11da177e4SLinus Torvalds# 2685784aaSDan Williams# Generic algorithms support 3685784aaSDan Williams# 4685784aaSDan Williamsconfig XOR_BLOCKS 5685784aaSDan Williams tristate 6685784aaSDan Williams 7685784aaSDan Williams# 89bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 99bc89cd8SDan Williams# 109bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 119bc89cd8SDan Williams 129bc89cd8SDan Williams# 131da177e4SLinus Torvalds# Cryptographic API Configuration 141da177e4SLinus Torvalds# 152e290f43SJan Engelhardtmenuconfig CRYPTO 16c3715cb9SSebastian Siewior tristate "Cryptographic API" 171da177e4SLinus Torvalds help 181da177e4SLinus Torvalds This option provides the core Cryptographic API. 191da177e4SLinus Torvalds 20cce9e06dSHerbert Xuif CRYPTO 21cce9e06dSHerbert Xu 22584fffc8SSebastian Siewiorcomment "Crypto core or helper" 23584fffc8SSebastian Siewior 24ccb778e1SNeil Hormanconfig CRYPTO_FIPS 25ccb778e1SNeil Horman bool "FIPS 200 compliance" 26f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 271f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 28ccb778e1SNeil Horman help 29ccb778e1SNeil Horman This options enables the fips boot option which is 30ccb778e1SNeil Horman required if you want to system to operate in a FIPS 200 31ccb778e1SNeil Horman certification. You should say no unless you know what 32e84c5480SChuck Ebbert this is. 33ccb778e1SNeil Horman 34cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 35cce9e06dSHerbert Xu tristate 366a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 37cce9e06dSHerbert Xu help 38cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 39cce9e06dSHerbert Xu 406a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 416a0fcbb4SHerbert Xu tristate 426a0fcbb4SHerbert Xu 431ae97820SHerbert Xuconfig CRYPTO_AEAD 441ae97820SHerbert Xu tristate 456a0fcbb4SHerbert Xu select CRYPTO_AEAD2 461ae97820SHerbert Xu select CRYPTO_ALGAPI 471ae97820SHerbert Xu 486a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 496a0fcbb4SHerbert Xu tristate 506a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 51149a3971SHerbert Xu select CRYPTO_NULL2 52149a3971SHerbert Xu select CRYPTO_RNG2 536a0fcbb4SHerbert Xu 545cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 555cde0af2SHerbert Xu tristate 566a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 575cde0af2SHerbert Xu select CRYPTO_ALGAPI 586a0fcbb4SHerbert Xu 596a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 606a0fcbb4SHerbert Xu tristate 616a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 626a0fcbb4SHerbert Xu select CRYPTO_RNG2 630a2e821dSHuang Ying select CRYPTO_WORKQUEUE 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1082ebda74fSGiovanni Cabiddu 1092ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1102ebda74fSGiovanni Cabiddu tristate 1112ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1122ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1132ebda74fSGiovanni Cabiddu 114cfc2bb32STadeusz Strukconfig CRYPTO_RSA 115cfc2bb32STadeusz Struk tristate "RSA algorithm" 116425e0172STadeusz Struk select CRYPTO_AKCIPHER 11758446fefSTadeusz Struk select CRYPTO_MANAGER 118cfc2bb32STadeusz Struk select MPILIB 119cfc2bb32STadeusz Struk select ASN1 120cfc2bb32STadeusz Struk help 121cfc2bb32STadeusz Struk Generic implementation of the RSA public key algorithm. 122cfc2bb32STadeusz Struk 123802c7f1cSSalvatore Benedettoconfig CRYPTO_DH 124802c7f1cSSalvatore Benedetto tristate "Diffie-Hellman algorithm" 125802c7f1cSSalvatore Benedetto select CRYPTO_KPP 126802c7f1cSSalvatore Benedetto select MPILIB 127802c7f1cSSalvatore Benedetto help 128802c7f1cSSalvatore Benedetto Generic implementation of the Diffie-Hellman algorithm. 129802c7f1cSSalvatore Benedetto 1303c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH 1313c4b2390SSalvatore Benedetto tristate "ECDH algorithm" 1323c4b2390SSalvatore Benedetto select CRYTPO_KPP 1333c4b2390SSalvatore Benedetto help 1343c4b2390SSalvatore Benedetto Generic implementation of the ECDH algorithm 135802c7f1cSSalvatore Benedetto 1362b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1372b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1386a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1392b8c19dbSHerbert Xu help 1402b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1412b8c19dbSHerbert Xu cbc(aes). 1422b8c19dbSHerbert Xu 1436a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1446a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1456a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1466a0fcbb4SHerbert Xu select CRYPTO_HASH2 1476a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 148946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1494e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1502ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1516a0fcbb4SHerbert Xu 152a38f7907SSteffen Klassertconfig CRYPTO_USER 153a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1545db017aaSHerbert Xu depends on NET 155a38f7907SSteffen Klassert select CRYPTO_MANAGER 156a38f7907SSteffen Klassert help 157d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 158a38f7907SSteffen Klassert cbc(aes). 159a38f7907SSteffen Klassert 160326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 161326a6346SHerbert Xu bool "Disable run-time self tests" 16200ca28a5SHerbert Xu default y 16300ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1640b767f96SAlexander Shishkin help 165326a6346SHerbert Xu Disable run-time self tests that normally take place at 166326a6346SHerbert Xu algorithm registration. 1670b767f96SAlexander Shishkin 168584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 16908c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 170584fffc8SSebastian Siewior help 171584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 172584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 173584fffc8SSebastian Siewior option will be selected automatically if you select such a 174584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 175584fffc8SSebastian Siewior an external module that requires these functions. 176584fffc8SSebastian Siewior 177584fffc8SSebastian Siewiorconfig CRYPTO_NULL 178584fffc8SSebastian Siewior tristate "Null algorithms" 179149a3971SHerbert Xu select CRYPTO_NULL2 180584fffc8SSebastian Siewior help 181584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 182584fffc8SSebastian Siewior 183149a3971SHerbert Xuconfig CRYPTO_NULL2 184dd43c4e9SHerbert Xu tristate 185149a3971SHerbert Xu select CRYPTO_ALGAPI2 186149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 187149a3971SHerbert Xu select CRYPTO_HASH2 188149a3971SHerbert Xu 1895068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1903b4afaf2SKees Cook tristate "Parallel crypto engine" 1913b4afaf2SKees Cook depends on SMP 1925068c7a8SSteffen Klassert select PADATA 1935068c7a8SSteffen Klassert select CRYPTO_MANAGER 1945068c7a8SSteffen Klassert select CRYPTO_AEAD 1955068c7a8SSteffen Klassert help 1965068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1975068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1985068c7a8SSteffen Klassert 19925c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 20025c38d3fSHuang Ying tristate 20125c38d3fSHuang Ying 202584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 203584fffc8SSebastian Siewior tristate "Software async crypto daemon" 204584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 205b8a28251SLoc Ho select CRYPTO_HASH 206584fffc8SSebastian Siewior select CRYPTO_MANAGER 207254eff77SHuang Ying select CRYPTO_WORKQUEUE 208584fffc8SSebastian Siewior help 209584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 210584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 211584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 212584fffc8SSebastian Siewior 2131e65b81aSTim Chenconfig CRYPTO_MCRYPTD 2141e65b81aSTim Chen tristate "Software async multi-buffer crypto daemon" 2151e65b81aSTim Chen select CRYPTO_BLKCIPHER 2161e65b81aSTim Chen select CRYPTO_HASH 2171e65b81aSTim Chen select CRYPTO_MANAGER 2181e65b81aSTim Chen select CRYPTO_WORKQUEUE 2191e65b81aSTim Chen help 2201e65b81aSTim Chen This is a generic software asynchronous crypto daemon that 2211e65b81aSTim Chen provides the kernel thread to assist multi-buffer crypto 2221e65b81aSTim Chen algorithms for submitting jobs and flushing jobs in multi-buffer 2231e65b81aSTim Chen crypto algorithms. Multi-buffer crypto algorithms are executed 2241e65b81aSTim Chen in the context of this kernel thread and drivers can post 2250e56673bSTed Percival their crypto request asynchronously to be processed by this daemon. 2261e65b81aSTim Chen 227584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 228584fffc8SSebastian Siewior tristate "Authenc support" 229584fffc8SSebastian Siewior select CRYPTO_AEAD 230584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 231584fffc8SSebastian Siewior select CRYPTO_MANAGER 232584fffc8SSebastian Siewior select CRYPTO_HASH 233e94c6a7aSHerbert Xu select CRYPTO_NULL 234584fffc8SSebastian Siewior help 235584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 236584fffc8SSebastian Siewior This is required for IPSec. 237584fffc8SSebastian Siewior 238584fffc8SSebastian Siewiorconfig CRYPTO_TEST 239584fffc8SSebastian Siewior tristate "Testing module" 240584fffc8SSebastian Siewior depends on m 241da7f033dSHerbert Xu select CRYPTO_MANAGER 242584fffc8SSebastian Siewior help 243584fffc8SSebastian Siewior Quick & dirty crypto test module. 244584fffc8SSebastian Siewior 245a62b01cdSArd Biesheuvelconfig CRYPTO_ABLK_HELPER 246ffaf9156SJussi Kivilinna tristate 247ffaf9156SJussi Kivilinna select CRYPTO_CRYPTD 248ffaf9156SJussi Kivilinna 249266d0516SHerbert Xuconfig CRYPTO_SIMD 250266d0516SHerbert Xu tristate 251266d0516SHerbert Xu select CRYPTO_CRYPTD 252266d0516SHerbert Xu 253596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 254596d8750SJussi Kivilinna tristate 255596d8750SJussi Kivilinna depends on X86 256*065ce327SHerbert Xu select CRYPTO_BLKCIPHER 257596d8750SJussi Kivilinna 258735d37b5SBaolin Wangconfig CRYPTO_ENGINE 259735d37b5SBaolin Wang tristate 260735d37b5SBaolin Wang 261584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 262584fffc8SSebastian Siewior 263584fffc8SSebastian Siewiorconfig CRYPTO_CCM 264584fffc8SSebastian Siewior tristate "CCM support" 265584fffc8SSebastian Siewior select CRYPTO_CTR 266584fffc8SSebastian Siewior select CRYPTO_AEAD 267584fffc8SSebastian Siewior help 268584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 269584fffc8SSebastian Siewior 270584fffc8SSebastian Siewiorconfig CRYPTO_GCM 271584fffc8SSebastian Siewior tristate "GCM/GMAC support" 272584fffc8SSebastian Siewior select CRYPTO_CTR 273584fffc8SSebastian Siewior select CRYPTO_AEAD 2749382d97aSHuang Ying select CRYPTO_GHASH 2759489667dSJussi Kivilinna select CRYPTO_NULL 276584fffc8SSebastian Siewior help 277584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 278584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 279584fffc8SSebastian Siewior 28071ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 28171ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 28271ebc4d1SMartin Willi select CRYPTO_CHACHA20 28371ebc4d1SMartin Willi select CRYPTO_POLY1305 28471ebc4d1SMartin Willi select CRYPTO_AEAD 28571ebc4d1SMartin Willi help 28671ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 28771ebc4d1SMartin Willi 28871ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 28971ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 29071ebc4d1SMartin Willi IETF protocols. 29171ebc4d1SMartin Willi 292584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 293584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 294584fffc8SSebastian Siewior select CRYPTO_AEAD 295584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 296856e3f40SHerbert Xu select CRYPTO_NULL 297401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 298584fffc8SSebastian Siewior help 299584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 300584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 301584fffc8SSebastian Siewior 302a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 303a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 304a10f554fSHerbert Xu select CRYPTO_AEAD 305a10f554fSHerbert Xu select CRYPTO_NULL 306401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 3073491244cSHerbert Xu default m 308a10f554fSHerbert Xu help 309a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 310a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 311a10f554fSHerbert Xu algorithm for CBC. 312a10f554fSHerbert Xu 313584fffc8SSebastian Siewiorcomment "Block modes" 314584fffc8SSebastian Siewior 315584fffc8SSebastian Siewiorconfig CRYPTO_CBC 316584fffc8SSebastian Siewior tristate "CBC support" 317584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 318584fffc8SSebastian Siewior select CRYPTO_MANAGER 319584fffc8SSebastian Siewior help 320584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 321584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 322584fffc8SSebastian Siewior 323584fffc8SSebastian Siewiorconfig CRYPTO_CTR 324584fffc8SSebastian Siewior tristate "CTR support" 325584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 326584fffc8SSebastian Siewior select CRYPTO_SEQIV 327584fffc8SSebastian Siewior select CRYPTO_MANAGER 328584fffc8SSebastian Siewior help 329584fffc8SSebastian Siewior CTR: Counter mode 330584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 331584fffc8SSebastian Siewior 332584fffc8SSebastian Siewiorconfig CRYPTO_CTS 333584fffc8SSebastian Siewior tristate "CTS support" 334584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 335584fffc8SSebastian Siewior help 336584fffc8SSebastian Siewior CTS: Cipher Text Stealing 337584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 338584fffc8SSebastian Siewior Section 8 of rfc2040 and referenced by rfc3962. 339584fffc8SSebastian Siewior (rfc3962 includes errata information in its Appendix A) 340584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 341584fffc8SSebastian Siewior for AES encryption. 342584fffc8SSebastian Siewior 343584fffc8SSebastian Siewiorconfig CRYPTO_ECB 344584fffc8SSebastian Siewior tristate "ECB support" 345584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 346584fffc8SSebastian Siewior select CRYPTO_MANAGER 347584fffc8SSebastian Siewior help 348584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 349584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 350584fffc8SSebastian Siewior the input block by block. 351584fffc8SSebastian Siewior 352584fffc8SSebastian Siewiorconfig CRYPTO_LRW 3532470a2b2SJussi Kivilinna tristate "LRW support" 354584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 355584fffc8SSebastian Siewior select CRYPTO_MANAGER 356584fffc8SSebastian Siewior select CRYPTO_GF128MUL 357584fffc8SSebastian Siewior help 358584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 359584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 360584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 361584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 362584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 363584fffc8SSebastian Siewior 364584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 365584fffc8SSebastian Siewior tristate "PCBC support" 366584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 367584fffc8SSebastian Siewior select CRYPTO_MANAGER 368584fffc8SSebastian Siewior help 369584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 370584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 371584fffc8SSebastian Siewior 372584fffc8SSebastian Siewiorconfig CRYPTO_XTS 3735bcf8e6dSJussi Kivilinna tristate "XTS support" 374584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 375584fffc8SSebastian Siewior select CRYPTO_MANAGER 376584fffc8SSebastian Siewior select CRYPTO_GF128MUL 377584fffc8SSebastian Siewior help 378584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 379584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 380584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 381584fffc8SSebastian Siewior 3821c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 3831c49678eSStephan Mueller tristate "Key wrapping support" 3841c49678eSStephan Mueller select CRYPTO_BLKCIPHER 3851c49678eSStephan Mueller help 3861c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 3871c49678eSStephan Mueller padding. 3881c49678eSStephan Mueller 389584fffc8SSebastian Siewiorcomment "Hash modes" 390584fffc8SSebastian Siewior 39193b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 39293b5e86aSJussi Kivilinna tristate "CMAC support" 39393b5e86aSJussi Kivilinna select CRYPTO_HASH 39493b5e86aSJussi Kivilinna select CRYPTO_MANAGER 39593b5e86aSJussi Kivilinna help 39693b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 39793b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 39893b5e86aSJussi Kivilinna 39993b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 40093b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 40193b5e86aSJussi Kivilinna 4021da177e4SLinus Torvaldsconfig CRYPTO_HMAC 4038425165dSHerbert Xu tristate "HMAC support" 4040796ae06SHerbert Xu select CRYPTO_HASH 40543518407SHerbert Xu select CRYPTO_MANAGER 4061da177e4SLinus Torvalds help 4071da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 4081da177e4SLinus Torvalds This is required for IPSec. 4091da177e4SLinus Torvalds 410333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 411333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 412333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 413333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 414333b0d7eSKazunori MIYAZAWA help 415333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 416333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 417333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 418333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 419333b0d7eSKazunori MIYAZAWA 420f1939f7cSShane Wangconfig CRYPTO_VMAC 421f1939f7cSShane Wang tristate "VMAC support" 422f1939f7cSShane Wang select CRYPTO_HASH 423f1939f7cSShane Wang select CRYPTO_MANAGER 424f1939f7cSShane Wang help 425f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 426f1939f7cSShane Wang very high speed on 64-bit architectures. 427f1939f7cSShane Wang 428f1939f7cSShane Wang See also: 429f1939f7cSShane Wang <http://fastcrypto.org/vmac> 430f1939f7cSShane Wang 431584fffc8SSebastian Siewiorcomment "Digest" 432584fffc8SSebastian Siewior 433584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 434584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 4355773a3e6SHerbert Xu select CRYPTO_HASH 4366a0962b2SDarrick J. Wong select CRC32 4371da177e4SLinus Torvalds help 438584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 439584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 44069c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 4411da177e4SLinus Torvalds 4428cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 4438cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 4448cb51ba8SAustin Zhang depends on X86 4458cb51ba8SAustin Zhang select CRYPTO_HASH 4468cb51ba8SAustin Zhang help 4478cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 4488cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 4498cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 4508cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 4518cb51ba8SAustin Zhang gain performance compared with software implementation. 4528cb51ba8SAustin Zhang Module will be crc32c-intel. 4538cb51ba8SAustin Zhang 4547cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 4556dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 456c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 4576dd7a82cSAnton Blanchard select CRYPTO_HASH 4586dd7a82cSAnton Blanchard select CRC32 4596dd7a82cSAnton Blanchard help 4606dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 4616dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 4626dd7a82cSAnton Blanchard and newer processors for improved performance. 4636dd7a82cSAnton Blanchard 4646dd7a82cSAnton Blanchard 465442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 466442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 467442a7c40SDavid S. Miller depends on SPARC64 468442a7c40SDavid S. Miller select CRYPTO_HASH 469442a7c40SDavid S. Miller select CRC32 470442a7c40SDavid S. Miller help 471442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 472442a7c40SDavid S. Miller when available. 473442a7c40SDavid S. Miller 47478c37d19SAlexander Boykoconfig CRYPTO_CRC32 47578c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 47678c37d19SAlexander Boyko select CRYPTO_HASH 47778c37d19SAlexander Boyko select CRC32 47878c37d19SAlexander Boyko help 47978c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 48078c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 48178c37d19SAlexander Boyko 48278c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 48378c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 48478c37d19SAlexander Boyko depends on X86 48578c37d19SAlexander Boyko select CRYPTO_HASH 48678c37d19SAlexander Boyko select CRC32 48778c37d19SAlexander Boyko help 48878c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 48978c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 49078c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 49178c37d19SAlexander Boyko instruction. This option will create 'crc32-plcmul' module, 49278c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 49378c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 49478c37d19SAlexander Boyko 49568411521SHerbert Xuconfig CRYPTO_CRCT10DIF 49668411521SHerbert Xu tristate "CRCT10DIF algorithm" 49768411521SHerbert Xu select CRYPTO_HASH 49868411521SHerbert Xu help 49968411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 50068411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 50168411521SHerbert Xu transforms to be used if they are available. 50268411521SHerbert Xu 50368411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 50468411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 50568411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 50668411521SHerbert Xu select CRYPTO_HASH 50768411521SHerbert Xu help 50868411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 50968411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 51068411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 51168411521SHerbert Xu 'crct10dif-plcmul' module, which is faster when computing the 51268411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 51368411521SHerbert Xu 5142cdc6899SHuang Yingconfig CRYPTO_GHASH 5152cdc6899SHuang Ying tristate "GHASH digest algorithm" 5162cdc6899SHuang Ying select CRYPTO_GF128MUL 517578c60fbSArnd Bergmann select CRYPTO_HASH 5182cdc6899SHuang Ying help 5192cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 5202cdc6899SHuang Ying 521f979e014SMartin Williconfig CRYPTO_POLY1305 522f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 523578c60fbSArnd Bergmann select CRYPTO_HASH 524f979e014SMartin Willi help 525f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 526f979e014SMartin Willi 527f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 528f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 529f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 530f979e014SMartin Willi 531c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 532b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 533c70f4abeSMartin Willi depends on X86 && 64BIT 534c70f4abeSMartin Willi select CRYPTO_POLY1305 535c70f4abeSMartin Willi help 536c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 537c70f4abeSMartin Willi 538c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 539c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 540c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 541c70f4abeSMartin Willi instructions. 542c70f4abeSMartin Willi 5431da177e4SLinus Torvaldsconfig CRYPTO_MD4 5441da177e4SLinus Torvalds tristate "MD4 digest algorithm" 545808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 5461da177e4SLinus Torvalds help 5471da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 5481da177e4SLinus Torvalds 5491da177e4SLinus Torvaldsconfig CRYPTO_MD5 5501da177e4SLinus Torvalds tristate "MD5 digest algorithm" 55114b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 5521da177e4SLinus Torvalds help 5531da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 5541da177e4SLinus Torvalds 555d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 556d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 557d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 558d69e75deSAaro Koskinen select CRYPTO_MD5 559d69e75deSAaro Koskinen select CRYPTO_HASH 560d69e75deSAaro Koskinen help 561d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 562d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 563d69e75deSAaro Koskinen 564e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 565e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 566e8e59953SMarkus Stockhausen depends on PPC 567e8e59953SMarkus Stockhausen select CRYPTO_HASH 568e8e59953SMarkus Stockhausen help 569e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 570e8e59953SMarkus Stockhausen in PPC assembler. 571e8e59953SMarkus Stockhausen 572fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 573fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 574fa4dfedcSDavid S. Miller depends on SPARC64 575fa4dfedcSDavid S. Miller select CRYPTO_MD5 576fa4dfedcSDavid S. Miller select CRYPTO_HASH 577fa4dfedcSDavid S. Miller help 578fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 579fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 580fa4dfedcSDavid S. Miller 581584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 582584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 58319e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 584584fffc8SSebastian Siewior help 585584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 586584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 587584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 588584fffc8SSebastian Siewior of the algorithm. 589584fffc8SSebastian Siewior 59082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 59182798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 5927c4468bcSHerbert Xu select CRYPTO_HASH 59382798f90SAdrian-Ken Rueegsegger help 59482798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 59582798f90SAdrian-Ken Rueegsegger 59682798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 59735ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 59882798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 59982798f90SAdrian-Ken Rueegsegger 60082798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6016d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 60282798f90SAdrian-Ken Rueegsegger 60382798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 60482798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 605e5835fbaSHerbert Xu select CRYPTO_HASH 60682798f90SAdrian-Ken Rueegsegger help 60782798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 60882798f90SAdrian-Ken Rueegsegger 60982798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 61082798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 611b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 612b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 61382798f90SAdrian-Ken Rueegsegger 614b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 615b6d44341SAdrian Bunk against RIPEMD-160. 616534fe2c1SAdrian-Ken Rueegsegger 617534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6186d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 619534fe2c1SAdrian-Ken Rueegsegger 620534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 621534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 622d8a5e2e9SHerbert Xu select CRYPTO_HASH 623534fe2c1SAdrian-Ken Rueegsegger help 624b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 625b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 626b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 627b6d44341SAdrian Bunk (than RIPEMD-128). 628534fe2c1SAdrian-Ken Rueegsegger 629534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6306d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 631534fe2c1SAdrian-Ken Rueegsegger 632534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 633534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 6343b8efb4cSHerbert Xu select CRYPTO_HASH 635534fe2c1SAdrian-Ken Rueegsegger help 636b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 637b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 638b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 639b6d44341SAdrian Bunk (than RIPEMD-160). 640534fe2c1SAdrian-Ken Rueegsegger 64182798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6426d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 64382798f90SAdrian-Ken Rueegsegger 6441da177e4SLinus Torvaldsconfig CRYPTO_SHA1 6451da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 64654ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 6471da177e4SLinus Torvalds help 6481da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 6491da177e4SLinus Torvalds 65066be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 651e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 65266be8951SMathias Krause depends on X86 && 64BIT 65366be8951SMathias Krause select CRYPTO_SHA1 65466be8951SMathias Krause select CRYPTO_HASH 65566be8951SMathias Krause help 65666be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 65766be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 658e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 659e38b6b7fStim when available. 66066be8951SMathias Krause 6618275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 662e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 6638275d1aaSTim Chen depends on X86 && 64BIT 6648275d1aaSTim Chen select CRYPTO_SHA256 6658275d1aaSTim Chen select CRYPTO_HASH 6668275d1aaSTim Chen help 6678275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 6688275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 6698275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 670e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 671e38b6b7fStim Instructions) when available. 6728275d1aaSTim Chen 67387de4579STim Chenconfig CRYPTO_SHA512_SSSE3 67487de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 67587de4579STim Chen depends on X86 && 64BIT 67687de4579STim Chen select CRYPTO_SHA512 67787de4579STim Chen select CRYPTO_HASH 67887de4579STim Chen help 67987de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 68087de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 68187de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 68287de4579STim Chen version 2 (AVX2) instructions, when available. 68387de4579STim Chen 684efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 685efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 686efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 687efdb6f6eSAaro Koskinen select CRYPTO_SHA1 688efdb6f6eSAaro Koskinen select CRYPTO_HASH 689efdb6f6eSAaro Koskinen help 690efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 691efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 692efdb6f6eSAaro Koskinen 6934ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 6944ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 6954ff28d4cSDavid S. Miller depends on SPARC64 6964ff28d4cSDavid S. Miller select CRYPTO_SHA1 6974ff28d4cSDavid S. Miller select CRYPTO_HASH 6984ff28d4cSDavid S. Miller help 6994ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7004ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 7014ff28d4cSDavid S. Miller 702323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 703323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 704323a6bf1SMichael Ellerman depends on PPC 705323a6bf1SMichael Ellerman help 706323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 707323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 708323a6bf1SMichael Ellerman 709d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 710d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 711d9850fc5SMarkus Stockhausen depends on PPC && SPE 712d9850fc5SMarkus Stockhausen help 713d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 714d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 715d9850fc5SMarkus Stockhausen 7161e65b81aSTim Chenconfig CRYPTO_SHA1_MB 7171e65b81aSTim Chen tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7181e65b81aSTim Chen depends on X86 && 64BIT 7191e65b81aSTim Chen select CRYPTO_SHA1 7201e65b81aSTim Chen select CRYPTO_HASH 7211e65b81aSTim Chen select CRYPTO_MCRYPTD 7221e65b81aSTim Chen help 7231e65b81aSTim Chen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7241e65b81aSTim Chen using multi-buffer technique. This algorithm computes on 7251e65b81aSTim Chen multiple data lanes concurrently with SIMD instructions for 7261e65b81aSTim Chen better throughput. It should not be enabled by default but 7271e65b81aSTim Chen used when there is significant amount of work to keep the keep 7281e65b81aSTim Chen the data lanes filled to get performance benefit. If the data 7291e65b81aSTim Chen lanes remain unfilled, a flush operation will be initiated to 7301e65b81aSTim Chen process the crypto jobs, adding a slight latency. 7311e65b81aSTim Chen 7329be7e244SMegha Deyconfig CRYPTO_SHA256_MB 7339be7e244SMegha Dey tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7349be7e244SMegha Dey depends on X86 && 64BIT 7359be7e244SMegha Dey select CRYPTO_SHA256 7369be7e244SMegha Dey select CRYPTO_HASH 7379be7e244SMegha Dey select CRYPTO_MCRYPTD 7389be7e244SMegha Dey help 7399be7e244SMegha Dey SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7409be7e244SMegha Dey using multi-buffer technique. This algorithm computes on 7419be7e244SMegha Dey multiple data lanes concurrently with SIMD instructions for 7429be7e244SMegha Dey better throughput. It should not be enabled by default but 7439be7e244SMegha Dey used when there is significant amount of work to keep the keep 7449be7e244SMegha Dey the data lanes filled to get performance benefit. If the data 7459be7e244SMegha Dey lanes remain unfilled, a flush operation will be initiated to 7469be7e244SMegha Dey process the crypto jobs, adding a slight latency. 7479be7e244SMegha Dey 748026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB 749026bb8aaSMegha Dey tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" 750026bb8aaSMegha Dey depends on X86 && 64BIT 751026bb8aaSMegha Dey select CRYPTO_SHA512 752026bb8aaSMegha Dey select CRYPTO_HASH 753026bb8aaSMegha Dey select CRYPTO_MCRYPTD 754026bb8aaSMegha Dey help 755026bb8aaSMegha Dey SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 756026bb8aaSMegha Dey using multi-buffer technique. This algorithm computes on 757026bb8aaSMegha Dey multiple data lanes concurrently with SIMD instructions for 758026bb8aaSMegha Dey better throughput. It should not be enabled by default but 759026bb8aaSMegha Dey used when there is significant amount of work to keep the keep 760026bb8aaSMegha Dey the data lanes filled to get performance benefit. If the data 761026bb8aaSMegha Dey lanes remain unfilled, a flush operation will be initiated to 762026bb8aaSMegha Dey process the crypto jobs, adding a slight latency. 763026bb8aaSMegha Dey 7641da177e4SLinus Torvaldsconfig CRYPTO_SHA256 765cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 76650e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 7671da177e4SLinus Torvalds help 7681da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 7691da177e4SLinus Torvalds 7701da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 7711da177e4SLinus Torvalds security against collision attacks. 7721da177e4SLinus Torvalds 773cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 774cd12fb90SJonathan Lynch of security against collision attacks. 775cd12fb90SJonathan Lynch 7762ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 7772ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 7782ecc1e95SMarkus Stockhausen depends on PPC && SPE 7792ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 7802ecc1e95SMarkus Stockhausen select CRYPTO_HASH 7812ecc1e95SMarkus Stockhausen help 7822ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 7832ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 7842ecc1e95SMarkus Stockhausen 785efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 786efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 787efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 788efdb6f6eSAaro Koskinen select CRYPTO_SHA256 789efdb6f6eSAaro Koskinen select CRYPTO_HASH 790efdb6f6eSAaro Koskinen help 791efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 792efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 793efdb6f6eSAaro Koskinen 79486c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 79586c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 79686c93b24SDavid S. Miller depends on SPARC64 79786c93b24SDavid S. Miller select CRYPTO_SHA256 79886c93b24SDavid S. Miller select CRYPTO_HASH 79986c93b24SDavid S. Miller help 80086c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 80186c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 80286c93b24SDavid S. Miller 8031da177e4SLinus Torvaldsconfig CRYPTO_SHA512 8041da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 805bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 8061da177e4SLinus Torvalds help 8071da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 8081da177e4SLinus Torvalds 8091da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 8101da177e4SLinus Torvalds security against collision attacks. 8111da177e4SLinus Torvalds 8121da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 8131da177e4SLinus Torvalds of security against collision attacks. 8141da177e4SLinus Torvalds 815efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 816efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 817efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 818efdb6f6eSAaro Koskinen select CRYPTO_SHA512 819efdb6f6eSAaro Koskinen select CRYPTO_HASH 820efdb6f6eSAaro Koskinen help 821efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 822efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 823efdb6f6eSAaro Koskinen 824775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 825775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 826775e0c69SDavid S. Miller depends on SPARC64 827775e0c69SDavid S. Miller select CRYPTO_SHA512 828775e0c69SDavid S. Miller select CRYPTO_HASH 829775e0c69SDavid S. Miller help 830775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 831775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 832775e0c69SDavid S. Miller 83353964b9eSJeff Garzikconfig CRYPTO_SHA3 83453964b9eSJeff Garzik tristate "SHA3 digest algorithm" 83553964b9eSJeff Garzik select CRYPTO_HASH 83653964b9eSJeff Garzik help 83753964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 83853964b9eSJeff Garzik cryptographic sponge function family called Keccak. 83953964b9eSJeff Garzik 84053964b9eSJeff Garzik References: 84153964b9eSJeff Garzik http://keccak.noekeon.org/ 84253964b9eSJeff Garzik 8431da177e4SLinus Torvaldsconfig CRYPTO_TGR192 8441da177e4SLinus Torvalds tristate "Tiger digest algorithms" 845f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 8461da177e4SLinus Torvalds help 8471da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 8481da177e4SLinus Torvalds 8491da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 8501da177e4SLinus Torvalds still having decent performance on 32-bit processors. 8511da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 8521da177e4SLinus Torvalds 8531da177e4SLinus Torvalds See also: 8541da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 8551da177e4SLinus Torvalds 856584fffc8SSebastian Siewiorconfig CRYPTO_WP512 857584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 8584946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 8591da177e4SLinus Torvalds help 860584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 8611da177e4SLinus Torvalds 862584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 863584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 8641da177e4SLinus Torvalds 8651da177e4SLinus Torvalds See also: 8666d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 8671da177e4SLinus Torvalds 8680e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 8690e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 8708af00860SRichard Weinberger depends on X86 && 64BIT 8710e1227d3SHuang Ying select CRYPTO_CRYPTD 8720e1227d3SHuang Ying help 8730e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 8740e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 8750e1227d3SHuang Ying 876584fffc8SSebastian Siewiorcomment "Ciphers" 8771da177e4SLinus Torvalds 8781da177e4SLinus Torvaldsconfig CRYPTO_AES 8791da177e4SLinus Torvalds tristate "AES cipher algorithms" 880cce9e06dSHerbert Xu select CRYPTO_ALGAPI 8811da177e4SLinus Torvalds help 8821da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 8831da177e4SLinus Torvalds algorithm. 8841da177e4SLinus Torvalds 8851da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 8861da177e4SLinus Torvalds both hardware and software across a wide range of computing 8871da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 8881da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 8891da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 8901da177e4SLinus Torvalds suited for restricted-space environments, in which it also 8911da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 8921da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 8931da177e4SLinus Torvalds 8941da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 8951da177e4SLinus Torvalds 8961da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 8971da177e4SLinus Torvalds 8981da177e4SLinus Torvaldsconfig CRYPTO_AES_586 8991da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 900cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 901cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9025157dea8SSebastian Siewior select CRYPTO_AES 9031da177e4SLinus Torvalds help 9041da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9051da177e4SLinus Torvalds algorithm. 9061da177e4SLinus Torvalds 9071da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9081da177e4SLinus Torvalds both hardware and software across a wide range of computing 9091da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9101da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9111da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9121da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9131da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9141da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9151da177e4SLinus Torvalds 9161da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9171da177e4SLinus Torvalds 9181da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 9191da177e4SLinus Torvalds 920a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 921a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 922cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 923cce9e06dSHerbert Xu select CRYPTO_ALGAPI 92481190b32SSebastian Siewior select CRYPTO_AES 925a2a892a2SAndreas Steinmetz help 926a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 927a2a892a2SAndreas Steinmetz algorithm. 928a2a892a2SAndreas Steinmetz 929a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 930a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 931a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 932a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 933a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 934a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 935a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 936a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 937a2a892a2SAndreas Steinmetz 938a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 939a2a892a2SAndreas Steinmetz 940a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 941a2a892a2SAndreas Steinmetz 94254b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 94354b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 9448af00860SRichard Weinberger depends on X86 9450d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 9460d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 94754b6a1bdSHuang Ying select CRYPTO_CRYPTD 948801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 94954b6a1bdSHuang Ying select CRYPTO_ALGAPI 9507643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 951023af608SJussi Kivilinna select CRYPTO_LRW 952023af608SJussi Kivilinna select CRYPTO_XTS 95354b6a1bdSHuang Ying help 95454b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 95554b6a1bdSHuang Ying 95654b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 95754b6a1bdSHuang Ying algorithm. 95854b6a1bdSHuang Ying 95954b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 96054b6a1bdSHuang Ying both hardware and software across a wide range of computing 96154b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 96254b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 96354b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 96454b6a1bdSHuang Ying suited for restricted-space environments, in which it also 96554b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 96654b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 96754b6a1bdSHuang Ying 96854b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 96954b6a1bdSHuang Ying 97054b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 97154b6a1bdSHuang Ying 9720d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 9730d258efbSMathias Krause for some popular block cipher mode is supported too, including 9740d258efbSMathias Krause ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 9750d258efbSMathias Krause acceleration for CTR. 9762cf4ac8bSHuang Ying 9779bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 9789bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 9799bf4852dSDavid S. Miller depends on SPARC64 9809bf4852dSDavid S. Miller select CRYPTO_CRYPTD 9819bf4852dSDavid S. Miller select CRYPTO_ALGAPI 9829bf4852dSDavid S. Miller help 9839bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 9849bf4852dSDavid S. Miller 9859bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 9869bf4852dSDavid S. Miller algorithm. 9879bf4852dSDavid S. Miller 9889bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 9899bf4852dSDavid S. Miller both hardware and software across a wide range of computing 9909bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 9919bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 9929bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 9939bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 9949bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 9959bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 9969bf4852dSDavid S. Miller 9979bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 9989bf4852dSDavid S. Miller 9999bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 10009bf4852dSDavid S. Miller 10019bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 10029bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 10039bf4852dSDavid S. Miller ECB and CBC. 10049bf4852dSDavid S. Miller 1005504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1006504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1007504c6143SMarkus Stockhausen depends on PPC && SPE 1008504c6143SMarkus Stockhausen help 1009504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1010504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1011504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1012504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1013504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1014504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1015504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1016504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1017504c6143SMarkus Stockhausen 10181da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 10191da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1020cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10211da177e4SLinus Torvalds help 10221da177e4SLinus Torvalds Anubis cipher algorithm. 10231da177e4SLinus Torvalds 10241da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 10251da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 10261da177e4SLinus Torvalds in the NESSIE competition. 10271da177e4SLinus Torvalds 10281da177e4SLinus Torvalds See also: 10296d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 10306d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 10311da177e4SLinus Torvalds 1032584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1033584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1034b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1035e2ee95b8SHye-Shik Chang help 1036584fffc8SSebastian Siewior ARC4 cipher algorithm. 1037e2ee95b8SHye-Shik Chang 1038584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1039584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1040584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1041584fffc8SSebastian Siewior weakness of the algorithm. 1042584fffc8SSebastian Siewior 1043584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1044584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1045584fffc8SSebastian Siewior select CRYPTO_ALGAPI 104652ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1047584fffc8SSebastian Siewior help 1048584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1049584fffc8SSebastian Siewior 1050584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1051584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1052584fffc8SSebastian Siewior designed for use on "large microprocessors". 1053e2ee95b8SHye-Shik Chang 1054e2ee95b8SHye-Shik Chang See also: 1055584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1056584fffc8SSebastian Siewior 105752ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 105852ba867cSJussi Kivilinna tristate 105952ba867cSJussi Kivilinna help 106052ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 106152ba867cSJussi Kivilinna generic c and the assembler implementations. 106252ba867cSJussi Kivilinna 106352ba867cSJussi Kivilinna See also: 106452ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 106552ba867cSJussi Kivilinna 106664b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 106764b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1068f21a7c19SAl Viro depends on X86 && 64BIT 106964b94ceaSJussi Kivilinna select CRYPTO_ALGAPI 107064b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 107164b94ceaSJussi Kivilinna help 107264b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 107364b94ceaSJussi Kivilinna 107464b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 107564b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 107664b94ceaSJussi Kivilinna designed for use on "large microprocessors". 107764b94ceaSJussi Kivilinna 107864b94ceaSJussi Kivilinna See also: 107964b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 108064b94ceaSJussi Kivilinna 1081584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1082584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1083584fffc8SSebastian Siewior depends on CRYPTO 1084584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1085584fffc8SSebastian Siewior help 1086584fffc8SSebastian Siewior Camellia cipher algorithms module. 1087584fffc8SSebastian Siewior 1088584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1089584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1090584fffc8SSebastian Siewior 1091584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1092584fffc8SSebastian Siewior 1093584fffc8SSebastian Siewior See also: 1094584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1095584fffc8SSebastian Siewior 10960b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 10970b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1098f21a7c19SAl Viro depends on X86 && 64BIT 10990b95ec56SJussi Kivilinna depends on CRYPTO 11000b95ec56SJussi Kivilinna select CRYPTO_ALGAPI 1101964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 11020b95ec56SJussi Kivilinna select CRYPTO_LRW 11030b95ec56SJussi Kivilinna select CRYPTO_XTS 11040b95ec56SJussi Kivilinna help 11050b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 11060b95ec56SJussi Kivilinna 11070b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 11080b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 11090b95ec56SJussi Kivilinna 11100b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 11110b95ec56SJussi Kivilinna 11120b95ec56SJussi Kivilinna See also: 11130b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 11140b95ec56SJussi Kivilinna 1115d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1116d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1117d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1118d9b1d2e7SJussi Kivilinna depends on CRYPTO 1119d9b1d2e7SJussi Kivilinna select CRYPTO_ALGAPI 1120d9b1d2e7SJussi Kivilinna select CRYPTO_CRYPTD 1121801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1122d9b1d2e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1123d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 1124d9b1d2e7SJussi Kivilinna select CRYPTO_LRW 1125d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1126d9b1d2e7SJussi Kivilinna help 1127d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1128d9b1d2e7SJussi Kivilinna 1129d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1130d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1131d9b1d2e7SJussi Kivilinna 1132d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1133d9b1d2e7SJussi Kivilinna 1134d9b1d2e7SJussi Kivilinna See also: 1135d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1136d9b1d2e7SJussi Kivilinna 1137f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1138f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1139f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1140f3f935a7SJussi Kivilinna depends on CRYPTO 1141f3f935a7SJussi Kivilinna select CRYPTO_ALGAPI 1142f3f935a7SJussi Kivilinna select CRYPTO_CRYPTD 1143801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1144f3f935a7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1145f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 1146f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1147f3f935a7SJussi Kivilinna select CRYPTO_LRW 1148f3f935a7SJussi Kivilinna select CRYPTO_XTS 1149f3f935a7SJussi Kivilinna help 1150f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1151f3f935a7SJussi Kivilinna 1152f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1153f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1154f3f935a7SJussi Kivilinna 1155f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1156f3f935a7SJussi Kivilinna 1157f3f935a7SJussi Kivilinna See also: 1158f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1159f3f935a7SJussi Kivilinna 116081658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 116181658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 116281658ad0SDavid S. Miller depends on SPARC64 116381658ad0SDavid S. Miller depends on CRYPTO 116481658ad0SDavid S. Miller select CRYPTO_ALGAPI 116581658ad0SDavid S. Miller help 116681658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 116781658ad0SDavid S. Miller 116881658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 116981658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 117081658ad0SDavid S. Miller 117181658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 117281658ad0SDavid S. Miller 117381658ad0SDavid S. Miller See also: 117481658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 117581658ad0SDavid S. Miller 1176044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1177044ab525SJussi Kivilinna tristate 1178044ab525SJussi Kivilinna help 1179044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1180044ab525SJussi Kivilinna generic c and the assembler implementations. 1181044ab525SJussi Kivilinna 1182584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1183584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1184584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1185044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1186584fffc8SSebastian Siewior help 1187584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1188584fffc8SSebastian Siewior described in RFC2144. 1189584fffc8SSebastian Siewior 11904d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 11914d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 11924d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 11934d6d6a2cSJohannes Goetzfried select CRYPTO_ALGAPI 11944d6d6a2cSJohannes Goetzfried select CRYPTO_CRYPTD 1195801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1196044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 11974d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 11984d6d6a2cSJohannes Goetzfried help 11994d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 12004d6d6a2cSJohannes Goetzfried described in RFC2144. 12014d6d6a2cSJohannes Goetzfried 12024d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 12034d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 12044d6d6a2cSJohannes Goetzfried 1205584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1206584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1207584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1208044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1209584fffc8SSebastian Siewior help 1210584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1211584fffc8SSebastian Siewior described in RFC2612. 1212584fffc8SSebastian Siewior 12134ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 12144ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 12154ea1277dSJohannes Goetzfried depends on X86 && 64BIT 12164ea1277dSJohannes Goetzfried select CRYPTO_ALGAPI 12174ea1277dSJohannes Goetzfried select CRYPTO_CRYPTD 1218801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 12194ea1277dSJohannes Goetzfried select CRYPTO_GLUE_HELPER_X86 1220044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 12214ea1277dSJohannes Goetzfried select CRYPTO_CAST6 12224ea1277dSJohannes Goetzfried select CRYPTO_LRW 12234ea1277dSJohannes Goetzfried select CRYPTO_XTS 12244ea1277dSJohannes Goetzfried help 12254ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 12264ea1277dSJohannes Goetzfried described in RFC2612. 12274ea1277dSJohannes Goetzfried 12284ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 12294ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 12304ea1277dSJohannes Goetzfried 1231584fffc8SSebastian Siewiorconfig CRYPTO_DES 1232584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1233584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1234584fffc8SSebastian Siewior help 1235584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1236584fffc8SSebastian Siewior 1237c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1238c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 123997da37b3SDave Jones depends on SPARC64 1240c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1241c5aac2dfSDavid S. Miller select CRYPTO_DES 1242c5aac2dfSDavid S. Miller help 1243c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1244c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1245c5aac2dfSDavid S. Miller 12466574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 12476574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 12486574e6c6SJussi Kivilinna depends on X86 && 64BIT 12496574e6c6SJussi Kivilinna select CRYPTO_ALGAPI 12506574e6c6SJussi Kivilinna select CRYPTO_DES 12516574e6c6SJussi Kivilinna help 12526574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 12536574e6c6SJussi Kivilinna 12546574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 12556574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 12566574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 12576574e6c6SJussi Kivilinna one that processes three blocks parallel. 12586574e6c6SJussi Kivilinna 1259584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1260584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1261584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1262584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1263584fffc8SSebastian Siewior help 1264584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1265584fffc8SSebastian Siewior 1266584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1267584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1268584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1269584fffc8SSebastian Siewior help 1270584fffc8SSebastian Siewior Khazad cipher algorithm. 1271584fffc8SSebastian Siewior 1272584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1273584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1274584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1275584fffc8SSebastian Siewior 1276584fffc8SSebastian Siewior See also: 12776d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1278e2ee95b8SHye-Shik Chang 12792407d608STan Swee Hengconfig CRYPTO_SALSA20 12803b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 12812407d608STan Swee Heng select CRYPTO_BLKCIPHER 12822407d608STan Swee Heng help 12832407d608STan Swee Heng Salsa20 stream cipher algorithm. 12842407d608STan Swee Heng 12852407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 12862407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 12872407d608STan Swee Heng 12882407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 12892407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 12901da177e4SLinus Torvalds 1291974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586 12923b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (i586)" 1293974e4b75STan Swee Heng depends on (X86 || UML_X86) && !64BIT 1294974e4b75STan Swee Heng select CRYPTO_BLKCIPHER 1295974e4b75STan Swee Heng help 1296974e4b75STan Swee Heng Salsa20 stream cipher algorithm. 1297974e4b75STan Swee Heng 1298974e4b75STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1299974e4b75STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1300974e4b75STan Swee Heng 1301974e4b75STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 1302974e4b75STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1303974e4b75STan Swee Heng 13049a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64 13053b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (x86_64)" 13069a7dafbbSTan Swee Heng depends on (X86 || UML_X86) && 64BIT 13079a7dafbbSTan Swee Heng select CRYPTO_BLKCIPHER 13089a7dafbbSTan Swee Heng help 13099a7dafbbSTan Swee Heng Salsa20 stream cipher algorithm. 13109a7dafbbSTan Swee Heng 13119a7dafbbSTan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13129a7dafbbSTan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13139a7dafbbSTan Swee Heng 13149a7dafbbSTan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13159a7dafbbSTan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13169a7dafbbSTan Swee Heng 1317c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1318c08d0e64SMartin Willi tristate "ChaCha20 cipher algorithm" 1319c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1320c08d0e64SMartin Willi help 1321c08d0e64SMartin Willi ChaCha20 cipher algorithm, RFC7539. 1322c08d0e64SMartin Willi 1323c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1324c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1325c08d0e64SMartin Willi This is the portable C implementation of ChaCha20. 1326c08d0e64SMartin Willi 1327c08d0e64SMartin Willi See also: 1328c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1329c08d0e64SMartin Willi 1330c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 13313d1e93cdSMartin Willi tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1332c9320b6dSMartin Willi depends on X86 && 64BIT 1333c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1334c9320b6dSMartin Willi select CRYPTO_CHACHA20 1335c9320b6dSMartin Willi help 1336c9320b6dSMartin Willi ChaCha20 cipher algorithm, RFC7539. 1337c9320b6dSMartin Willi 1338c9320b6dSMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1339c9320b6dSMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1340c9320b6dSMartin Willi This is the x86_64 assembler implementation using SIMD instructions. 1341c9320b6dSMartin Willi 1342c9320b6dSMartin Willi See also: 1343c9320b6dSMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1344c9320b6dSMartin Willi 1345584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1346584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1347584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1348584fffc8SSebastian Siewior help 1349584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1350584fffc8SSebastian Siewior 1351584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1352584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1353584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1354584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1355584fffc8SSebastian Siewior 1356584fffc8SSebastian Siewior See also: 1357584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1358584fffc8SSebastian Siewior 1359584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1360584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1361584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1362584fffc8SSebastian Siewior help 1363584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1364584fffc8SSebastian Siewior 1365584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1366584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1367584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1368584fffc8SSebastian Siewior 1369584fffc8SSebastian Siewior See also: 1370584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1371584fffc8SSebastian Siewior 1372937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1373937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1374937c30d7SJussi Kivilinna depends on X86 && 64BIT 1375937c30d7SJussi Kivilinna select CRYPTO_ALGAPI 1376341975bfSJussi Kivilinna select CRYPTO_CRYPTD 1377801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1378596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1379937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1380feaf0cfcSJussi Kivilinna select CRYPTO_LRW 1381feaf0cfcSJussi Kivilinna select CRYPTO_XTS 1382937c30d7SJussi Kivilinna help 1383937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1384937c30d7SJussi Kivilinna 1385937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1386937c30d7SJussi Kivilinna of 8 bits. 1387937c30d7SJussi Kivilinna 13881e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1389937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1390937c30d7SJussi Kivilinna 1391937c30d7SJussi Kivilinna See also: 1392937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1393937c30d7SJussi Kivilinna 1394251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1395251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1396251496dbSJussi Kivilinna depends on X86 && !64BIT 1397251496dbSJussi Kivilinna select CRYPTO_ALGAPI 1398341975bfSJussi Kivilinna select CRYPTO_CRYPTD 1399801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1400596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1401251496dbSJussi Kivilinna select CRYPTO_SERPENT 1402feaf0cfcSJussi Kivilinna select CRYPTO_LRW 1403feaf0cfcSJussi Kivilinna select CRYPTO_XTS 1404251496dbSJussi Kivilinna help 1405251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1406251496dbSJussi Kivilinna 1407251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1408251496dbSJussi Kivilinna of 8 bits. 1409251496dbSJussi Kivilinna 1410251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1411251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1412251496dbSJussi Kivilinna 1413251496dbSJussi Kivilinna See also: 1414251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1415251496dbSJussi Kivilinna 14167efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 14177efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 14187efe4076SJohannes Goetzfried depends on X86 && 64BIT 14197efe4076SJohannes Goetzfried select CRYPTO_ALGAPI 14207efe4076SJohannes Goetzfried select CRYPTO_CRYPTD 1421801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 14221d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 14237efe4076SJohannes Goetzfried select CRYPTO_SERPENT 14247efe4076SJohannes Goetzfried select CRYPTO_LRW 14257efe4076SJohannes Goetzfried select CRYPTO_XTS 14267efe4076SJohannes Goetzfried help 14277efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 14287efe4076SJohannes Goetzfried 14297efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 14307efe4076SJohannes Goetzfried of 8 bits. 14317efe4076SJohannes Goetzfried 14327efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 14337efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14347efe4076SJohannes Goetzfried 14357efe4076SJohannes Goetzfried See also: 14367efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 14377efe4076SJohannes Goetzfried 143856d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 143956d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 144056d76c96SJussi Kivilinna depends on X86 && 64BIT 144156d76c96SJussi Kivilinna select CRYPTO_ALGAPI 144256d76c96SJussi Kivilinna select CRYPTO_CRYPTD 1443801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 144456d76c96SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 144556d76c96SJussi Kivilinna select CRYPTO_SERPENT 144656d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 144756d76c96SJussi Kivilinna select CRYPTO_LRW 144856d76c96SJussi Kivilinna select CRYPTO_XTS 144956d76c96SJussi Kivilinna help 145056d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 145156d76c96SJussi Kivilinna 145256d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 145356d76c96SJussi Kivilinna of 8 bits. 145456d76c96SJussi Kivilinna 145556d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 145656d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 145756d76c96SJussi Kivilinna 145856d76c96SJussi Kivilinna See also: 145956d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 146056d76c96SJussi Kivilinna 1461584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1462584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1463584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1464584fffc8SSebastian Siewior help 1465584fffc8SSebastian Siewior TEA cipher algorithm. 1466584fffc8SSebastian Siewior 1467584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1468584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1469584fffc8SSebastian Siewior little memory. 1470584fffc8SSebastian Siewior 1471584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1472584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1473584fffc8SSebastian Siewior in the TEA algorithm. 1474584fffc8SSebastian Siewior 1475584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1476584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1477584fffc8SSebastian Siewior 1478584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1479584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1480584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1481584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1482584fffc8SSebastian Siewior help 1483584fffc8SSebastian Siewior Twofish cipher algorithm. 1484584fffc8SSebastian Siewior 1485584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1486584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1487584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1488584fffc8SSebastian Siewior bits. 1489584fffc8SSebastian Siewior 1490584fffc8SSebastian Siewior See also: 1491584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1492584fffc8SSebastian Siewior 1493584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1494584fffc8SSebastian Siewior tristate 1495584fffc8SSebastian Siewior help 1496584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1497584fffc8SSebastian Siewior generic c and the assembler implementations. 1498584fffc8SSebastian Siewior 1499584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1500584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1501584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1502584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1503584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1504584fffc8SSebastian Siewior help 1505584fffc8SSebastian Siewior Twofish cipher algorithm. 1506584fffc8SSebastian Siewior 1507584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1508584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1509584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1510584fffc8SSebastian Siewior bits. 1511584fffc8SSebastian Siewior 1512584fffc8SSebastian Siewior See also: 1513584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1514584fffc8SSebastian Siewior 1515584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1516584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1517584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1518584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1519584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1520584fffc8SSebastian Siewior help 1521584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1522584fffc8SSebastian Siewior 1523584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1524584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1525584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1526584fffc8SSebastian Siewior bits. 1527584fffc8SSebastian Siewior 1528584fffc8SSebastian Siewior See also: 1529584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1530584fffc8SSebastian Siewior 15318280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 15328280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1533f21a7c19SAl Viro depends on X86 && 64BIT 15348280daadSJussi Kivilinna select CRYPTO_ALGAPI 15358280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 15368280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1537414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1538e7cda5d2SJussi Kivilinna select CRYPTO_LRW 1539e7cda5d2SJussi Kivilinna select CRYPTO_XTS 15408280daadSJussi Kivilinna help 15418280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 15428280daadSJussi Kivilinna 15438280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 15448280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 15458280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 15468280daadSJussi Kivilinna bits. 15478280daadSJussi Kivilinna 15488280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 15498280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 15508280daadSJussi Kivilinna 15518280daadSJussi Kivilinna See also: 15528280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 15538280daadSJussi Kivilinna 1554107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1555107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1556107778b5SJohannes Goetzfried depends on X86 && 64BIT 1557107778b5SJohannes Goetzfried select CRYPTO_ALGAPI 1558107778b5SJohannes Goetzfried select CRYPTO_CRYPTD 1559801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1560a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1561107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1562107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1563107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1564107778b5SJohannes Goetzfried select CRYPTO_LRW 1565107778b5SJohannes Goetzfried select CRYPTO_XTS 1566107778b5SJohannes Goetzfried help 1567107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1568107778b5SJohannes Goetzfried 1569107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1570107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1571107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1572107778b5SJohannes Goetzfried bits. 1573107778b5SJohannes Goetzfried 1574107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1575107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1576107778b5SJohannes Goetzfried 1577107778b5SJohannes Goetzfried See also: 1578107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1579107778b5SJohannes Goetzfried 1580584fffc8SSebastian Siewiorcomment "Compression" 1581584fffc8SSebastian Siewior 15821da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 15831da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1584cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1585f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 15861da177e4SLinus Torvalds select ZLIB_INFLATE 15871da177e4SLinus Torvalds select ZLIB_DEFLATE 15881da177e4SLinus Torvalds help 15891da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 15901da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 15911da177e4SLinus Torvalds 15921da177e4SLinus Torvalds You will most probably want this if using IPSec. 15931da177e4SLinus Torvalds 15940b77abb3SZoltan Sogorconfig CRYPTO_LZO 15950b77abb3SZoltan Sogor tristate "LZO compression algorithm" 15960b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1597ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 15980b77abb3SZoltan Sogor select LZO_COMPRESS 15990b77abb3SZoltan Sogor select LZO_DECOMPRESS 16000b77abb3SZoltan Sogor help 16010b77abb3SZoltan Sogor This is the LZO algorithm. 16020b77abb3SZoltan Sogor 160335a1fc18SSeth Jenningsconfig CRYPTO_842 160435a1fc18SSeth Jennings tristate "842 compression algorithm" 16052062c5b6SDan Streetman select CRYPTO_ALGAPI 16066a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 16072062c5b6SDan Streetman select 842_COMPRESS 16082062c5b6SDan Streetman select 842_DECOMPRESS 160935a1fc18SSeth Jennings help 161035a1fc18SSeth Jennings This is the 842 algorithm. 161135a1fc18SSeth Jennings 16120ea8530dSChanho Minconfig CRYPTO_LZ4 16130ea8530dSChanho Min tristate "LZ4 compression algorithm" 16140ea8530dSChanho Min select CRYPTO_ALGAPI 16158cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 16160ea8530dSChanho Min select LZ4_COMPRESS 16170ea8530dSChanho Min select LZ4_DECOMPRESS 16180ea8530dSChanho Min help 16190ea8530dSChanho Min This is the LZ4 algorithm. 16200ea8530dSChanho Min 16210ea8530dSChanho Minconfig CRYPTO_LZ4HC 16220ea8530dSChanho Min tristate "LZ4HC compression algorithm" 16230ea8530dSChanho Min select CRYPTO_ALGAPI 162491d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 16250ea8530dSChanho Min select LZ4HC_COMPRESS 16260ea8530dSChanho Min select LZ4_DECOMPRESS 16270ea8530dSChanho Min help 16280ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 16290ea8530dSChanho Min 163017f0f4a4SNeil Hormancomment "Random Number Generation" 163117f0f4a4SNeil Horman 163217f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 163317f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 163417f0f4a4SNeil Horman select CRYPTO_AES 163517f0f4a4SNeil Horman select CRYPTO_RNG 163617f0f4a4SNeil Horman help 163717f0f4a4SNeil Horman This option enables the generic pseudo random number generator 163817f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 16397dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 16407dd607e8SJiri Kosina CRYPTO_FIPS is selected 164117f0f4a4SNeil Horman 1642f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1643419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1644419090c6SStephan Mueller help 1645419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1646419090c6SStephan Mueller more of the DRBG types must be selected. 1647419090c6SStephan Mueller 1648f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1649419090c6SStephan Mueller 1650419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1651401e4238SHerbert Xu bool 1652419090c6SStephan Mueller default y 1653419090c6SStephan Mueller select CRYPTO_HMAC 1654826775bbSHerbert Xu select CRYPTO_SHA256 1655419090c6SStephan Mueller 1656419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1657419090c6SStephan Mueller bool "Enable Hash DRBG" 1658826775bbSHerbert Xu select CRYPTO_SHA256 1659419090c6SStephan Mueller help 1660419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1661419090c6SStephan Mueller 1662419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1663419090c6SStephan Mueller bool "Enable CTR DRBG" 1664419090c6SStephan Mueller select CRYPTO_AES 166535591285SStephan Mueller depends on CRYPTO_CTR 1666419090c6SStephan Mueller help 1667419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1668419090c6SStephan Mueller 1669f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1670f2c89a10SHerbert Xu tristate 1671401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1672f2c89a10SHerbert Xu select CRYPTO_RNG 1673bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1674f2c89a10SHerbert Xu 1675f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1676419090c6SStephan Mueller 1677bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1678bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 16792f313e02SArnd Bergmann select CRYPTO_RNG 1680bb5530e4SStephan Mueller help 1681bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1682bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1683bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1684bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1685bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1686bb5530e4SStephan Mueller 168703c8efc1SHerbert Xuconfig CRYPTO_USER_API 168803c8efc1SHerbert Xu tristate 168903c8efc1SHerbert Xu 1690fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1691fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 16927451708fSHerbert Xu depends on NET 1693fe869cdbSHerbert Xu select CRYPTO_HASH 1694fe869cdbSHerbert Xu select CRYPTO_USER_API 1695fe869cdbSHerbert Xu help 1696fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1697fe869cdbSHerbert Xu algorithms. 1698fe869cdbSHerbert Xu 16998ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 17008ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 17017451708fSHerbert Xu depends on NET 17028ff59090SHerbert Xu select CRYPTO_BLKCIPHER 17038ff59090SHerbert Xu select CRYPTO_USER_API 17048ff59090SHerbert Xu help 17058ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 17068ff59090SHerbert Xu key cipher algorithms. 17078ff59090SHerbert Xu 17082f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 17092f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 17102f375538SStephan Mueller depends on NET 17112f375538SStephan Mueller select CRYPTO_RNG 17122f375538SStephan Mueller select CRYPTO_USER_API 17132f375538SStephan Mueller help 17142f375538SStephan Mueller This option enables the user-spaces interface for random 17152f375538SStephan Mueller number generator algorithms. 17162f375538SStephan Mueller 1717b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1718b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1719b64a2d95SHerbert Xu depends on NET 1720b64a2d95SHerbert Xu select CRYPTO_AEAD 1721b64a2d95SHerbert Xu select CRYPTO_USER_API 1722b64a2d95SHerbert Xu help 1723b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1724b64a2d95SHerbert Xu cipher algorithms. 1725b64a2d95SHerbert Xu 1726ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1727ee08997fSDmitry Kasatkin bool 1728ee08997fSDmitry Kasatkin 17291da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 1730964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig 1731cfc411e7SDavid Howellssource certs/Kconfig 17321da177e4SLinus Torvalds 1733cce9e06dSHerbert Xuendif # if CRYPTO 1734