xref: /linux/crypto/Kconfig (revision 059c2a4d8e164dccc3078e49e7f286023b019a98)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30ccb778e1SNeil Horman	  This options enables the fips boot option which is
31ccb778e1SNeil Horman	  required if you want to system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
116cfc2bb32STadeusz Strukconfig CRYPTO_RSA
117cfc2bb32STadeusz Struk	tristate "RSA algorithm"
118425e0172STadeusz Struk	select CRYPTO_AKCIPHER
11958446fefSTadeusz Struk	select CRYPTO_MANAGER
120cfc2bb32STadeusz Struk	select MPILIB
121cfc2bb32STadeusz Struk	select ASN1
122cfc2bb32STadeusz Struk	help
123cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
124cfc2bb32STadeusz Struk
125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH
126802c7f1cSSalvatore Benedetto	tristate "Diffie-Hellman algorithm"
127802c7f1cSSalvatore Benedetto	select CRYPTO_KPP
128802c7f1cSSalvatore Benedetto	select MPILIB
129802c7f1cSSalvatore Benedetto	help
130802c7f1cSSalvatore Benedetto	  Generic implementation of the Diffie-Hellman algorithm.
131802c7f1cSSalvatore Benedetto
1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH
1333c4b2390SSalvatore Benedetto	tristate "ECDH algorithm"
134b5b90077SHauke Mehrtens	select CRYPTO_KPP
1356755fd26STudor-Dan Ambarus	select CRYPTO_RNG_DEFAULT
1363c4b2390SSalvatore Benedetto	help
1373c4b2390SSalvatore Benedetto	  Generic implementation of the ECDH algorithm
138802c7f1cSSalvatore Benedetto
1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1402b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1416a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1422b8c19dbSHerbert Xu	help
1432b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1442b8c19dbSHerbert Xu	  cbc(aes).
1452b8c19dbSHerbert Xu
1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1476a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1486a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1496a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1506a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
151946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1524e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1532ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1546a0fcbb4SHerbert Xu
155a38f7907SSteffen Klassertconfig CRYPTO_USER
156a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1575db017aaSHerbert Xu	depends on NET
158a38f7907SSteffen Klassert	select CRYPTO_MANAGER
159a38f7907SSteffen Klassert	help
160d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
161a38f7907SSteffen Klassert	  cbc(aes).
162a38f7907SSteffen Klassert
163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
164326a6346SHerbert Xu	bool "Disable run-time self tests"
16500ca28a5SHerbert Xu	default y
16600ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1670b767f96SAlexander Shishkin	help
168326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
169326a6346SHerbert Xu	  algorithm registration.
1700b767f96SAlexander Shishkin
171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
17208c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
173584fffc8SSebastian Siewior	help
174584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
175584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
176584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
177584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
178584fffc8SSebastian Siewior	  an external module that requires these functions.
179584fffc8SSebastian Siewior
180584fffc8SSebastian Siewiorconfig CRYPTO_NULL
181584fffc8SSebastian Siewior	tristate "Null algorithms"
182149a3971SHerbert Xu	select CRYPTO_NULL2
183584fffc8SSebastian Siewior	help
184584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
185584fffc8SSebastian Siewior
186149a3971SHerbert Xuconfig CRYPTO_NULL2
187dd43c4e9SHerbert Xu	tristate
188149a3971SHerbert Xu	select CRYPTO_ALGAPI2
189149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
190149a3971SHerbert Xu	select CRYPTO_HASH2
191149a3971SHerbert Xu
1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1933b4afaf2SKees Cook	tristate "Parallel crypto engine"
1943b4afaf2SKees Cook	depends on SMP
1955068c7a8SSteffen Klassert	select PADATA
1965068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1975068c7a8SSteffen Klassert	select CRYPTO_AEAD
1985068c7a8SSteffen Klassert	help
1995068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
2005068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
2015068c7a8SSteffen Klassert
20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
20325c38d3fSHuang Ying       tristate
20425c38d3fSHuang Ying
205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
206584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
207584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
208b8a28251SLoc Ho	select CRYPTO_HASH
209584fffc8SSebastian Siewior	select CRYPTO_MANAGER
210254eff77SHuang Ying	select CRYPTO_WORKQUEUE
211584fffc8SSebastian Siewior	help
212584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
213584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
214584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
215584fffc8SSebastian Siewior
216584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
217584fffc8SSebastian Siewior	tristate "Authenc support"
218584fffc8SSebastian Siewior	select CRYPTO_AEAD
219584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
220584fffc8SSebastian Siewior	select CRYPTO_MANAGER
221584fffc8SSebastian Siewior	select CRYPTO_HASH
222e94c6a7aSHerbert Xu	select CRYPTO_NULL
223584fffc8SSebastian Siewior	help
224584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
225584fffc8SSebastian Siewior	  This is required for IPSec.
226584fffc8SSebastian Siewior
227584fffc8SSebastian Siewiorconfig CRYPTO_TEST
228584fffc8SSebastian Siewior	tristate "Testing module"
229584fffc8SSebastian Siewior	depends on m
230da7f033dSHerbert Xu	select CRYPTO_MANAGER
231584fffc8SSebastian Siewior	help
232584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
233584fffc8SSebastian Siewior
234266d0516SHerbert Xuconfig CRYPTO_SIMD
235266d0516SHerbert Xu	tristate
236266d0516SHerbert Xu	select CRYPTO_CRYPTD
237266d0516SHerbert Xu
238596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
239596d8750SJussi Kivilinna	tristate
240596d8750SJussi Kivilinna	depends on X86
241065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
242596d8750SJussi Kivilinna
243735d37b5SBaolin Wangconfig CRYPTO_ENGINE
244735d37b5SBaolin Wang	tristate
245735d37b5SBaolin Wang
246584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
247584fffc8SSebastian Siewior
248584fffc8SSebastian Siewiorconfig CRYPTO_CCM
249584fffc8SSebastian Siewior	tristate "CCM support"
250584fffc8SSebastian Siewior	select CRYPTO_CTR
251f15f05b0SArd Biesheuvel	select CRYPTO_HASH
252584fffc8SSebastian Siewior	select CRYPTO_AEAD
253584fffc8SSebastian Siewior	help
254584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
255584fffc8SSebastian Siewior
256584fffc8SSebastian Siewiorconfig CRYPTO_GCM
257584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
258584fffc8SSebastian Siewior	select CRYPTO_CTR
259584fffc8SSebastian Siewior	select CRYPTO_AEAD
2609382d97aSHuang Ying	select CRYPTO_GHASH
2619489667dSJussi Kivilinna	select CRYPTO_NULL
262584fffc8SSebastian Siewior	help
263584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
264584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
265584fffc8SSebastian Siewior
26671ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
26771ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
26871ebc4d1SMartin Willi	select CRYPTO_CHACHA20
26971ebc4d1SMartin Willi	select CRYPTO_POLY1305
27071ebc4d1SMartin Willi	select CRYPTO_AEAD
27171ebc4d1SMartin Willi	help
27271ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
27371ebc4d1SMartin Willi
27471ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
27571ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
27671ebc4d1SMartin Willi	  IETF protocols.
27771ebc4d1SMartin Willi
278f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
279f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
280f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
281f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
282f606a88eSOndrej Mosnacek	help
283f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
284f606a88eSOndrej Mosnacek
285f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L
286f606a88eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm"
287f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
288f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
289f606a88eSOndrej Mosnacek	help
290f606a88eSOndrej Mosnacek	 Support for the AEGIS-128L dedicated AEAD algorithm.
291f606a88eSOndrej Mosnacek
292f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256
293f606a88eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm"
294f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
295f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
296f606a88eSOndrej Mosnacek	help
297f606a88eSOndrej Mosnacek	 Support for the AEGIS-256 dedicated AEAD algorithm.
298f606a88eSOndrej Mosnacek
2991d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3001d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3011d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3021d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3031d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3041d373d4eSOndrej Mosnacek	help
3051d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm.
3061d373d4eSOndrej Mosnacek
3071d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2
3081d373d4eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3091d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3101d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3111d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3121d373d4eSOndrej Mosnacek	help
3131d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm.
3141d373d4eSOndrej Mosnacek
3151d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2
3161d373d4eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3171d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3181d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3191d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3201d373d4eSOndrej Mosnacek	help
3211d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm.
3221d373d4eSOndrej Mosnacek
323396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640
324396be41fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm"
325396be41fSOndrej Mosnacek	select CRYPTO_AEAD
326396be41fSOndrej Mosnacek	help
327396be41fSOndrej Mosnacek	  Support for the MORUS-640 dedicated AEAD algorithm.
328396be41fSOndrej Mosnacek
32956e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE
3302808f173SOndrej Mosnacek	tristate
3312808f173SOndrej Mosnacek	depends on X86
33256e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
33356e8e57fSOndrej Mosnacek	select CRYPTO_CRYPTD
33456e8e57fSOndrej Mosnacek	help
33556e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
33656e8e57fSOndrej Mosnacek	  algorithm.
33756e8e57fSOndrej Mosnacek
3386ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2
3396ecc9d9fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
3406ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3416ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3426ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS640_GLUE
3436ecc9d9fSOndrej Mosnacek	help
3446ecc9d9fSOndrej Mosnacek	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.
3456ecc9d9fSOndrej Mosnacek
346396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280
347396be41fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm"
348396be41fSOndrej Mosnacek	select CRYPTO_AEAD
349396be41fSOndrej Mosnacek	help
350396be41fSOndrej Mosnacek	  Support for the MORUS-1280 dedicated AEAD algorithm.
351396be41fSOndrej Mosnacek
35256e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE
3532808f173SOndrej Mosnacek	tristate
3542808f173SOndrej Mosnacek	depends on X86
35556e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
35656e8e57fSOndrej Mosnacek	select CRYPTO_CRYPTD
35756e8e57fSOndrej Mosnacek	help
35856e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
35956e8e57fSOndrej Mosnacek	  algorithm.
36056e8e57fSOndrej Mosnacek
3616ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2
3626ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
3636ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3646ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3656ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3666ecc9d9fSOndrej Mosnacek	help
3676ecc9d9fSOndrej Mosnacek	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
3686ecc9d9fSOndrej Mosnacek	  algorithm.
3696ecc9d9fSOndrej Mosnacek
3706ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2
3716ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
3726ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3736ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3746ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3756ecc9d9fSOndrej Mosnacek	help
3766ecc9d9fSOndrej Mosnacek	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
3776ecc9d9fSOndrej Mosnacek	  algorithm.
3786ecc9d9fSOndrej Mosnacek
379584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
380584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
381584fffc8SSebastian Siewior	select CRYPTO_AEAD
382584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
383856e3f40SHerbert Xu	select CRYPTO_NULL
384401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
385584fffc8SSebastian Siewior	help
386584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
387584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
388584fffc8SSebastian Siewior
389a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
390a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
391a10f554fSHerbert Xu	select CRYPTO_AEAD
392a10f554fSHerbert Xu	select CRYPTO_NULL
393401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
3943491244cSHerbert Xu	default m
395a10f554fSHerbert Xu	help
396a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
397a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
398a10f554fSHerbert Xu	  algorithm for CBC.
399a10f554fSHerbert Xu
400584fffc8SSebastian Siewiorcomment "Block modes"
401584fffc8SSebastian Siewior
402584fffc8SSebastian Siewiorconfig CRYPTO_CBC
403584fffc8SSebastian Siewior	tristate "CBC support"
404584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
405584fffc8SSebastian Siewior	select CRYPTO_MANAGER
406584fffc8SSebastian Siewior	help
407584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
408584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
409584fffc8SSebastian Siewior
410a7d85e06SJames Bottomleyconfig CRYPTO_CFB
411a7d85e06SJames Bottomley	tristate "CFB support"
412a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
413a7d85e06SJames Bottomley	select CRYPTO_MANAGER
414a7d85e06SJames Bottomley	help
415a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
416a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
417a7d85e06SJames Bottomley
418584fffc8SSebastian Siewiorconfig CRYPTO_CTR
419584fffc8SSebastian Siewior	tristate "CTR support"
420584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
421584fffc8SSebastian Siewior	select CRYPTO_SEQIV
422584fffc8SSebastian Siewior	select CRYPTO_MANAGER
423584fffc8SSebastian Siewior	help
424584fffc8SSebastian Siewior	  CTR: Counter mode
425584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
426584fffc8SSebastian Siewior
427584fffc8SSebastian Siewiorconfig CRYPTO_CTS
428584fffc8SSebastian Siewior	tristate "CTS support"
429584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
430584fffc8SSebastian Siewior	help
431584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
432584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
433ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
434ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
435ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
436584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
437584fffc8SSebastian Siewior	  for AES encryption.
438584fffc8SSebastian Siewior
439ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
440ecd6d5c9SGilad Ben-Yossef
441584fffc8SSebastian Siewiorconfig CRYPTO_ECB
442584fffc8SSebastian Siewior	tristate "ECB support"
443584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
444584fffc8SSebastian Siewior	select CRYPTO_MANAGER
445584fffc8SSebastian Siewior	help
446584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
447584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
448584fffc8SSebastian Siewior	  the input block by block.
449584fffc8SSebastian Siewior
450584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4512470a2b2SJussi Kivilinna	tristate "LRW support"
452584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
453584fffc8SSebastian Siewior	select CRYPTO_MANAGER
454584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
455584fffc8SSebastian Siewior	help
456584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
457584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
458584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
459584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
460584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
461584fffc8SSebastian Siewior
462e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
463e497c518SGilad Ben-Yossef	tristate "OFB support"
464e497c518SGilad Ben-Yossef	select CRYPTO_BLKCIPHER
465e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
466e497c518SGilad Ben-Yossef	help
467e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
468e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
469e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
470e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
471e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
472e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
473e497c518SGilad Ben-Yossef
474584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
475584fffc8SSebastian Siewior	tristate "PCBC support"
476584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
477584fffc8SSebastian Siewior	select CRYPTO_MANAGER
478584fffc8SSebastian Siewior	help
479584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
480584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
481584fffc8SSebastian Siewior
482584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4835bcf8e6dSJussi Kivilinna	tristate "XTS support"
484584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
485584fffc8SSebastian Siewior	select CRYPTO_MANAGER
48612cb3a1cSMilan Broz	select CRYPTO_ECB
487584fffc8SSebastian Siewior	help
488584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
489584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
490584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
491584fffc8SSebastian Siewior
4921c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
4931c49678eSStephan Mueller	tristate "Key wrapping support"
4941c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
4951c49678eSStephan Mueller	help
4961c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
4971c49678eSStephan Mueller	  padding.
4981c49678eSStephan Mueller
49926609a21SEric Biggersconfig CRYPTO_NHPOLY1305
50026609a21SEric Biggers	tristate
50126609a21SEric Biggers	select CRYPTO_HASH
50226609a21SEric Biggers	select CRYPTO_POLY1305
50326609a21SEric Biggers
504*059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
505*059c2a4dSEric Biggers	tristate "Adiantum support"
506*059c2a4dSEric Biggers	select CRYPTO_CHACHA20
507*059c2a4dSEric Biggers	select CRYPTO_POLY1305
508*059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
509*059c2a4dSEric Biggers	help
510*059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
511*059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
512*059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
513*059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
514*059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
515*059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
516*059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
517*059c2a4dSEric Biggers	  AES-XTS.
518*059c2a4dSEric Biggers
519*059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
520*059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
521*059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
522*059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
523*059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
524*059c2a4dSEric Biggers
525*059c2a4dSEric Biggers	  If unsure, say N.
526*059c2a4dSEric Biggers
527584fffc8SSebastian Siewiorcomment "Hash modes"
528584fffc8SSebastian Siewior
52993b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
53093b5e86aSJussi Kivilinna	tristate "CMAC support"
53193b5e86aSJussi Kivilinna	select CRYPTO_HASH
53293b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
53393b5e86aSJussi Kivilinna	help
53493b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
53593b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
53693b5e86aSJussi Kivilinna
53793b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
53893b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
53993b5e86aSJussi Kivilinna
5401da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5418425165dSHerbert Xu	tristate "HMAC support"
5420796ae06SHerbert Xu	select CRYPTO_HASH
54343518407SHerbert Xu	select CRYPTO_MANAGER
5441da177e4SLinus Torvalds	help
5451da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5461da177e4SLinus Torvalds	  This is required for IPSec.
5471da177e4SLinus Torvalds
548333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
549333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
550333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
551333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
552333b0d7eSKazunori MIYAZAWA	help
553333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
554333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
555333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
556333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
557333b0d7eSKazunori MIYAZAWA
558f1939f7cSShane Wangconfig CRYPTO_VMAC
559f1939f7cSShane Wang	tristate "VMAC support"
560f1939f7cSShane Wang	select CRYPTO_HASH
561f1939f7cSShane Wang	select CRYPTO_MANAGER
562f1939f7cSShane Wang	help
563f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
564f1939f7cSShane Wang	  very high speed on 64-bit architectures.
565f1939f7cSShane Wang
566f1939f7cSShane Wang	  See also:
567f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
568f1939f7cSShane Wang
569584fffc8SSebastian Siewiorcomment "Digest"
570584fffc8SSebastian Siewior
571584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
572584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
5735773a3e6SHerbert Xu	select CRYPTO_HASH
5746a0962b2SDarrick J. Wong	select CRC32
5751da177e4SLinus Torvalds	help
576584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
577584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
57869c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
5791da177e4SLinus Torvalds
5808cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
5818cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
5828cb51ba8SAustin Zhang	depends on X86
5838cb51ba8SAustin Zhang	select CRYPTO_HASH
5848cb51ba8SAustin Zhang	help
5858cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
5868cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
5878cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
5888cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
5898cb51ba8SAustin Zhang	  gain performance compared with software implementation.
5908cb51ba8SAustin Zhang	  Module will be crc32c-intel.
5918cb51ba8SAustin Zhang
5927cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
5936dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
594c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
5956dd7a82cSAnton Blanchard	select CRYPTO_HASH
5966dd7a82cSAnton Blanchard	select CRC32
5976dd7a82cSAnton Blanchard	help
5986dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
5996dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
6006dd7a82cSAnton Blanchard	  and newer processors for improved performance.
6016dd7a82cSAnton Blanchard
6026dd7a82cSAnton Blanchard
603442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
604442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
605442a7c40SDavid S. Miller	depends on SPARC64
606442a7c40SDavid S. Miller	select CRYPTO_HASH
607442a7c40SDavid S. Miller	select CRC32
608442a7c40SDavid S. Miller	help
609442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
610442a7c40SDavid S. Miller	  when available.
611442a7c40SDavid S. Miller
61278c37d19SAlexander Boykoconfig CRYPTO_CRC32
61378c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
61478c37d19SAlexander Boyko	select CRYPTO_HASH
61578c37d19SAlexander Boyko	select CRC32
61678c37d19SAlexander Boyko	help
61778c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
61878c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
61978c37d19SAlexander Boyko
62078c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
62178c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
62278c37d19SAlexander Boyko	depends on X86
62378c37d19SAlexander Boyko	select CRYPTO_HASH
62478c37d19SAlexander Boyko	select CRC32
62578c37d19SAlexander Boyko	help
62678c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
62778c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
62878c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
62978c37d19SAlexander Boyko	  instruction. This option will create 'crc32-plcmul' module,
63078c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
63178c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
63278c37d19SAlexander Boyko
6334a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6344a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6354a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6364a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6374a5dc51eSMarcin Nowakowski	help
6384a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6394a5dc51eSMarcin Nowakowski	  instructions, when available.
6404a5dc51eSMarcin Nowakowski
6414a5dc51eSMarcin Nowakowski
64268411521SHerbert Xuconfig CRYPTO_CRCT10DIF
64368411521SHerbert Xu	tristate "CRCT10DIF algorithm"
64468411521SHerbert Xu	select CRYPTO_HASH
64568411521SHerbert Xu	help
64668411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
64768411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
64868411521SHerbert Xu	  transforms to be used if they are available.
64968411521SHerbert Xu
65068411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
65168411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
65268411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
65368411521SHerbert Xu	select CRYPTO_HASH
65468411521SHerbert Xu	help
65568411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
65668411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
65768411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
65868411521SHerbert Xu	  'crct10dif-plcmul' module, which is faster when computing the
65968411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
66068411521SHerbert Xu
661b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
662b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
663b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
664b01df1c1SDaniel Axtens	select CRYPTO_HASH
665b01df1c1SDaniel Axtens	help
666b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
667b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
668b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
669b01df1c1SDaniel Axtens
670146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
671146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
672146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
673146c8688SDaniel Axtens	help
674146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
675146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
676146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
677146c8688SDaniel Axtens
6782cdc6899SHuang Yingconfig CRYPTO_GHASH
6792cdc6899SHuang Ying	tristate "GHASH digest algorithm"
6802cdc6899SHuang Ying	select CRYPTO_GF128MUL
681578c60fbSArnd Bergmann	select CRYPTO_HASH
6822cdc6899SHuang Ying	help
6832cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
6842cdc6899SHuang Ying
685f979e014SMartin Williconfig CRYPTO_POLY1305
686f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
687578c60fbSArnd Bergmann	select CRYPTO_HASH
688f979e014SMartin Willi	help
689f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
690f979e014SMartin Willi
691f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
692f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
693f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
694f979e014SMartin Willi
695c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
696b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
697c70f4abeSMartin Willi	depends on X86 && 64BIT
698c70f4abeSMartin Willi	select CRYPTO_POLY1305
699c70f4abeSMartin Willi	help
700c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
701c70f4abeSMartin Willi
702c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
703c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
704c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
705c70f4abeSMartin Willi	  instructions.
706c70f4abeSMartin Willi
7071da177e4SLinus Torvaldsconfig CRYPTO_MD4
7081da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
709808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7101da177e4SLinus Torvalds	help
7111da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
7121da177e4SLinus Torvalds
7131da177e4SLinus Torvaldsconfig CRYPTO_MD5
7141da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
71514b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7161da177e4SLinus Torvalds	help
7171da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
7181da177e4SLinus Torvalds
719d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
720d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
721d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
722d69e75deSAaro Koskinen	select CRYPTO_MD5
723d69e75deSAaro Koskinen	select CRYPTO_HASH
724d69e75deSAaro Koskinen	help
725d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
726d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
727d69e75deSAaro Koskinen
728e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
729e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
730e8e59953SMarkus Stockhausen	depends on PPC
731e8e59953SMarkus Stockhausen	select CRYPTO_HASH
732e8e59953SMarkus Stockhausen	help
733e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
734e8e59953SMarkus Stockhausen	  in PPC assembler.
735e8e59953SMarkus Stockhausen
736fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
737fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
738fa4dfedcSDavid S. Miller	depends on SPARC64
739fa4dfedcSDavid S. Miller	select CRYPTO_MD5
740fa4dfedcSDavid S. Miller	select CRYPTO_HASH
741fa4dfedcSDavid S. Miller	help
742fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
743fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
744fa4dfedcSDavid S. Miller
745584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
746584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
74719e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
748584fffc8SSebastian Siewior	help
749584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
750584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
751584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
752584fffc8SSebastian Siewior	  of the algorithm.
753584fffc8SSebastian Siewior
75482798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
75582798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
7567c4468bcSHerbert Xu	select CRYPTO_HASH
75782798f90SAdrian-Ken Rueegsegger	help
75882798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
75982798f90SAdrian-Ken Rueegsegger
76082798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
76135ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
76282798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
76382798f90SAdrian-Ken Rueegsegger
76482798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7656d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
76682798f90SAdrian-Ken Rueegsegger
76782798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
76882798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
769e5835fbaSHerbert Xu	select CRYPTO_HASH
77082798f90SAdrian-Ken Rueegsegger	help
77182798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
77282798f90SAdrian-Ken Rueegsegger
77382798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
77482798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
775b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
776b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
77782798f90SAdrian-Ken Rueegsegger
778b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
779b6d44341SAdrian Bunk	  against RIPEMD-160.
780534fe2c1SAdrian-Ken Rueegsegger
781534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7826d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
783534fe2c1SAdrian-Ken Rueegsegger
784534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
785534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
786d8a5e2e9SHerbert Xu	select CRYPTO_HASH
787534fe2c1SAdrian-Ken Rueegsegger	help
788b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
789b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
790b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
791b6d44341SAdrian Bunk	  (than RIPEMD-128).
792534fe2c1SAdrian-Ken Rueegsegger
793534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7946d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
795534fe2c1SAdrian-Ken Rueegsegger
796534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
797534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
7983b8efb4cSHerbert Xu	select CRYPTO_HASH
799534fe2c1SAdrian-Ken Rueegsegger	help
800b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
801b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
802b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
803b6d44341SAdrian Bunk	  (than RIPEMD-160).
804534fe2c1SAdrian-Ken Rueegsegger
80582798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8066d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
80782798f90SAdrian-Ken Rueegsegger
8081da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8091da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
81054ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8111da177e4SLinus Torvalds	help
8121da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8131da177e4SLinus Torvalds
81466be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
815e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
81666be8951SMathias Krause	depends on X86 && 64BIT
81766be8951SMathias Krause	select CRYPTO_SHA1
81866be8951SMathias Krause	select CRYPTO_HASH
81966be8951SMathias Krause	help
82066be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
82166be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
822e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
823e38b6b7fStim	  when available.
82466be8951SMathias Krause
8258275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
826e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8278275d1aaSTim Chen	depends on X86 && 64BIT
8288275d1aaSTim Chen	select CRYPTO_SHA256
8298275d1aaSTim Chen	select CRYPTO_HASH
8308275d1aaSTim Chen	help
8318275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8328275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8338275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
834e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
835e38b6b7fStim	  Instructions) when available.
8368275d1aaSTim Chen
83787de4579STim Chenconfig CRYPTO_SHA512_SSSE3
83887de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
83987de4579STim Chen	depends on X86 && 64BIT
84087de4579STim Chen	select CRYPTO_SHA512
84187de4579STim Chen	select CRYPTO_HASH
84287de4579STim Chen	help
84387de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
84487de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
84587de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
84687de4579STim Chen	  version 2 (AVX2) instructions, when available.
84787de4579STim Chen
848efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
849efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
850efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
851efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
852efdb6f6eSAaro Koskinen	select CRYPTO_HASH
853efdb6f6eSAaro Koskinen	help
854efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
855efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
856efdb6f6eSAaro Koskinen
8574ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
8584ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
8594ff28d4cSDavid S. Miller	depends on SPARC64
8604ff28d4cSDavid S. Miller	select CRYPTO_SHA1
8614ff28d4cSDavid S. Miller	select CRYPTO_HASH
8624ff28d4cSDavid S. Miller	help
8634ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8644ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
8654ff28d4cSDavid S. Miller
866323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
867323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
868323a6bf1SMichael Ellerman	depends on PPC
869323a6bf1SMichael Ellerman	help
870323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
871323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
872323a6bf1SMichael Ellerman
873d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
874d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
875d9850fc5SMarkus Stockhausen	depends on PPC && SPE
876d9850fc5SMarkus Stockhausen	help
877d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
878d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
879d9850fc5SMarkus Stockhausen
8801da177e4SLinus Torvaldsconfig CRYPTO_SHA256
881cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
88250e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8831da177e4SLinus Torvalds	help
8841da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
8851da177e4SLinus Torvalds
8861da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
8871da177e4SLinus Torvalds	  security against collision attacks.
8881da177e4SLinus Torvalds
889cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
890cd12fb90SJonathan Lynch	  of security against collision attacks.
891cd12fb90SJonathan Lynch
8922ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
8932ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
8942ecc1e95SMarkus Stockhausen	depends on PPC && SPE
8952ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
8962ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
8972ecc1e95SMarkus Stockhausen	help
8982ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
8992ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9002ecc1e95SMarkus Stockhausen
901efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
902efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
903efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
904efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
905efdb6f6eSAaro Koskinen	select CRYPTO_HASH
906efdb6f6eSAaro Koskinen	help
907efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
908efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
909efdb6f6eSAaro Koskinen
91086c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
91186c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
91286c93b24SDavid S. Miller	depends on SPARC64
91386c93b24SDavid S. Miller	select CRYPTO_SHA256
91486c93b24SDavid S. Miller	select CRYPTO_HASH
91586c93b24SDavid S. Miller	help
91686c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
91786c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
91886c93b24SDavid S. Miller
9191da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9201da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
921bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9221da177e4SLinus Torvalds	help
9231da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9241da177e4SLinus Torvalds
9251da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9261da177e4SLinus Torvalds	  security against collision attacks.
9271da177e4SLinus Torvalds
9281da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9291da177e4SLinus Torvalds	  of security against collision attacks.
9301da177e4SLinus Torvalds
931efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
932efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
933efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
934efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
935efdb6f6eSAaro Koskinen	select CRYPTO_HASH
936efdb6f6eSAaro Koskinen	help
937efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
938efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
939efdb6f6eSAaro Koskinen
940775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
941775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
942775e0c69SDavid S. Miller	depends on SPARC64
943775e0c69SDavid S. Miller	select CRYPTO_SHA512
944775e0c69SDavid S. Miller	select CRYPTO_HASH
945775e0c69SDavid S. Miller	help
946775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
947775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
948775e0c69SDavid S. Miller
94953964b9eSJeff Garzikconfig CRYPTO_SHA3
95053964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
95153964b9eSJeff Garzik	select CRYPTO_HASH
95253964b9eSJeff Garzik	help
95353964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
95453964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
95553964b9eSJeff Garzik
95653964b9eSJeff Garzik	  References:
95753964b9eSJeff Garzik	  http://keccak.noekeon.org/
95853964b9eSJeff Garzik
9594f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
9604f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
9614f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
9624f0fc160SGilad Ben-Yossef	help
9634f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
9644f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
9654f0fc160SGilad Ben-Yossef
9664f0fc160SGilad Ben-Yossef	  References:
9674f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
9684f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
9694f0fc160SGilad Ben-Yossef
970fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
971fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
972fe18957eSVitaly Chikunov	select CRYPTO_HASH
973fe18957eSVitaly Chikunov	help
974fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
975fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
976fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
977fe18957eSVitaly Chikunov
978fe18957eSVitaly Chikunov	  References:
979fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
980fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
981fe18957eSVitaly Chikunov
9821da177e4SLinus Torvaldsconfig CRYPTO_TGR192
9831da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
984f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9851da177e4SLinus Torvalds	help
9861da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
9871da177e4SLinus Torvalds
9881da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
9891da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
9901da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
9911da177e4SLinus Torvalds
9921da177e4SLinus Torvalds	  See also:
9931da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
9941da177e4SLinus Torvalds
995584fffc8SSebastian Siewiorconfig CRYPTO_WP512
996584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
9974946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9981da177e4SLinus Torvalds	help
999584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10001da177e4SLinus Torvalds
1001584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1002584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10031da177e4SLinus Torvalds
10041da177e4SLinus Torvalds	  See also:
10056d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10061da177e4SLinus Torvalds
10070e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10080e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
10098af00860SRichard Weinberger	depends on X86 && 64BIT
10100e1227d3SHuang Ying	select CRYPTO_CRYPTD
10110e1227d3SHuang Ying	help
10120e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
10130e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
10140e1227d3SHuang Ying
1015584fffc8SSebastian Siewiorcomment "Ciphers"
10161da177e4SLinus Torvalds
10171da177e4SLinus Torvaldsconfig CRYPTO_AES
10181da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1019cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10201da177e4SLinus Torvalds	help
10211da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10221da177e4SLinus Torvalds	  algorithm.
10231da177e4SLinus Torvalds
10241da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10251da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10261da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10271da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10281da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10291da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10301da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10311da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10321da177e4SLinus Torvalds
10331da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10341da177e4SLinus Torvalds
10351da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10361da177e4SLinus Torvalds
1037b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1038b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1039b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1040b5e0b032SArd Biesheuvel	help
1041b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1042b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1043b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1044b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1045b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1046b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1047b5e0b032SArd Biesheuvel
1048b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1049b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1050b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1051b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
10520a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
10530a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1054b5e0b032SArd Biesheuvel
10551da177e4SLinus Torvaldsconfig CRYPTO_AES_586
10561da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
1057cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
1058cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10595157dea8SSebastian Siewior	select CRYPTO_AES
10601da177e4SLinus Torvalds	help
10611da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10621da177e4SLinus Torvalds	  algorithm.
10631da177e4SLinus Torvalds
10641da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10651da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10661da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10671da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10681da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10691da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10701da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10711da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10721da177e4SLinus Torvalds
10731da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10741da177e4SLinus Torvalds
10751da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
10761da177e4SLinus Torvalds
1077a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
1078a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
1079cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
1080cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
108181190b32SSebastian Siewior	select CRYPTO_AES
1082a2a892a2SAndreas Steinmetz	help
1083a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1084a2a892a2SAndreas Steinmetz	  algorithm.
1085a2a892a2SAndreas Steinmetz
1086a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
1087a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
1088a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
1089a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
1090a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
1091a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
1092a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
1093a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
1094a2a892a2SAndreas Steinmetz
1095a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
1096a2a892a2SAndreas Steinmetz
1097a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1098a2a892a2SAndreas Steinmetz
109954b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
110054b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11018af00860SRichard Weinberger	depends on X86
110285671860SHerbert Xu	select CRYPTO_AEAD
11030d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
11040d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
110554b6a1bdSHuang Ying	select CRYPTO_ALGAPI
110685671860SHerbert Xu	select CRYPTO_BLKCIPHER
11077643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
110885671860SHerbert Xu	select CRYPTO_SIMD
110954b6a1bdSHuang Ying	help
111054b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
111154b6a1bdSHuang Ying
111254b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
111354b6a1bdSHuang Ying	  algorithm.
111454b6a1bdSHuang Ying
111554b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
111654b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
111754b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
111854b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
111954b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
112054b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
112154b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
112254b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
112354b6a1bdSHuang Ying
112454b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
112554b6a1bdSHuang Ying
112654b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
112754b6a1bdSHuang Ying
11280d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11290d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1130944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
11310d258efbSMathias Krause	  acceleration for CTR.
11322cf4ac8bSHuang Ying
11339bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11349bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11359bf4852dSDavid S. Miller	depends on SPARC64
11369bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
11379bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
11389bf4852dSDavid S. Miller	help
11399bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11409bf4852dSDavid S. Miller
11419bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11429bf4852dSDavid S. Miller	  algorithm.
11439bf4852dSDavid S. Miller
11449bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11459bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11469bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11479bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11489bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11499bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11509bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11519bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11529bf4852dSDavid S. Miller
11539bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11549bf4852dSDavid S. Miller
11559bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11569bf4852dSDavid S. Miller
11579bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11589bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11599bf4852dSDavid S. Miller	  ECB and CBC.
11609bf4852dSDavid S. Miller
1161504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1162504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1163504c6143SMarkus Stockhausen	depends on PPC && SPE
1164504c6143SMarkus Stockhausen	help
1165504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1166504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1167504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1168504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1169504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1170504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1171504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1172504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1173504c6143SMarkus Stockhausen
11741da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
11751da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1176cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11771da177e4SLinus Torvalds	help
11781da177e4SLinus Torvalds	  Anubis cipher algorithm.
11791da177e4SLinus Torvalds
11801da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
11811da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
11821da177e4SLinus Torvalds	  in the NESSIE competition.
11831da177e4SLinus Torvalds
11841da177e4SLinus Torvalds	  See also:
11856d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
11866d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
11871da177e4SLinus Torvalds
1188584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1189584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1190b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1191e2ee95b8SHye-Shik Chang	help
1192584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1193e2ee95b8SHye-Shik Chang
1194584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1195584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1196584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1197584fffc8SSebastian Siewior	  weakness of the algorithm.
1198584fffc8SSebastian Siewior
1199584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1200584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1201584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
120252ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1203584fffc8SSebastian Siewior	help
1204584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1205584fffc8SSebastian Siewior
1206584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1207584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1208584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1209e2ee95b8SHye-Shik Chang
1210e2ee95b8SHye-Shik Chang	  See also:
1211584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1212584fffc8SSebastian Siewior
121352ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
121452ba867cSJussi Kivilinna	tristate
121552ba867cSJussi Kivilinna	help
121652ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
121752ba867cSJussi Kivilinna	  generic c and the assembler implementations.
121852ba867cSJussi Kivilinna
121952ba867cSJussi Kivilinna	  See also:
122052ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
122152ba867cSJussi Kivilinna
122264b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
122364b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1224f21a7c19SAl Viro	depends on X86 && 64BIT
1225c1679171SEric Biggers	select CRYPTO_BLKCIPHER
122664b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
122764b94ceaSJussi Kivilinna	help
122864b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
122964b94ceaSJussi Kivilinna
123064b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
123164b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
123264b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
123364b94ceaSJussi Kivilinna
123464b94ceaSJussi Kivilinna	  See also:
123564b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
123664b94ceaSJussi Kivilinna
1237584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1238584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1239584fffc8SSebastian Siewior	depends on CRYPTO
1240584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1241584fffc8SSebastian Siewior	help
1242584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1243584fffc8SSebastian Siewior
1244584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1245584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1246584fffc8SSebastian Siewior
1247584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1248584fffc8SSebastian Siewior
1249584fffc8SSebastian Siewior	  See also:
1250584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1251584fffc8SSebastian Siewior
12520b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12530b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1254f21a7c19SAl Viro	depends on X86 && 64BIT
12550b95ec56SJussi Kivilinna	depends on CRYPTO
12561af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1257964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
12580b95ec56SJussi Kivilinna	help
12590b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12600b95ec56SJussi Kivilinna
12610b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12620b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12630b95ec56SJussi Kivilinna
12640b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12650b95ec56SJussi Kivilinna
12660b95ec56SJussi Kivilinna	  See also:
12670b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
12680b95ec56SJussi Kivilinna
1269d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1270d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1271d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1272d9b1d2e7SJussi Kivilinna	depends on CRYPTO
127344893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1274d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
127544893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
127644893bc2SEric Biggers	select CRYPTO_SIMD
1277d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1278d9b1d2e7SJussi Kivilinna	help
1279d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1280d9b1d2e7SJussi Kivilinna
1281d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1282d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1283d9b1d2e7SJussi Kivilinna
1284d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1285d9b1d2e7SJussi Kivilinna
1286d9b1d2e7SJussi Kivilinna	  See also:
1287d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1288d9b1d2e7SJussi Kivilinna
1289f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1290f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1291f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1292f3f935a7SJussi Kivilinna	depends on CRYPTO
1293f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1294f3f935a7SJussi Kivilinna	help
1295f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1296f3f935a7SJussi Kivilinna
1297f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1298f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1299f3f935a7SJussi Kivilinna
1300f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1301f3f935a7SJussi Kivilinna
1302f3f935a7SJussi Kivilinna	  See also:
1303f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1304f3f935a7SJussi Kivilinna
130581658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
130681658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
130781658ad0SDavid S. Miller	depends on SPARC64
130881658ad0SDavid S. Miller	depends on CRYPTO
130981658ad0SDavid S. Miller	select CRYPTO_ALGAPI
131081658ad0SDavid S. Miller	help
131181658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
131281658ad0SDavid S. Miller
131381658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
131481658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
131581658ad0SDavid S. Miller
131681658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
131781658ad0SDavid S. Miller
131881658ad0SDavid S. Miller	  See also:
131981658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
132081658ad0SDavid S. Miller
1321044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1322044ab525SJussi Kivilinna	tristate
1323044ab525SJussi Kivilinna	help
1324044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1325044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1326044ab525SJussi Kivilinna
1327584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1328584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1329584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1330044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1331584fffc8SSebastian Siewior	help
1332584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1333584fffc8SSebastian Siewior	  described in RFC2144.
1334584fffc8SSebastian Siewior
13354d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13364d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13374d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
13381e63183aSEric Biggers	select CRYPTO_BLKCIPHER
13394d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13401e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13411e63183aSEric Biggers	select CRYPTO_SIMD
13424d6d6a2cSJohannes Goetzfried	help
13434d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13444d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13454d6d6a2cSJohannes Goetzfried
13464d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13474d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13484d6d6a2cSJohannes Goetzfried
1349584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1350584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1351584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1352044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1353584fffc8SSebastian Siewior	help
1354584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1355584fffc8SSebastian Siewior	  described in RFC2612.
1356584fffc8SSebastian Siewior
13574ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13584ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13594ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
13604bd96924SEric Biggers	select CRYPTO_BLKCIPHER
13614ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13624bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13634bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
13644bd96924SEric Biggers	select CRYPTO_SIMD
13654ea1277dSJohannes Goetzfried	select CRYPTO_XTS
13664ea1277dSJohannes Goetzfried	help
13674ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
13684ea1277dSJohannes Goetzfried	  described in RFC2612.
13694ea1277dSJohannes Goetzfried
13704ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
13714ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
13724ea1277dSJohannes Goetzfried
1373584fffc8SSebastian Siewiorconfig CRYPTO_DES
1374584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1375584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1376584fffc8SSebastian Siewior	help
1377584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1378584fffc8SSebastian Siewior
1379c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1380c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
138197da37b3SDave Jones	depends on SPARC64
1382c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1383c5aac2dfSDavid S. Miller	select CRYPTO_DES
1384c5aac2dfSDavid S. Miller	help
1385c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1386c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1387c5aac2dfSDavid S. Miller
13886574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
13896574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
13906574e6c6SJussi Kivilinna	depends on X86 && 64BIT
139109c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
13926574e6c6SJussi Kivilinna	select CRYPTO_DES
13936574e6c6SJussi Kivilinna	help
13946574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
13956574e6c6SJussi Kivilinna
13966574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
13976574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
13986574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
13996574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14006574e6c6SJussi Kivilinna
1401584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1402584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1403584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1404584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1405584fffc8SSebastian Siewior	help
1406584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1407584fffc8SSebastian Siewior
1408584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1409584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1410584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1411584fffc8SSebastian Siewior	help
1412584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1413584fffc8SSebastian Siewior
1414584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1415584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1416584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1417584fffc8SSebastian Siewior
1418584fffc8SSebastian Siewior	  See also:
14196d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1420e2ee95b8SHye-Shik Chang
14212407d608STan Swee Hengconfig CRYPTO_SALSA20
14223b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
14232407d608STan Swee Heng	select CRYPTO_BLKCIPHER
14242407d608STan Swee Heng	help
14252407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
14262407d608STan Swee Heng
14272407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14282407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14292407d608STan Swee Heng
14302407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14312407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14321da177e4SLinus Torvalds
1433c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1434aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
1435c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1436c08d0e64SMartin Willi	help
1437aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1438c08d0e64SMartin Willi
1439c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1440c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1441de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
1442c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1443c08d0e64SMartin Willi
1444de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1445de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1446de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1447de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1448de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1449de61d7aeSEric Biggers
1450aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1451aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1452aa762409SEric Biggers	  in some performance-sensitive scenarios.
1453aa762409SEric Biggers
1454c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14553d1e93cdSMartin Willi	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1456c9320b6dSMartin Willi	depends on X86 && 64BIT
1457c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1458c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1459c9320b6dSMartin Willi	help
1460c9320b6dSMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1461c9320b6dSMartin Willi
1462c9320b6dSMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1463c9320b6dSMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1464c9320b6dSMartin Willi	  This is the x86_64 assembler implementation using SIMD instructions.
1465c9320b6dSMartin Willi
1466c9320b6dSMartin Willi	  See also:
1467c9320b6dSMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1468c9320b6dSMartin Willi
1469584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1470584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1471584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1472584fffc8SSebastian Siewior	help
1473584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1474584fffc8SSebastian Siewior
1475584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1476584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1477584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1478584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1479584fffc8SSebastian Siewior
1480584fffc8SSebastian Siewior	  See also:
1481584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1482584fffc8SSebastian Siewior
1483584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1484584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1485584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1486584fffc8SSebastian Siewior	help
1487584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1488584fffc8SSebastian Siewior
1489584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1490584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1491584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1492584fffc8SSebastian Siewior
1493584fffc8SSebastian Siewior	  See also:
1494584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1495584fffc8SSebastian Siewior
1496937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1497937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1498937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1499e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1500596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1501937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1502e0f409dcSEric Biggers	select CRYPTO_SIMD
1503937c30d7SJussi Kivilinna	help
1504937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1505937c30d7SJussi Kivilinna
1506937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1507937c30d7SJussi Kivilinna	  of 8 bits.
1508937c30d7SJussi Kivilinna
15091e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1510937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1511937c30d7SJussi Kivilinna
1512937c30d7SJussi Kivilinna	  See also:
1513937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1514937c30d7SJussi Kivilinna
1515251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1516251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1517251496dbSJussi Kivilinna	depends on X86 && !64BIT
1518e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1519596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1520251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1521e0f409dcSEric Biggers	select CRYPTO_SIMD
1522251496dbSJussi Kivilinna	help
1523251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1524251496dbSJussi Kivilinna
1525251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1526251496dbSJussi Kivilinna	  of 8 bits.
1527251496dbSJussi Kivilinna
1528251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1529251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1530251496dbSJussi Kivilinna
1531251496dbSJussi Kivilinna	  See also:
1532251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1533251496dbSJussi Kivilinna
15347efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15357efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15367efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1537e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
15381d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15397efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1540e16bf974SEric Biggers	select CRYPTO_SIMD
15417efe4076SJohannes Goetzfried	select CRYPTO_XTS
15427efe4076SJohannes Goetzfried	help
15437efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15447efe4076SJohannes Goetzfried
15457efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15467efe4076SJohannes Goetzfried	  of 8 bits.
15477efe4076SJohannes Goetzfried
15487efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15497efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15507efe4076SJohannes Goetzfried
15517efe4076SJohannes Goetzfried	  See also:
15527efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15537efe4076SJohannes Goetzfried
155456d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
155556d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
155656d76c96SJussi Kivilinna	depends on X86 && 64BIT
155756d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
155856d76c96SJussi Kivilinna	help
155956d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
156056d76c96SJussi Kivilinna
156156d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
156256d76c96SJussi Kivilinna	  of 8 bits.
156356d76c96SJussi Kivilinna
156456d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
156556d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
156656d76c96SJussi Kivilinna
156756d76c96SJussi Kivilinna	  See also:
156856d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
156956d76c96SJussi Kivilinna
1570747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1571747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1572747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1573747c8ce4SGilad Ben-Yossef	help
1574747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1575747c8ce4SGilad Ben-Yossef
1576747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1577747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1578747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1579747c8ce4SGilad Ben-Yossef
1580747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1581747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1582747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1583747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1584747c8ce4SGilad Ben-Yossef
1585747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1586747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1587747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1588747c8ce4SGilad Ben-Yossef
1589747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1590747c8ce4SGilad Ben-Yossef
1591747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1592747c8ce4SGilad Ben-Yossef
1593747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1594747c8ce4SGilad Ben-Yossef
1595584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1596584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1597584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1598584fffc8SSebastian Siewior	help
1599584fffc8SSebastian Siewior	  TEA cipher algorithm.
1600584fffc8SSebastian Siewior
1601584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1602584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1603584fffc8SSebastian Siewior	  little memory.
1604584fffc8SSebastian Siewior
1605584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1606584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1607584fffc8SSebastian Siewior	  in the TEA algorithm.
1608584fffc8SSebastian Siewior
1609584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1610584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1611584fffc8SSebastian Siewior
1612584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1613584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1614584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1615584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1616584fffc8SSebastian Siewior	help
1617584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1618584fffc8SSebastian Siewior
1619584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1620584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1621584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1622584fffc8SSebastian Siewior	  bits.
1623584fffc8SSebastian Siewior
1624584fffc8SSebastian Siewior	  See also:
1625584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1626584fffc8SSebastian Siewior
1627584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1628584fffc8SSebastian Siewior	tristate
1629584fffc8SSebastian Siewior	help
1630584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1631584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1632584fffc8SSebastian Siewior
1633584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1634584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1635584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1636584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1637584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1638584fffc8SSebastian Siewior	help
1639584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1640584fffc8SSebastian Siewior
1641584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1642584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1643584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1644584fffc8SSebastian Siewior	  bits.
1645584fffc8SSebastian Siewior
1646584fffc8SSebastian Siewior	  See also:
1647584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1648584fffc8SSebastian Siewior
1649584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1650584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1651584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1652584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1653584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1654584fffc8SSebastian Siewior	help
1655584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1656584fffc8SSebastian Siewior
1657584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1658584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1659584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1660584fffc8SSebastian Siewior	  bits.
1661584fffc8SSebastian Siewior
1662584fffc8SSebastian Siewior	  See also:
1663584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1664584fffc8SSebastian Siewior
16658280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
16668280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1667f21a7c19SAl Viro	depends on X86 && 64BIT
166837992fa4SEric Biggers	select CRYPTO_BLKCIPHER
16698280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
16708280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1671414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16728280daadSJussi Kivilinna	help
16738280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
16748280daadSJussi Kivilinna
16758280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
16768280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
16778280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
16788280daadSJussi Kivilinna	  bits.
16798280daadSJussi Kivilinna
16808280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
16818280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
16828280daadSJussi Kivilinna
16838280daadSJussi Kivilinna	  See also:
16848280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
16858280daadSJussi Kivilinna
1686107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1687107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1688107778b5SJohannes Goetzfried	depends on X86 && 64BIT
16890e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1690a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16910e6ab46dSEric Biggers	select CRYPTO_SIMD
1692107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1693107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1694107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1695107778b5SJohannes Goetzfried	help
1696107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1697107778b5SJohannes Goetzfried
1698107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1699107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1700107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1701107778b5SJohannes Goetzfried	  bits.
1702107778b5SJohannes Goetzfried
1703107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1704107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1705107778b5SJohannes Goetzfried
1706107778b5SJohannes Goetzfried	  See also:
1707107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1708107778b5SJohannes Goetzfried
1709584fffc8SSebastian Siewiorcomment "Compression"
1710584fffc8SSebastian Siewior
17111da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17121da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1713cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1714f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17151da177e4SLinus Torvalds	select ZLIB_INFLATE
17161da177e4SLinus Torvalds	select ZLIB_DEFLATE
17171da177e4SLinus Torvalds	help
17181da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17191da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17201da177e4SLinus Torvalds
17211da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17221da177e4SLinus Torvalds
17230b77abb3SZoltan Sogorconfig CRYPTO_LZO
17240b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17250b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1726ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17270b77abb3SZoltan Sogor	select LZO_COMPRESS
17280b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17290b77abb3SZoltan Sogor	help
17300b77abb3SZoltan Sogor	  This is the LZO algorithm.
17310b77abb3SZoltan Sogor
173235a1fc18SSeth Jenningsconfig CRYPTO_842
173335a1fc18SSeth Jennings	tristate "842 compression algorithm"
17342062c5b6SDan Streetman	select CRYPTO_ALGAPI
17356a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17362062c5b6SDan Streetman	select 842_COMPRESS
17372062c5b6SDan Streetman	select 842_DECOMPRESS
173835a1fc18SSeth Jennings	help
173935a1fc18SSeth Jennings	  This is the 842 algorithm.
174035a1fc18SSeth Jennings
17410ea8530dSChanho Minconfig CRYPTO_LZ4
17420ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17430ea8530dSChanho Min	select CRYPTO_ALGAPI
17448cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17450ea8530dSChanho Min	select LZ4_COMPRESS
17460ea8530dSChanho Min	select LZ4_DECOMPRESS
17470ea8530dSChanho Min	help
17480ea8530dSChanho Min	  This is the LZ4 algorithm.
17490ea8530dSChanho Min
17500ea8530dSChanho Minconfig CRYPTO_LZ4HC
17510ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17520ea8530dSChanho Min	select CRYPTO_ALGAPI
175391d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17540ea8530dSChanho Min	select LZ4HC_COMPRESS
17550ea8530dSChanho Min	select LZ4_DECOMPRESS
17560ea8530dSChanho Min	help
17570ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17580ea8530dSChanho Min
1759d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1760d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1761d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1762d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1763d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1764d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1765d28fc3dbSNick Terrell	help
1766d28fc3dbSNick Terrell	  This is the zstd algorithm.
1767d28fc3dbSNick Terrell
176817f0f4a4SNeil Hormancomment "Random Number Generation"
176917f0f4a4SNeil Horman
177017f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
177117f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
177217f0f4a4SNeil Horman	select CRYPTO_AES
177317f0f4a4SNeil Horman	select CRYPTO_RNG
177417f0f4a4SNeil Horman	help
177517f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
177617f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
17777dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
17787dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
177917f0f4a4SNeil Horman
1780f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1781419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1782419090c6SStephan Mueller	help
1783419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1784419090c6SStephan Mueller	  more of the DRBG types must be selected.
1785419090c6SStephan Mueller
1786f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1787419090c6SStephan Mueller
1788419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1789401e4238SHerbert Xu	bool
1790419090c6SStephan Mueller	default y
1791419090c6SStephan Mueller	select CRYPTO_HMAC
1792826775bbSHerbert Xu	select CRYPTO_SHA256
1793419090c6SStephan Mueller
1794419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1795419090c6SStephan Mueller	bool "Enable Hash DRBG"
1796826775bbSHerbert Xu	select CRYPTO_SHA256
1797419090c6SStephan Mueller	help
1798419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1799419090c6SStephan Mueller
1800419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1801419090c6SStephan Mueller	bool "Enable CTR DRBG"
1802419090c6SStephan Mueller	select CRYPTO_AES
180335591285SStephan Mueller	depends on CRYPTO_CTR
1804419090c6SStephan Mueller	help
1805419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1806419090c6SStephan Mueller
1807f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1808f2c89a10SHerbert Xu	tristate
1809401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1810f2c89a10SHerbert Xu	select CRYPTO_RNG
1811bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1812f2c89a10SHerbert Xu
1813f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1814419090c6SStephan Mueller
1815bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1816bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18172f313e02SArnd Bergmann	select CRYPTO_RNG
1818bb5530e4SStephan Mueller	help
1819bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1820bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1821bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1822bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1823bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1824bb5530e4SStephan Mueller
182503c8efc1SHerbert Xuconfig CRYPTO_USER_API
182603c8efc1SHerbert Xu	tristate
182703c8efc1SHerbert Xu
1828fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1829fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18307451708fSHerbert Xu	depends on NET
1831fe869cdbSHerbert Xu	select CRYPTO_HASH
1832fe869cdbSHerbert Xu	select CRYPTO_USER_API
1833fe869cdbSHerbert Xu	help
1834fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1835fe869cdbSHerbert Xu	  algorithms.
1836fe869cdbSHerbert Xu
18378ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18388ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18397451708fSHerbert Xu	depends on NET
18408ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
18418ff59090SHerbert Xu	select CRYPTO_USER_API
18428ff59090SHerbert Xu	help
18438ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18448ff59090SHerbert Xu	  key cipher algorithms.
18458ff59090SHerbert Xu
18462f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18472f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18482f375538SStephan Mueller	depends on NET
18492f375538SStephan Mueller	select CRYPTO_RNG
18502f375538SStephan Mueller	select CRYPTO_USER_API
18512f375538SStephan Mueller	help
18522f375538SStephan Mueller	  This option enables the user-spaces interface for random
18532f375538SStephan Mueller	  number generator algorithms.
18542f375538SStephan Mueller
1855b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1856b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1857b64a2d95SHerbert Xu	depends on NET
1858b64a2d95SHerbert Xu	select CRYPTO_AEAD
185972548b09SStephan Mueller	select CRYPTO_BLKCIPHER
186072548b09SStephan Mueller	select CRYPTO_NULL
1861b64a2d95SHerbert Xu	select CRYPTO_USER_API
1862b64a2d95SHerbert Xu	help
1863b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1864b64a2d95SHerbert Xu	  cipher algorithms.
1865b64a2d95SHerbert Xu
1866cac5818cSCorentin Labbeconfig CRYPTO_STATS
1867cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1868cac5818cSCorentin Labbe	help
1869cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1870cac5818cSCorentin Labbe	  This will collect:
1871cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1872cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1873cac5818cSCorentin Labbe	  - size and numbers of hash operations
1874cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1875cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1876cac5818cSCorentin Labbe
1877ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1878ee08997fSDmitry Kasatkin	bool
1879ee08997fSDmitry Kasatkin
18801da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
1881964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig
1882cfc411e7SDavid Howellssource certs/Kconfig
18831da177e4SLinus Torvalds
1884cce9e06dSHerbert Xuendif	# if CRYPTO
1885