST6 14054bd96924SEric Biggers select CRYPTO_CAST_COMMON 14064bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 14074bd96924SEric Biggers select CRYPTO_SIMD 14084ea1277dSJohannes Goetzfried select CRYPTO_XTS 14094ea1277dSJohannes Goetzfried help 14104ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 14114ea1277dSJohannes Goetzfried described in RFC2612. 14124ea1277dSJohannes Goetzfried 14134ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 14144ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14154ea1277dSJohannes Goetzfried 1416584fffc8SSebastian Siewiorconfig CRYPTO_DES 1417584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1418584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1419584fffc8SSebastian Siewior help 1420584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1421584fffc8SSebastian Siewior 1422c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1423c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 142497da37b3SDave Jones depends on SPARC64 1425c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1426c5aac2dfSDavid S. Miller select CRYPTO_DES 1427c5aac2dfSDavid S. Miller help 1428c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1429c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1430c5aac2dfSDavid S. Miller 14316574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 14326574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 14336574e6c6SJussi Kivilinna depends on X86 && 64BIT 143409c0f03bSEric Biggers select CRYPTO_BLKCIPHER 14356574e6c6SJussi Kivilinna select CRYPTO_DES 14366574e6c6SJussi Kivilinna help 14376574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14386574e6c6SJussi Kivilinna 14396574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14406574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14416574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14426574e6c6SJussi Kivilinna one that processes three blocks parallel. 14436574e6c6SJussi Kivilinna 1444584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1445584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1446584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1447584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1448584fffc8SSebastian Siewior help 1449584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1450584fffc8SSebastian Siewior 1451584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1452584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1453584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1454584fffc8SSebastian Siewior help 1455584fffc8SSebastian Siewior Khazad cipher algorithm. 1456584fffc8SSebastian Siewior 1457584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1458584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1459584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1460584fffc8SSebastian Siewior 1461584fffc8SSebastian Siewior See also: 14626d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1463e2ee95b8SHye-Shik Chang 14642407d608STan Swee Hengconfig CRYPTO_SALSA20 14653b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 14662407d608STan Swee Heng select CRYPTO_BLKCIPHER 14672407d608STan Swee Heng help 14682407d608STan Swee Heng Salsa20 stream cipher algorithm. 14692407d608STan Swee Heng 14702407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 14712407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 14722407d608STan Swee Heng 14732407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 14742407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 14751da177e4SLinus Torvalds 1476c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1477aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 1478c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1479c08d0e64SMartin Willi help 1480aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1481c08d0e64SMartin Willi 1482c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1483c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1484de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 1485c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1486c08d0e64SMartin Willi 1487de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1488de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1489de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1490de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1491de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1492de61d7aeSEric Biggers 1493aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1494aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1495aa762409SEric Biggers in some performance-sensitive scenarios. 1496aa762409SEric Biggers 1497c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14984af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1499c9320b6dSMartin Willi depends on X86 && 64BIT 1500c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1501c9320b6dSMartin Willi select CRYPTO_CHACHA20 1502c9320b6dSMartin Willi help 15037a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 15047a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1505c9320b6dSMartin Willi 1506584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1507584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1508584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1509584fffc8SSebastian Siewior help 1510584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1511584fffc8SSebastian Siewior 1512584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1513584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1514584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1515584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1516584fffc8SSebastian Siewior 1517584fffc8SSebastian Siewior See also: 1518584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1519584fffc8SSebastian Siewior 1520584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1521584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1522584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1523584fffc8SSebastian Siewior help 1524584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1525584fffc8SSebastian Siewior 1526584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1527584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1528584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1529584fffc8SSebastian Siewior 1530584fffc8SSebastian Siewior See also: 1531584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1532584fffc8SSebastian Siewior 1533937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1534937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1535937c30d7SJussi Kivilinna depends on X86 && 64BIT 1536e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1537596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1538937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1539e0f409dcSEric Biggers select CRYPTO_SIMD 1540937c30d7SJussi Kivilinna help 1541937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1542937c30d7SJussi Kivilinna 1543937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1544937c30d7SJussi Kivilinna of 8 bits. 1545937c30d7SJussi Kivilinna 15461e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1547937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1548937c30d7SJussi Kivilinna 1549937c30d7SJussi Kivilinna See also: 1550937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1551937c30d7SJussi Kivilinna 1552251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1553251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1554251496dbSJussi Kivilinna depends on X86 && !64BIT 1555e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1556596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1557251496dbSJussi Kivilinna select CRYPTO_SERPENT 1558e0f409dcSEric Biggers select CRYPTO_SIMD 1559251496dbSJussi Kivilinna help 1560251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1561251496dbSJussi Kivilinna 1562251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1563251496dbSJussi Kivilinna of 8 bits. 1564251496dbSJussi Kivilinna 1565251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1566251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1567251496dbSJussi Kivilinna 1568251496dbSJussi Kivilinna See also: 1569251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1570251496dbSJussi Kivilinna 15717efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15727efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15737efe4076SJohannes Goetzfried depends on X86 && 64BIT 1574e16bf974SEric Biggers select CRYPTO_BLKCIPHER 15751d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15767efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1577e16bf974SEric Biggers select CRYPTO_SIMD 15787efe4076SJohannes Goetzfried select CRYPTO_XTS 15797efe4076SJohannes Goetzfried help 15807efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15817efe4076SJohannes Goetzfried 15827efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15837efe4076SJohannes Goetzfried of 8 bits. 15847efe4076SJohannes Goetzfried 15857efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15867efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15877efe4076SJohannes Goetzfried 15887efe4076SJohannes Goetzfried See also: 15897efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 15907efe4076SJohannes Goetzfried 159156d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 159256d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 159356d76c96SJussi Kivilinna depends on X86 && 64BIT 159456d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 159556d76c96SJussi Kivilinna help 159656d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 159756d76c96SJussi Kivilinna 159856d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 159956d76c96SJussi Kivilinna of 8 bits. 160056d76c96SJussi Kivilinna 160156d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 160256d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 160356d76c96SJussi Kivilinna 160456d76c96SJussi Kivilinna See also: 160556d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 160656d76c96SJussi Kivilinna 1607747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1608747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1609747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1610747c8ce4SGilad Ben-Yossef help 1611747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1612747c8ce4SGilad Ben-Yossef 1613747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1614747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1615747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1616747c8ce4SGilad Ben-Yossef 1617747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1618747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1619747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1620747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1621747c8ce4SGilad Ben-Yossef 1622747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1623747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1624747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1625747c8ce4SGilad Ben-Yossef 1626747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1627747c8ce4SGilad Ben-Yossef 1628747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1629747c8ce4SGilad Ben-Yossef 1630747c8ce4SGilad Ben-Yossef If unsure, say N. 1631747c8ce4SGilad Ben-Yossef 1632584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1633584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1634584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1635584fffc8SSebastian Siewior help 1636584fffc8SSebastian Siewior TEA cipher algorithm. 1637584fffc8SSebastian Siewior 1638584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1639584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1640584fffc8SSebastian Siewior little memory. 1641584fffc8SSebastian Siewior 1642584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1643584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1644584fffc8SSebastian Siewior in the TEA algorithm. 1645584fffc8SSebastian Siewior 1646584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1647584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1648584fffc8SSebastian Siewior 1649584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1650584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1651584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1652584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1653584fffc8SSebastian Siewior help 1654584fffc8SSebastian Siewior Twofish cipher algorithm. 1655584fffc8SSebastian Siewior 1656584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1657584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1658584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1659584fffc8SSebastian Siewior bits. 1660584fffc8SSebastian Siewior 1661584fffc8SSebastian Siewior See also: 1662584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1663584fffc8SSebastian Siewior 1664584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1665584fffc8SSebastian Siewior tristate 1666584fffc8SSebastian Siewior help 1667584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1668584fffc8SSebastian Siewior generic c and the assembler implementations. 1669584fffc8SSebastian Siewior 1670584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1671584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1672584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1673584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1674584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1675584fffc8SSebastian Siewior help 1676584fffc8SSebastian Siewior Twofish cipher algorithm. 1677584fffc8SSebastian Siewior 1678584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1679584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1680584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1681584fffc8SSebastian Siewior bits. 1682584fffc8SSebastian Siewior 1683584fffc8SSebastian Siewior See also: 1684584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1685584fffc8SSebastian Siewior 1686584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1687584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1688584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1689584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1690584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1691584fffc8SSebastian Siewior help 1692584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1693584fffc8SSebastian Siewior 1694584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1695584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1696584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1697584fffc8SSebastian Siewior bits. 1698584fffc8SSebastian Siewior 1699584fffc8SSebastian Siewior See also: 1700584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1701584fffc8SSebastian Siewior 17028280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 17038280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1704f21a7c19SAl Viro depends on X86 && 64BIT 170537992fa4SEric Biggers select CRYPTO_BLKCIPHER 17068280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 17078280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1708414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17098280daadSJussi Kivilinna help 17108280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 17118280daadSJussi Kivilinna 17128280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 17138280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 17148280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 17158280daadSJussi Kivilinna bits. 17168280daadSJussi Kivilinna 17178280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 17188280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 17198280daadSJussi Kivilinna 17208280daadSJussi Kivilinna See also: 17218280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 17228280daadSJussi Kivilinna 1723107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1724107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1725107778b5SJohannes Goetzfried depends on X86 && 64BIT 17260e6ab46dSEric Biggers select CRYPTO_BLKCIPHER 1727a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17280e6ab46dSEric Biggers select CRYPTO_SIMD 1729107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1730107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1731107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1732107778b5SJohannes Goetzfried help 1733107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1734107778b5SJohannes Goetzfried 1735107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1736107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1737107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1738107778b5SJohannes Goetzfried bits. 1739107778b5SJohannes Goetzfried 1740107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1741107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1742107778b5SJohannes Goetzfried 1743107778b5SJohannes Goetzfried See also: 1744107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1745107778b5SJohannes Goetzfried 1746584fffc8SSebastian Siewiorcomment "Compression" 1747584fffc8SSebastian Siewior 17481da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17491da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1750cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1751f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17521da177e4SLinus Torvalds select ZLIB_INFLATE 17531da177e4SLinus Torvalds select ZLIB_DEFLATE 17541da177e4SLinus Torvalds help 17551da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17561da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17571da177e4SLinus Torvalds 17581da177e4SLinus Torvalds You will most probably want this if using IPSec. 17591da177e4SLinus Torvalds 17600b77abb3SZoltan Sogorconfig CRYPTO_LZO 17610b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17620b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1763ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17640b77abb3SZoltan Sogor select LZO_COMPRESS 17650b77abb3SZoltan Sogor select LZO_DECOMPRESS 17660b77abb3SZoltan Sogor help 17670b77abb3SZoltan Sogor This is the LZO algorithm. 17680b77abb3SZoltan Sogor 176935a1fc18SSeth Jenningsconfig CRYPTO_842 177035a1fc18SSeth Jennings tristate "842 compression algorithm" 17712062c5b6SDan Streetman select CRYPTO_ALGAPI 17726a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17732062c5b6SDan Streetman select 842_COMPRESS 17742062c5b6SDan Streetman select 842_DECOMPRESS 177535a1fc18SSeth Jennings help 177635a1fc18SSeth Jennings This is the 842 algorithm. 177735a1fc18SSeth Jennings 17780ea8530dSChanho Minconfig CRYPTO_LZ4 17790ea8530dSChanho Min tristate "LZ4 compression algorithm" 17800ea8530dSChanho Min select CRYPTO_ALGAPI 17818cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17820ea8530dSChanho Min select LZ4_COMPRESS 17830ea8530dSChanho Min select LZ4_DECOMPRESS 17840ea8530dSChanho Min help 17850ea8530dSChanho Min This is the LZ4 algorithm. 17860ea8530dSChanho Min 17870ea8530dSChanho Minconfig CRYPTO_LZ4HC 17880ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17890ea8530dSChanho Min select CRYPTO_ALGAPI 179091d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17910ea8530dSChanho Min select LZ4HC_COMPRESS 17920ea8530dSChanho Min select LZ4_DECOMPRESS 17930ea8530dSChanho Min help 17940ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 17950ea8530dSChanho Min 1796d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1797d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1798d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1799d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1800d28fc3dbSNick Terrell select ZSTD_COMPRESS 1801d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1802d28fc3dbSNick Terrell help 1803d28fc3dbSNick Terrell This is the zstd algorithm. 1804d28fc3dbSNick Terrell 180517f0f4a4SNeil Hormancomment "Random Number Generation" 180617f0f4a4SNeil Horman 180717f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 180817f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 180917f0f4a4SNeil Horman select CRYPTO_AES 181017f0f4a4SNeil Horman select CRYPTO_RNG 181117f0f4a4SNeil Horman help 181217f0f4a4SNeil Horman This option enables the generic pseudo random number generator 181317f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 18147dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 18157dd607e8SJiri Kosina CRYPTO_FIPS is selected 181617f0f4a4SNeil Horman 1817f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1818419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1819419090c6SStephan Mueller help 1820419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1821419090c6SStephan Mueller more of the DRBG types must be selected. 1822419090c6SStephan Mueller 1823f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1824419090c6SStephan Mueller 1825419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1826401e4238SHerbert Xu bool 1827419090c6SStephan Mueller default y 1828419090c6SStephan Mueller select CRYPTO_HMAC 1829826775bbSHerbert Xu select CRYPTO_SHA256 1830419090c6SStephan Mueller 1831419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1832419090c6SStephan Mueller bool "Enable Hash DRBG" 1833826775bbSHerbert Xu select CRYPTO_SHA256 1834419090c6SStephan Mueller help 1835419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1836419090c6SStephan Mueller 1837419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1838419090c6SStephan Mueller bool "Enable CTR DRBG" 1839419090c6SStephan Mueller select CRYPTO_AES 184035591285SStephan Mueller depends on CRYPTO_CTR 1841419090c6SStephan Mueller help 1842419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1843419090c6SStephan Mueller 1844f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1845f2c89a10SHerbert Xu tristate 1846401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1847f2c89a10SHerbert Xu select CRYPTO_RNG 1848bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1849f2c89a10SHerbert Xu 1850f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1851419090c6SStephan Mueller 1852bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1853bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18542f313e02SArnd Bergmann select CRYPTO_RNG 1855bb5530e4SStephan Mueller help 1856bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1857bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1858bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1859bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1860bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1861bb5530e4SStephan Mueller 186203c8efc1SHerbert Xuconfig CRYPTO_USER_API 186303c8efc1SHerbert Xu tristate 186403c8efc1SHerbert Xu 1865fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1866fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18677451708fSHerbert Xu depends on NET 1868fe869cdbSHerbert Xu select CRYPTO_HASH 1869fe869cdbSHerbert Xu select CRYPTO_USER_API 1870fe869cdbSHerbert Xu help 1871fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1872fe869cdbSHerbert Xu algorithms. 1873fe869cdbSHerbert Xu 18748ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18758ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18767451708fSHerbert Xu depends on NET 18778ff59090SHerbert Xu select CRYPTO_BLKCIPHER 18788ff59090SHerbert Xu select CRYPTO_USER_API 18798ff59090SHerbert Xu help 18808ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18818ff59090SHerbert Xu key cipher algorithms. 18828ff59090SHerbert Xu 18832f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18842f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18852f375538SStephan Mueller depends on NET 18862f375538SStephan Mueller select CRYPTO_RNG 18872f375538SStephan Mueller select CRYPTO_USER_API 18882f375538SStephan Mueller help 18892f375538SStephan Mueller This option enables the user-spaces interface for random 18902f375538SStephan Mueller number generator algorithms. 18912f375538SStephan Mueller 1892b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1893b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1894b64a2d95SHerbert Xu depends on NET 1895b64a2d95SHerbert Xu select CRYPTO_AEAD 189672548b09SStephan Mueller select CRYPTO_BLKCIPHER 189772548b09SStephan Mueller select CRYPTO_NULL 1898b64a2d95SHerbert Xu select CRYPTO_USER_API 1899b64a2d95SHerbert Xu help 1900b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1901b64a2d95SHerbert Xu cipher algorithms. 1902b64a2d95SHerbert Xu 1903cac5818cSCorentin Labbeconfig CRYPTO_STATS 1904cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1905a6a31385SCorentin Labbe depends on CRYPTO_USER 1906cac5818cSCorentin Labbe help 1907cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1908cac5818cSCorentin Labbe This will collect: 1909cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1910cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1911cac5818cSCorentin Labbe - size and numbers of hash operations 1912cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1913cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1914cac5818cSCorentin Labbe 1915ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1916ee08997fSDmitry Kasatkin bool 1917ee08997fSDmitry Kasatkin 19181da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 19198636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 19208636a1f9SMasahiro Yamadasource "certs/Kconfig" 19211da177e4SLinus Torvalds 1922cce9e06dSHerbert Xuendif # if CRYPTO 1923