1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * ldm - Support for Windows Logical Disk Manager (Dynamic Disks) 4 * 5 * Copyright (C) 2001,2002 Richard Russon <ldm@flatcap.org> 6 * Copyright (c) 2001-2012 Anton Altaparmakov 7 * Copyright (C) 2001,2002 Jakob Kemi <jakob.kemi@telia.com> 8 * 9 * Documentation is available at http://www.linux-ntfs.org/doku.php?id=downloads 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/pagemap.h> 14 #include <linux/stringify.h> 15 #include <linux/kernel.h> 16 #include <linux/uuid.h> 17 #include <linux/msdos_partition.h> 18 19 #include "ldm.h" 20 #include "check.h" 21 22 /* 23 * ldm_debug/info/error/crit - Output an error message 24 * @f: A printf format string containing the message 25 * @...: Variables to substitute into @f 26 * 27 * ldm_debug() writes a DEBUG level message to the syslog but only if the 28 * driver was compiled with debug enabled. Otherwise, the call turns into a NOP. 29 */ 30 #ifndef CONFIG_LDM_DEBUG 31 #define ldm_debug(...) do {} while (0) 32 #else 33 #define ldm_debug(f, a...) _ldm_printk (KERN_DEBUG, __func__, f, ##a) 34 #endif 35 36 #define ldm_crit(f, a...) _ldm_printk (KERN_CRIT, __func__, f, ##a) 37 #define ldm_error(f, a...) _ldm_printk (KERN_ERR, __func__, f, ##a) 38 #define ldm_info(f, a...) _ldm_printk (KERN_INFO, __func__, f, ##a) 39 40 static __printf(3, 4) 41 void _ldm_printk(const char *level, const char *function, const char *fmt, ...) 42 { 43 struct va_format vaf; 44 va_list args; 45 46 va_start (args, fmt); 47 48 vaf.fmt = fmt; 49 vaf.va = &args; 50 51 printk("%s%s(): %pV\n", level, function, &vaf); 52 53 va_end(args); 54 } 55 56 /** 57 * ldm_parse_privhead - Read the LDM Database PRIVHEAD structure 58 * @data: Raw database PRIVHEAD structure loaded from the device 59 * @ph: In-memory privhead structure in which to return parsed information 60 * 61 * This parses the LDM database PRIVHEAD structure supplied in @data and 62 * sets up the in-memory privhead structure @ph with the obtained information. 63 * 64 * Return: 'true' @ph contains the PRIVHEAD data 65 * 'false' @ph contents are undefined 66 */ 67 static bool ldm_parse_privhead(const u8 *data, struct privhead *ph) 68 { 69 bool is_vista = false; 70 71 BUG_ON(!data || !ph); 72 if (MAGIC_PRIVHEAD != get_unaligned_be64(data)) { 73 ldm_error("Cannot find PRIVHEAD structure. LDM database is" 74 " corrupt. Aborting."); 75 return false; 76 } 77 ph->ver_major = get_unaligned_be16(data + 0x000C); 78 ph->ver_minor = get_unaligned_be16(data + 0x000E); 79 ph->logical_disk_start = get_unaligned_be64(data + 0x011B); 80 ph->logical_disk_size = get_unaligned_be64(data + 0x0123); 81 ph->config_start = get_unaligned_be64(data + 0x012B); 82 ph->config_size = get_unaligned_be64(data + 0x0133); 83 /* Version 2.11 is Win2k/XP and version 2.12 is Vista. */ 84 if (ph->ver_major == 2 && ph->ver_minor == 12) 85 is_vista = true; 86 if (!is_vista && (ph->ver_major != 2 || ph->ver_minor != 11)) { 87 ldm_error("Expected PRIVHEAD version 2.11 or 2.12, got %d.%d." 88 " Aborting.", ph->ver_major, ph->ver_minor); 89 return false; 90 } 91 ldm_debug("PRIVHEAD version %d.%d (Windows %s).", ph->ver_major, 92 ph->ver_minor, is_vista ? "Vista" : "2000/XP"); 93 if (ph->config_size != LDM_DB_SIZE) { /* 1 MiB in sectors. */ 94 /* Warn the user and continue, carefully. */ 95 ldm_info("Database is normally %u bytes, it claims to " 96 "be %llu bytes.", LDM_DB_SIZE, 97 (unsigned long long)ph->config_size); 98 } 99 if ((ph->logical_disk_size == 0) || (ph->logical_disk_start + 100 ph->logical_disk_size > ph->config_start)) { 101 ldm_error("PRIVHEAD disk size doesn't match real disk size"); 102 return false; 103 } 104 if (uuid_parse(data + 0x0030, &ph->disk_id)) { 105 ldm_error("PRIVHEAD contains an invalid GUID."); 106 return false; 107 } 108 ldm_debug("Parsed PRIVHEAD successfully."); 109 return true; 110 } 111 112 /** 113 * ldm_parse_tocblock - Read the LDM Database TOCBLOCK structure 114 * @data: Raw database TOCBLOCK structure loaded from the device 115 * @toc: In-memory toc structure in which to return parsed information 116 * 117 * This parses the LDM Database TOCBLOCK (table of contents) structure supplied 118 * in @data and sets up the in-memory tocblock structure @toc with the obtained 119 * information. 120 * 121 * N.B. The *_start and *_size values returned in @toc are not range-checked. 122 * 123 * Return: 'true' @toc contains the TOCBLOCK data 124 * 'false' @toc contents are undefined 125 */ 126 static bool ldm_parse_tocblock (const u8 *data, struct tocblock *toc) 127 { 128 BUG_ON (!data || !toc); 129 130 if (MAGIC_TOCBLOCK != get_unaligned_be64(data)) { 131 ldm_crit ("Cannot find TOCBLOCK, database may be corrupt."); 132 return false; 133 } 134 strscpy_pad(toc->bitmap1_name, data + 0x24, sizeof(toc->bitmap1_name)); 135 toc->bitmap1_start = get_unaligned_be64(data + 0x2E); 136 toc->bitmap1_size = get_unaligned_be64(data + 0x36); 137 138 if (strncmp (toc->bitmap1_name, TOC_BITMAP1, 139 sizeof (toc->bitmap1_name)) != 0) { 140 ldm_crit ("TOCBLOCK's first bitmap is '%s', should be '%s'.", 141 TOC_BITMAP1, toc->bitmap1_name); 142 return false; 143 } 144 strscpy_pad(toc->bitmap2_name, data + 0x46, sizeof(toc->bitmap2_name)); 145 toc->bitmap2_start = get_unaligned_be64(data + 0x50); 146 toc->bitmap2_size = get_unaligned_be64(data + 0x58); 147 if (strncmp (toc->bitmap2_name, TOC_BITMAP2, 148 sizeof (toc->bitmap2_name)) != 0) { 149 ldm_crit ("TOCBLOCK's second bitmap is '%s', should be '%s'.", 150 TOC_BITMAP2, toc->bitmap2_name); 151 return false; 152 } 153 ldm_debug ("Parsed TOCBLOCK successfully."); 154 return true; 155 } 156 157 /** 158 * ldm_parse_vmdb - Read the LDM Database VMDB structure 159 * @data: Raw database VMDB structure loaded from the device 160 * @vm: In-memory vmdb structure in which to return parsed information 161 * 162 * This parses the LDM Database VMDB structure supplied in @data and sets up 163 * the in-memory vmdb structure @vm with the obtained information. 164 * 165 * N.B. The *_start, *_size and *_seq values will be range-checked later. 166 * 167 * Return: 'true' @vm contains VMDB info 168 * 'false' @vm contents are undefined 169 */ 170 static bool ldm_parse_vmdb (const u8 *data, struct vmdb *vm) 171 { 172 BUG_ON (!data || !vm); 173 174 if (MAGIC_VMDB != get_unaligned_be32(data)) { 175 ldm_crit ("Cannot find the VMDB, database may be corrupt."); 176 return false; 177 } 178 179 vm->ver_major = get_unaligned_be16(data + 0x12); 180 vm->ver_minor = get_unaligned_be16(data + 0x14); 181 if ((vm->ver_major != 4) || (vm->ver_minor != 10)) { 182 ldm_error ("Expected VMDB version %d.%d, got %d.%d. " 183 "Aborting.", 4, 10, vm->ver_major, vm->ver_minor); 184 return false; 185 } 186 187 vm->vblk_size = get_unaligned_be32(data + 0x08); 188 if (vm->vblk_size == 0) { 189 ldm_error ("Illegal VBLK size"); 190 return false; 191 } 192 193 vm->vblk_offset = get_unaligned_be32(data + 0x0C); 194 vm->last_vblk_seq = get_unaligned_be32(data + 0x04); 195 196 ldm_debug ("Parsed VMDB successfully."); 197 return true; 198 } 199 200 /** 201 * ldm_compare_privheads - Compare two privhead objects 202 * @ph1: First privhead 203 * @ph2: Second privhead 204 * 205 * This compares the two privhead structures @ph1 and @ph2. 206 * 207 * Return: 'true' Identical 208 * 'false' Different 209 */ 210 static bool ldm_compare_privheads (const struct privhead *ph1, 211 const struct privhead *ph2) 212 { 213 BUG_ON (!ph1 || !ph2); 214 215 return ((ph1->ver_major == ph2->ver_major) && 216 (ph1->ver_minor == ph2->ver_minor) && 217 (ph1->logical_disk_start == ph2->logical_disk_start) && 218 (ph1->logical_disk_size == ph2->logical_disk_size) && 219 (ph1->config_start == ph2->config_start) && 220 (ph1->config_size == ph2->config_size) && 221 uuid_equal(&ph1->disk_id, &ph2->disk_id)); 222 } 223 224 /** 225 * ldm_compare_tocblocks - Compare two tocblock objects 226 * @toc1: First toc 227 * @toc2: Second toc 228 * 229 * This compares the two tocblock structures @toc1 and @toc2. 230 * 231 * Return: 'true' Identical 232 * 'false' Different 233 */ 234 static bool ldm_compare_tocblocks (const struct tocblock *toc1, 235 const struct tocblock *toc2) 236 { 237 BUG_ON (!toc1 || !toc2); 238 239 return ((toc1->bitmap1_start == toc2->bitmap1_start) && 240 (toc1->bitmap1_size == toc2->bitmap1_size) && 241 (toc1->bitmap2_start == toc2->bitmap2_start) && 242 (toc1->bitmap2_size == toc2->bitmap2_size) && 243 !strncmp (toc1->bitmap1_name, toc2->bitmap1_name, 244 sizeof (toc1->bitmap1_name)) && 245 !strncmp (toc1->bitmap2_name, toc2->bitmap2_name, 246 sizeof (toc1->bitmap2_name))); 247 } 248 249 /** 250 * ldm_validate_privheads - Compare the primary privhead with its backups 251 * @state: Partition check state including device holding the LDM Database 252 * @ph1: Memory struct to fill with ph contents 253 * 254 * Read and compare all three privheads from disk. 255 * 256 * The privheads on disk show the size and location of the main disk area and 257 * the configuration area (the database). The values are range-checked against 258 * @hd, which contains the real size of the disk. 259 * 260 * Return: 'true' Success 261 * 'false' Error 262 */ 263 static bool ldm_validate_privheads(struct parsed_partitions *state, 264 struct privhead *ph1) 265 { 266 static const int off[3] = { OFF_PRIV1, OFF_PRIV2, OFF_PRIV3 }; 267 struct privhead *ph[3] = { ph1 }; 268 Sector sect; 269 u8 *data; 270 bool result = false; 271 long num_sects; 272 int i; 273 274 BUG_ON (!state || !ph1); 275 276 ph[1] = kmalloc (sizeof (*ph[1]), GFP_KERNEL); 277 ph[2] = kmalloc (sizeof (*ph[2]), GFP_KERNEL); 278 if (!ph[1] || !ph[2]) { 279 ldm_crit ("Out of memory."); 280 goto out; 281 } 282 283 /* off[1 & 2] are relative to ph[0]->config_start */ 284 ph[0]->config_start = 0; 285 286 /* Read and parse privheads */ 287 for (i = 0; i < 3; i++) { 288 data = read_part_sector(state, ph[0]->config_start + off[i], 289 §); 290 if (!data) { 291 ldm_crit ("Disk read failed."); 292 goto out; 293 } 294 result = ldm_parse_privhead (data, ph[i]); 295 put_dev_sector (sect); 296 if (!result) { 297 ldm_error ("Cannot find PRIVHEAD %d.", i+1); /* Log again */ 298 if (i < 2) 299 goto out; /* Already logged */ 300 else 301 break; /* FIXME ignore for now, 3rd PH can fail on odd-sized disks */ 302 } 303 } 304 305 num_sects = get_capacity(state->disk); 306 307 if ((ph[0]->config_start > num_sects) || 308 ((ph[0]->config_start + ph[0]->config_size) > num_sects)) { 309 ldm_crit ("Database extends beyond the end of the disk."); 310 goto out; 311 } 312 313 if ((ph[0]->logical_disk_start > ph[0]->config_start) || 314 ((ph[0]->logical_disk_start + ph[0]->logical_disk_size) 315 > ph[0]->config_start)) { 316 ldm_crit ("Disk and database overlap."); 317 goto out; 318 } 319 320 if (!ldm_compare_privheads (ph[0], ph[1])) { 321 ldm_crit ("Primary and backup PRIVHEADs don't match."); 322 goto out; 323 } 324 /* FIXME ignore this for now 325 if (!ldm_compare_privheads (ph[0], ph[2])) { 326 ldm_crit ("Primary and backup PRIVHEADs don't match."); 327 goto out; 328 }*/ 329 ldm_debug ("Validated PRIVHEADs successfully."); 330 result = true; 331 out: 332 kfree (ph[1]); 333 kfree (ph[2]); 334 return result; 335 } 336 337 /** 338 * ldm_validate_tocblocks - Validate the table of contents and its backups 339 * @state: Partition check state including device holding the LDM Database 340 * @base: Offset, into @state->disk, of the database 341 * @ldb: Cache of the database structures 342 * 343 * Find and compare the four tables of contents of the LDM Database stored on 344 * @state->disk and return the parsed information into @toc1. 345 * 346 * The offsets and sizes of the configs are range-checked against a privhead. 347 * 348 * Return: 'true' @toc1 contains validated TOCBLOCK info 349 * 'false' @toc1 contents are undefined 350 */ 351 static bool ldm_validate_tocblocks(struct parsed_partitions *state, 352 unsigned long base, struct ldmdb *ldb) 353 { 354 static const int off[4] = { OFF_TOCB1, OFF_TOCB2, OFF_TOCB3, OFF_TOCB4}; 355 struct tocblock *tb[4]; 356 struct privhead *ph; 357 Sector sect; 358 u8 *data; 359 int i, nr_tbs; 360 bool result = false; 361 362 BUG_ON(!state || !ldb); 363 ph = &ldb->ph; 364 tb[0] = &ldb->toc; 365 tb[1] = kmalloc_array(3, sizeof(*tb[1]), GFP_KERNEL); 366 if (!tb[1]) { 367 ldm_crit("Out of memory."); 368 goto err; 369 } 370 tb[2] = (struct tocblock*)((u8*)tb[1] + sizeof(*tb[1])); 371 tb[3] = (struct tocblock*)((u8*)tb[2] + sizeof(*tb[2])); 372 /* 373 * Try to read and parse all four TOCBLOCKs. 374 * 375 * Windows Vista LDM v2.12 does not always have all four TOCBLOCKs so 376 * skip any that fail as long as we get at least one valid TOCBLOCK. 377 */ 378 for (nr_tbs = i = 0; i < 4; i++) { 379 data = read_part_sector(state, base + off[i], §); 380 if (!data) { 381 ldm_error("Disk read failed for TOCBLOCK %d.", i); 382 continue; 383 } 384 if (ldm_parse_tocblock(data, tb[nr_tbs])) 385 nr_tbs++; 386 put_dev_sector(sect); 387 } 388 if (!nr_tbs) { 389 ldm_crit("Failed to find a valid TOCBLOCK."); 390 goto err; 391 } 392 /* Range check the TOCBLOCK against a privhead. */ 393 if (((tb[0]->bitmap1_start + tb[0]->bitmap1_size) > ph->config_size) || 394 ((tb[0]->bitmap2_start + tb[0]->bitmap2_size) > 395 ph->config_size)) { 396 ldm_crit("The bitmaps are out of range. Giving up."); 397 goto err; 398 } 399 /* Compare all loaded TOCBLOCKs. */ 400 for (i = 1; i < nr_tbs; i++) { 401 if (!ldm_compare_tocblocks(tb[0], tb[i])) { 402 ldm_crit("TOCBLOCKs 0 and %d do not match.", i); 403 goto err; 404 } 405 } 406 ldm_debug("Validated %d TOCBLOCKs successfully.", nr_tbs); 407 result = true; 408 err: 409 kfree(tb[1]); 410 return result; 411 } 412 413 /** 414 * ldm_validate_vmdb - Read the VMDB and validate it 415 * @state: Partition check state including device holding the LDM Database 416 * @base: Offset, into @bdev, of the database 417 * @ldb: Cache of the database structures 418 * 419 * Find the vmdb of the LDM Database stored on @bdev and return the parsed 420 * information in @ldb. 421 * 422 * Return: 'true' @ldb contains validated VBDB info 423 * 'false' @ldb contents are undefined 424 */ 425 static bool ldm_validate_vmdb(struct parsed_partitions *state, 426 unsigned long base, struct ldmdb *ldb) 427 { 428 Sector sect; 429 u8 *data; 430 bool result = false; 431 struct vmdb *vm; 432 struct tocblock *toc; 433 434 BUG_ON (!state || !ldb); 435 436 vm = &ldb->vm; 437 toc = &ldb->toc; 438 439 data = read_part_sector(state, base + OFF_VMDB, §); 440 if (!data) { 441 ldm_crit ("Disk read failed."); 442 return false; 443 } 444 445 if (!ldm_parse_vmdb (data, vm)) 446 goto out; /* Already logged */ 447 448 /* Are there uncommitted transactions? */ 449 if (get_unaligned_be16(data + 0x10) != 0x01) { 450 ldm_crit ("Database is not in a consistent state. Aborting."); 451 goto out; 452 } 453 454 if (vm->vblk_offset != 512) 455 ldm_info ("VBLKs start at offset 0x%04x.", vm->vblk_offset); 456 457 /* 458 * The last_vblkd_seq can be before the end of the vmdb, just make sure 459 * it is not out of bounds. 460 */ 461 if ((vm->vblk_size * vm->last_vblk_seq) > (toc->bitmap1_size << 9)) { 462 ldm_crit ("VMDB exceeds allowed size specified by TOCBLOCK. " 463 "Database is corrupt. Aborting."); 464 goto out; 465 } 466 467 result = true; 468 out: 469 put_dev_sector (sect); 470 return result; 471 } 472 473 474 /** 475 * ldm_validate_partition_table - Determine whether bdev might be a dynamic disk 476 * @state: Partition check state including device holding the LDM Database 477 * 478 * This function provides a weak test to decide whether the device is a dynamic 479 * disk or not. It looks for an MS-DOS-style partition table containing at 480 * least one partition of type 0x42 (formerly SFS, now used by Windows for 481 * dynamic disks). 482 * 483 * N.B. The only possible error can come from the read_part_sector and that is 484 * only likely to happen if the underlying device is strange. If that IS 485 * the case we should return zero to let someone else try. 486 * 487 * Return: 'true' @state->disk is a dynamic disk 488 * 'false' @state->disk is not a dynamic disk, or an error occurred 489 */ 490 static bool ldm_validate_partition_table(struct parsed_partitions *state) 491 { 492 Sector sect; 493 u8 *data; 494 struct msdos_partition *p; 495 int i; 496 bool result = false; 497 498 BUG_ON(!state); 499 500 data = read_part_sector(state, 0, §); 501 if (!data) { 502 ldm_info ("Disk read failed."); 503 return false; 504 } 505 506 if (*(__le16*) (data + 0x01FE) != cpu_to_le16 (MSDOS_LABEL_MAGIC)) 507 goto out; 508 509 p = (struct msdos_partition *)(data + 0x01BE); 510 for (i = 0; i < 4; i++, p++) 511 if (p->sys_ind == LDM_PARTITION) { 512 result = true; 513 break; 514 } 515 516 if (result) 517 ldm_debug ("Found W2K dynamic disk partition type."); 518 519 out: 520 put_dev_sector (sect); 521 return result; 522 } 523 524 /** 525 * ldm_get_disk_objid - Search a linked list of vblk's for a given Disk Id 526 * @ldb: Cache of the database structures 527 * 528 * The LDM Database contains a list of all partitions on all dynamic disks. 529 * The primary PRIVHEAD, at the beginning of the physical disk, tells us 530 * the GUID of this disk. This function searches for the GUID in a linked 531 * list of vblk's. 532 * 533 * Return: Pointer, A matching vblk was found 534 * NULL, No match, or an error 535 */ 536 static struct vblk * ldm_get_disk_objid (const struct ldmdb *ldb) 537 { 538 struct list_head *item; 539 540 BUG_ON (!ldb); 541 542 list_for_each (item, &ldb->v_disk) { 543 struct vblk *v = list_entry (item, struct vblk, list); 544 if (uuid_equal(&v->vblk.disk.disk_id, &ldb->ph.disk_id)) 545 return v; 546 } 547 548 return NULL; 549 } 550 551 /** 552 * ldm_create_data_partitions - Create data partitions for this device 553 * @pp: List of the partitions parsed so far 554 * @ldb: Cache of the database structures 555 * 556 * The database contains ALL the partitions for ALL disk groups, so we need to 557 * filter out this specific disk. Using the disk's object id, we can find all 558 * the partitions in the database that belong to this disk. 559 * 560 * Add each partition in our database, to the parsed_partitions structure. 561 * 562 * N.B. This function creates the partitions in the order it finds partition 563 * objects in the linked list. 564 * 565 * Return: 'true' Partition created 566 * 'false' Error, probably a range checking problem 567 */ 568 static bool ldm_create_data_partitions (struct parsed_partitions *pp, 569 const struct ldmdb *ldb) 570 { 571 struct list_head *item; 572 struct vblk *vb; 573 struct vblk *disk; 574 struct vblk_part *part; 575 int part_num = 1; 576 577 BUG_ON (!pp || !ldb); 578 579 disk = ldm_get_disk_objid (ldb); 580 if (!disk) { 581 ldm_crit ("Can't find the ID of this disk in the database."); 582 return false; 583 } 584 585 strlcat(pp->pp_buf, " [LDM]", PAGE_SIZE); 586 587 /* Create the data partitions */ 588 list_for_each (item, &ldb->v_part) { 589 vb = list_entry (item, struct vblk, list); 590 part = &vb->vblk.part; 591 592 if (part->disk_id != disk->obj_id) 593 continue; 594 595 put_partition (pp, part_num, ldb->ph.logical_disk_start + 596 part->start, part->size); 597 part_num++; 598 } 599 600 strlcat(pp->pp_buf, "\n", PAGE_SIZE); 601 return true; 602 } 603 604 605 /** 606 * ldm_relative - Calculate the next relative offset 607 * @buffer: Block of data being worked on 608 * @buflen: Size of the block of data 609 * @base: Size of the previous fixed width fields 610 * @offset: Cumulative size of the previous variable-width fields 611 * 612 * Because many of the VBLK fields are variable-width, it's necessary 613 * to calculate each offset based on the previous one and the length 614 * of the field it pointed to. 615 * 616 * Return: -1 Error, the calculated offset exceeded the size of the buffer 617 * n OK, a range-checked offset into buffer 618 */ 619 static int ldm_relative(const u8 *buffer, int buflen, int base, int offset) 620 { 621 622 base += offset; 623 if (!buffer || offset < 0 || base > buflen) { 624 if (!buffer) 625 ldm_error("!buffer"); 626 if (offset < 0) 627 ldm_error("offset (%d) < 0", offset); 628 if (base > buflen) 629 ldm_error("base (%d) > buflen (%d)", base, buflen); 630 return -1; 631 } 632 if (base + buffer[base] >= buflen) { 633 ldm_error("base (%d) + buffer[base] (%d) >= buflen (%d)", base, 634 buffer[base], buflen); 635 return -1; 636 } 637 return buffer[base] + offset + 1; 638 } 639 640 /** 641 * ldm_get_vnum - Convert a variable-width, big endian number, into cpu order 642 * @block: Pointer to the variable-width number to convert 643 * 644 * Large numbers in the LDM Database are often stored in a packed format. Each 645 * number is prefixed by a one byte width marker. All numbers in the database 646 * are stored in big-endian byte order. This function reads one of these 647 * numbers and returns the result 648 * 649 * N.B. This function DOES NOT perform any range checking, though the most 650 * it will read is eight bytes. 651 * 652 * Return: n A number 653 * 0 Zero, or an error occurred 654 */ 655 static u64 ldm_get_vnum (const u8 *block) 656 { 657 u64 tmp = 0; 658 u8 length; 659 660 BUG_ON (!block); 661 662 length = *block++; 663 664 if (length && length <= 8) 665 while (length--) 666 tmp = (tmp << 8) | *block++; 667 else 668 ldm_error ("Illegal length %d.", length); 669 670 return tmp; 671 } 672 673 /** 674 * ldm_get_vstr - Read a length-prefixed string into a buffer 675 * @block: Pointer to the length marker 676 * @buffer: Location to copy string to 677 * @buflen: Size of the output buffer 678 * 679 * Many of the strings in the LDM Database are not NULL terminated. Instead 680 * they are prefixed by a one byte length marker. This function copies one of 681 * these strings into a buffer. 682 * 683 * N.B. This function DOES NOT perform any range checking on the input. 684 * If the buffer is too small, the output will be truncated. 685 * 686 * Return: 0, Error and @buffer contents are undefined 687 * n, String length in characters (excluding NULL) 688 * buflen-1, String was truncated. 689 */ 690 static int ldm_get_vstr (const u8 *block, u8 *buffer, int buflen) 691 { 692 int length; 693 694 BUG_ON (!block || !buffer); 695 696 length = block[0]; 697 if (length >= buflen) { 698 ldm_error ("Truncating string %d -> %d.", length, buflen); 699 length = buflen - 1; 700 } 701 memcpy (buffer, block + 1, length); 702 buffer[length] = 0; 703 return length; 704 } 705 706 707 /** 708 * ldm_parse_cmp3 - Read a raw VBLK Component object into a vblk structure 709 * @buffer: Block of data being worked on 710 * @buflen: Size of the block of data 711 * @vb: In-memory vblk in which to return information 712 * 713 * Read a raw VBLK Component object (version 3) into a vblk structure. 714 * 715 * Return: 'true' @vb contains a Component VBLK 716 * 'false' @vb contents are not defined 717 */ 718 static bool ldm_parse_cmp3 (const u8 *buffer, int buflen, struct vblk *vb) 719 { 720 int r_objid, r_name, r_vstate, r_child, r_parent, r_stripe, r_cols, len; 721 struct vblk_comp *comp; 722 723 BUG_ON (!buffer || !vb); 724 725 r_objid = ldm_relative (buffer, buflen, 0x18, 0); 726 r_name = ldm_relative (buffer, buflen, 0x18, r_objid); 727 r_vstate = ldm_relative (buffer, buflen, 0x18, r_name); 728 r_child = ldm_relative (buffer, buflen, 0x1D, r_vstate); 729 r_parent = ldm_relative (buffer, buflen, 0x2D, r_child); 730 731 if (buffer[0x12] & VBLK_FLAG_COMP_STRIPE) { 732 r_stripe = ldm_relative (buffer, buflen, 0x2E, r_parent); 733 r_cols = ldm_relative (buffer, buflen, 0x2E, r_stripe); 734 len = r_cols; 735 } else { 736 r_stripe = 0; 737 len = r_parent; 738 } 739 if (len < 0) 740 return false; 741 742 len += VBLK_SIZE_CMP3; 743 if (len != get_unaligned_be32(buffer + 0x14)) 744 return false; 745 746 comp = &vb->vblk.comp; 747 ldm_get_vstr (buffer + 0x18 + r_name, comp->state, 748 sizeof (comp->state)); 749 comp->type = buffer[0x18 + r_vstate]; 750 comp->children = ldm_get_vnum (buffer + 0x1D + r_vstate); 751 comp->parent_id = ldm_get_vnum (buffer + 0x2D + r_child); 752 comp->chunksize = r_stripe ? ldm_get_vnum (buffer+r_parent+0x2E) : 0; 753 754 return true; 755 } 756 757 /** 758 * ldm_parse_dgr3 - Read a raw VBLK Disk Group object into a vblk structure 759 * @buffer: Block of data being worked on 760 * @buflen: Size of the block of data 761 * @vb: In-memory vblk in which to return information 762 * 763 * Read a raw VBLK Disk Group object (version 3) into a vblk structure. 764 * 765 * Return: 'true' @vb contains a Disk Group VBLK 766 * 'false' @vb contents are not defined 767 */ 768 static int ldm_parse_dgr3 (const u8 *buffer, int buflen, struct vblk *vb) 769 { 770 int r_objid, r_name, r_diskid, r_id1, r_id2, len; 771 struct vblk_dgrp *dgrp; 772 773 BUG_ON (!buffer || !vb); 774 775 r_objid = ldm_relative (buffer, buflen, 0x18, 0); 776 r_name = ldm_relative (buffer, buflen, 0x18, r_objid); 777 r_diskid = ldm_relative (buffer, buflen, 0x18, r_name); 778 779 if (buffer[0x12] & VBLK_FLAG_DGR3_IDS) { 780 r_id1 = ldm_relative (buffer, buflen, 0x24, r_diskid); 781 r_id2 = ldm_relative (buffer, buflen, 0x24, r_id1); 782 len = r_id2; 783 } else 784 len = r_diskid; 785 if (len < 0) 786 return false; 787 788 len += VBLK_SIZE_DGR3; 789 if (len != get_unaligned_be32(buffer + 0x14)) 790 return false; 791 792 dgrp = &vb->vblk.dgrp; 793 ldm_get_vstr (buffer + 0x18 + r_name, dgrp->disk_id, 794 sizeof (dgrp->disk_id)); 795 return true; 796 } 797 798 /** 799 * ldm_parse_dgr4 - Read a raw VBLK Disk Group object into a vblk structure 800 * @buffer: Block of data being worked on 801 * @buflen: Size of the block of data 802 * @vb: In-memory vblk in which to return information 803 * 804 * Read a raw VBLK Disk Group object (version 4) into a vblk structure. 805 * 806 * Return: 'true' @vb contains a Disk Group VBLK 807 * 'false' @vb contents are not defined 808 */ 809 static bool ldm_parse_dgr4 (const u8 *buffer, int buflen, struct vblk *vb) 810 { 811 char buf[64]; 812 int r_objid, r_name, r_id1, r_id2, len; 813 814 BUG_ON (!buffer || !vb); 815 816 r_objid = ldm_relative (buffer, buflen, 0x18, 0); 817 r_name = ldm_relative (buffer, buflen, 0x18, r_objid); 818 819 if (buffer[0x12] & VBLK_FLAG_DGR4_IDS) { 820 r_id1 = ldm_relative (buffer, buflen, 0x44, r_name); 821 r_id2 = ldm_relative (buffer, buflen, 0x44, r_id1); 822 len = r_id2; 823 } else 824 len = r_name; 825 if (len < 0) 826 return false; 827 828 len += VBLK_SIZE_DGR4; 829 if (len != get_unaligned_be32(buffer + 0x14)) 830 return false; 831 832 ldm_get_vstr (buffer + 0x18 + r_objid, buf, sizeof (buf)); 833 return true; 834 } 835 836 /** 837 * ldm_parse_dsk3 - Read a raw VBLK Disk object into a vblk structure 838 * @buffer: Block of data being worked on 839 * @buflen: Size of the block of data 840 * @vb: In-memory vblk in which to return information 841 * 842 * Read a raw VBLK Disk object (version 3) into a vblk structure. 843 * 844 * Return: 'true' @vb contains a Disk VBLK 845 * 'false' @vb contents are not defined 846 */ 847 static bool ldm_parse_dsk3 (const u8 *buffer, int buflen, struct vblk *vb) 848 { 849 int r_objid, r_name, r_diskid, r_altname, len; 850 struct vblk_disk *disk; 851 852 BUG_ON (!buffer || !vb); 853 854 r_objid = ldm_relative (buffer, buflen, 0x18, 0); 855 r_name = ldm_relative (buffer, buflen, 0x18, r_objid); 856 r_diskid = ldm_relative (buffer, buflen, 0x18, r_name); 857 r_altname = ldm_relative (buffer, buflen, 0x18, r_diskid); 858 len = r_altname; 859 if (len < 0) 860 return false; 861 862 len += VBLK_SIZE_DSK3; 863 if (len != get_unaligned_be32(buffer + 0x14)) 864 return false; 865 866 disk = &vb->vblk.disk; 867 ldm_get_vstr (buffer + 0x18 + r_diskid, disk->alt_name, 868 sizeof (disk->alt_name)); 869 if (uuid_parse(buffer + 0x19 + r_name, &disk->disk_id)) 870 return false; 871 872 return true; 873 } 874 875 /** 876 * ldm_parse_dsk4 - Read a raw VBLK Disk object into a vblk structure 877 * @buffer: Block of data being worked on 878 * @buflen: Size of the block of data 879 * @vb: In-memory vblk in which to return information 880 * 881 * Read a raw VBLK Disk object (version 4) into a vblk structure. 882 * 883 * Return: 'true' @vb contains a Disk VBLK 884 * 'false' @vb contents are not defined 885 */ 886 static bool ldm_parse_dsk4 (const u8 *buffer, int buflen, struct vblk *vb) 887 { 888 int r_objid, r_name, len; 889 struct vblk_disk *disk; 890 891 BUG_ON (!buffer || !vb); 892 893 r_objid = ldm_relative (buffer, buflen, 0x18, 0); 894 r_name = ldm_relative (buffer, buflen, 0x18, r_objid); 895 len = r_name; 896 if (len < 0) 897 return false; 898 899 len += VBLK_SIZE_DSK4; 900 if (len != get_unaligned_be32(buffer + 0x14)) 901 return false; 902 903 disk = &vb->vblk.disk; 904 import_uuid(&disk->disk_id, buffer + 0x18 + r_name); 905 return true; 906 } 907 908 /** 909 * ldm_parse_prt3 - Read a raw VBLK Partition object into a vblk structure 910 * @buffer: Block of data being worked on 911 * @buflen: Size of the block of data 912 * @vb: In-memory vblk in which to return information 913 * 914 * Read a raw VBLK Partition object (version 3) into a vblk structure. 915 * 916 * Return: 'true' @vb contains a Partition VBLK 917 * 'false' @vb contents are not defined 918 */ 919 static bool ldm_parse_prt3(const u8 *buffer, int buflen, struct vblk *vb) 920 { 921 int r_objid, r_name, r_size, r_parent, r_diskid, r_index, len; 922 struct vblk_part *part; 923 924 BUG_ON(!buffer || !vb); 925 r_objid = ldm_relative(buffer, buflen, 0x18, 0); 926 if (r_objid < 0) { 927 ldm_error("r_objid %d < 0", r_objid); 928 return false; 929 } 930 r_name = ldm_relative(buffer, buflen, 0x18, r_objid); 931 if (r_name < 0) { 932 ldm_error("r_name %d < 0", r_name); 933 return false; 934 } 935 r_size = ldm_relative(buffer, buflen, 0x34, r_name); 936 if (r_size < 0) { 937 ldm_error("r_size %d < 0", r_size); 938 return false; 939 } 940 r_parent = ldm_relative(buffer, buflen, 0x34, r_size); 941 if (r_parent < 0) { 942 ldm_error("r_parent %d < 0", r_parent); 943 return false; 944 } 945 r_diskid = ldm_relative(buffer, buflen, 0x34, r_parent); 946 if (r_diskid < 0) { 947 ldm_error("r_diskid %d < 0", r_diskid); 948 return false; 949 } 950 if (buffer[0x12] & VBLK_FLAG_PART_INDEX) { 951 r_index = ldm_relative(buffer, buflen, 0x34, r_diskid); 952 if (r_index < 0) { 953 ldm_error("r_index %d < 0", r_index); 954 return false; 955 } 956 len = r_index; 957 } else 958 len = r_diskid; 959 if (len < 0) { 960 ldm_error("len %d < 0", len); 961 return false; 962 } 963 len += VBLK_SIZE_PRT3; 964 if (len > get_unaligned_be32(buffer + 0x14)) { 965 ldm_error("len %d > BE32(buffer + 0x14) %d", len, 966 get_unaligned_be32(buffer + 0x14)); 967 return false; 968 } 969 part = &vb->vblk.part; 970 part->start = get_unaligned_be64(buffer + 0x24 + r_name); 971 part->volume_offset = get_unaligned_be64(buffer + 0x2C + r_name); 972 part->size = ldm_get_vnum(buffer + 0x34 + r_name); 973 part->parent_id = ldm_get_vnum(buffer + 0x34 + r_size); 974 part->disk_id = ldm_get_vnum(buffer + 0x34 + r_parent); 975 if (vb->flags & VBLK_FLAG_PART_INDEX) 976 part->partnum = buffer[0x35 + r_diskid]; 977 else 978 part->partnum = 0; 979 return true; 980 } 981 982 /** 983 * ldm_parse_vol5 - Read a raw VBLK Volume object into a vblk structure 984 * @buffer: Block of data being worked on 985 * @buflen: Size of the block of data 986 * @vb: In-memory vblk in which to return information 987 * 988 * Read a raw VBLK Volume object (version 5) into a vblk structure. 989 * 990 * Return: 'true' @vb contains a Volume VBLK 991 * 'false' @vb contents are not defined 992 */ 993 static bool ldm_parse_vol5(const u8 *buffer, int buflen, struct vblk *vb) 994 { 995 int r_objid, r_name, r_vtype, r_disable_drive_letter, r_child, r_size; 996 int r_id1, r_id2, r_size2, r_drive, len; 997 struct vblk_volu *volu; 998 999 BUG_ON(!buffer || !vb); 1000 r_objid = ldm_relative(buffer, buflen, 0x18, 0); 1001 if (r_objid < 0) { 1002 ldm_error("r_objid %d < 0", r_objid); 1003 return false; 1004 } 1005 r_name = ldm_relative(buffer, buflen, 0x18, r_objid); 1006 if (r_name < 0) { 1007 ldm_error("r_name %d < 0", r_name); 1008 return false; 1009 } 1010 r_vtype = ldm_relative(buffer, buflen, 0x18, r_name); 1011 if (r_vtype < 0) { 1012 ldm_error("r_vtype %d < 0", r_vtype); 1013 return false; 1014 } 1015 r_disable_drive_letter = ldm_relative(buffer, buflen, 0x18, r_vtype); 1016 if (r_disable_drive_letter < 0) { 1017 ldm_error("r_disable_drive_letter %d < 0", 1018 r_disable_drive_letter); 1019 return false; 1020 } 1021 r_child = ldm_relative(buffer, buflen, 0x2D, r_disable_drive_letter); 1022 if (r_child < 0) { 1023 ldm_error("r_child %d < 0", r_child); 1024 return false; 1025 } 1026 r_size = ldm_relative(buffer, buflen, 0x3D, r_child); 1027 if (r_size < 0) { 1028 ldm_error("r_size %d < 0", r_size); 1029 return false; 1030 } 1031 if (buffer[0x12] & VBLK_FLAG_VOLU_ID1) { 1032 r_id1 = ldm_relative(buffer, buflen, 0x52, r_size); 1033 if (r_id1 < 0) { 1034 ldm_error("r_id1 %d < 0", r_id1); 1035 return false; 1036 } 1037 } else 1038 r_id1 = r_size; 1039 if (buffer[0x12] & VBLK_FLAG_VOLU_ID2) { 1040 r_id2 = ldm_relative(buffer, buflen, 0x52, r_id1); 1041 if (r_id2 < 0) { 1042 ldm_error("r_id2 %d < 0", r_id2); 1043 return false; 1044 } 1045 } else 1046 r_id2 = r_id1; 1047 if (buffer[0x12] & VBLK_FLAG_VOLU_SIZE) { 1048 r_size2 = ldm_relative(buffer, buflen, 0x52, r_id2); 1049 if (r_size2 < 0) { 1050 ldm_error("r_size2 %d < 0", r_size2); 1051 return false; 1052 } 1053 } else 1054 r_size2 = r_id2; 1055 if (buffer[0x12] & VBLK_FLAG_VOLU_DRIVE) { 1056 r_drive = ldm_relative(buffer, buflen, 0x52, r_size2); 1057 if (r_drive < 0) { 1058 ldm_error("r_drive %d < 0", r_drive); 1059 return false; 1060 } 1061 } else 1062 r_drive = r_size2; 1063 len = r_drive; 1064 if (len < 0) { 1065 ldm_error("len %d < 0", len); 1066 return false; 1067 } 1068 len += VBLK_SIZE_VOL5; 1069 if (len > get_unaligned_be32(buffer + 0x14)) { 1070 ldm_error("len %d > BE32(buffer + 0x14) %d", len, 1071 get_unaligned_be32(buffer + 0x14)); 1072 return false; 1073 } 1074 volu = &vb->vblk.volu; 1075 ldm_get_vstr(buffer + 0x18 + r_name, volu->volume_type, 1076 sizeof(volu->volume_type)); 1077 memcpy(volu->volume_state, buffer + 0x18 + r_disable_drive_letter, 1078 sizeof(volu->volume_state)); 1079 volu->size = ldm_get_vnum(buffer + 0x3D + r_child); 1080 volu->partition_type = buffer[0x41 + r_size]; 1081 memcpy(volu->guid, buffer + 0x42 + r_size, sizeof(volu->guid)); 1082 if (buffer[0x12] & VBLK_FLAG_VOLU_DRIVE) { 1083 ldm_get_vstr(buffer + 0x52 + r_size, volu->drive_hint, 1084 sizeof(volu->drive_hint)); 1085 } 1086 return true; 1087 } 1088 1089 /** 1090 * ldm_parse_vblk - Read a raw VBLK object into a vblk structure 1091 * @buf: Block of data being worked on 1092 * @len: Size of the block of data 1093 * @vb: In-memory vblk in which to return information 1094 * 1095 * Read a raw VBLK object into a vblk structure. This function just reads the 1096 * information common to all VBLK types, then delegates the rest of the work to 1097 * helper functions: ldm_parse_*. 1098 * 1099 * Return: 'true' @vb contains a VBLK 1100 * 'false' @vb contents are not defined 1101 */ 1102 static bool ldm_parse_vblk (const u8 *buf, int len, struct vblk *vb) 1103 { 1104 bool result = false; 1105 int r_objid; 1106 1107 BUG_ON (!buf || !vb); 1108 1109 r_objid = ldm_relative (buf, len, 0x18, 0); 1110 if (r_objid < 0) { 1111 ldm_error ("VBLK header is corrupt."); 1112 return false; 1113 } 1114 1115 vb->flags = buf[0x12]; 1116 vb->type = buf[0x13]; 1117 vb->obj_id = ldm_get_vnum (buf + 0x18); 1118 ldm_get_vstr (buf+0x18+r_objid, vb->name, sizeof (vb->name)); 1119 1120 switch (vb->type) { 1121 case VBLK_CMP3: result = ldm_parse_cmp3 (buf, len, vb); break; 1122 case VBLK_DSK3: result = ldm_parse_dsk3 (buf, len, vb); break; 1123 case VBLK_DSK4: result = ldm_parse_dsk4 (buf, len, vb); break; 1124 case VBLK_DGR3: result = ldm_parse_dgr3 (buf, len, vb); break; 1125 case VBLK_DGR4: result = ldm_parse_dgr4 (buf, len, vb); break; 1126 case VBLK_PRT3: result = ldm_parse_prt3 (buf, len, vb); break; 1127 case VBLK_VOL5: result = ldm_parse_vol5 (buf, len, vb); break; 1128 } 1129 1130 if (result) 1131 ldm_debug ("Parsed VBLK 0x%llx (type: 0x%02x) ok.", 1132 (unsigned long long) vb->obj_id, vb->type); 1133 else 1134 ldm_error ("Failed to parse VBLK 0x%llx (type: 0x%02x).", 1135 (unsigned long long) vb->obj_id, vb->type); 1136 1137 return result; 1138 } 1139 1140 1141 /** 1142 * ldm_ldmdb_add - Adds a raw VBLK entry to the ldmdb database 1143 * @data: Raw VBLK to add to the database 1144 * @len: Size of the raw VBLK 1145 * @ldb: Cache of the database structures 1146 * 1147 * The VBLKs are sorted into categories. Partitions are also sorted by offset. 1148 * 1149 * N.B. This function does not check the validity of the VBLKs. 1150 * 1151 * Return: 'true' The VBLK was added 1152 * 'false' An error occurred 1153 */ 1154 static bool ldm_ldmdb_add (u8 *data, int len, struct ldmdb *ldb) 1155 { 1156 struct vblk *vb; 1157 struct list_head *item; 1158 1159 BUG_ON (!data || !ldb); 1160 1161 vb = kmalloc (sizeof (*vb), GFP_KERNEL); 1162 if (!vb) { 1163 ldm_crit ("Out of memory."); 1164 return false; 1165 } 1166 1167 if (!ldm_parse_vblk (data, len, vb)) { 1168 kfree(vb); 1169 return false; /* Already logged */ 1170 } 1171 1172 /* Put vblk into the correct list. */ 1173 switch (vb->type) { 1174 case VBLK_DGR3: 1175 case VBLK_DGR4: 1176 list_add (&vb->list, &ldb->v_dgrp); 1177 break; 1178 case VBLK_DSK3: 1179 case VBLK_DSK4: 1180 list_add (&vb->list, &ldb->v_disk); 1181 break; 1182 case VBLK_VOL5: 1183 list_add (&vb->list, &ldb->v_volu); 1184 break; 1185 case VBLK_CMP3: 1186 list_add (&vb->list, &ldb->v_comp); 1187 break; 1188 case VBLK_PRT3: 1189 /* Sort by the partition's start sector. */ 1190 list_for_each (item, &ldb->v_part) { 1191 struct vblk *v = list_entry (item, struct vblk, list); 1192 if ((v->vblk.part.disk_id == vb->vblk.part.disk_id) && 1193 (v->vblk.part.start > vb->vblk.part.start)) { 1194 list_add_tail (&vb->list, &v->list); 1195 return true; 1196 } 1197 } 1198 list_add_tail (&vb->list, &ldb->v_part); 1199 break; 1200 } 1201 return true; 1202 } 1203 1204 /** 1205 * ldm_frag_add - Add a VBLK fragment to a list 1206 * @data: Raw fragment to be added to the list 1207 * @size: Size of the raw fragment 1208 * @frags: Linked list of VBLK fragments 1209 * 1210 * Fragmented VBLKs may not be consecutive in the database, so they are placed 1211 * in a list so they can be pieced together later. 1212 * 1213 * Return: 'true' Success, the VBLK was added to the list 1214 * 'false' Error, a problem occurred 1215 */ 1216 static bool ldm_frag_add (const u8 *data, int size, struct list_head *frags) 1217 { 1218 struct frag *f; 1219 struct list_head *item; 1220 int rec, num, group; 1221 1222 BUG_ON (!data || !frags); 1223 1224 if (size < 2 * VBLK_SIZE_HEAD) { 1225 ldm_error("Value of size is too small."); 1226 return false; 1227 } 1228 1229 group = get_unaligned_be32(data + 0x08); 1230 rec = get_unaligned_be16(data + 0x0C); 1231 num = get_unaligned_be16(data + 0x0E); 1232 if ((num < 1) || (num > 4)) { 1233 ldm_error ("A VBLK claims to have %d parts.", num); 1234 return false; 1235 } 1236 if (rec >= num) { 1237 ldm_error("REC value (%d) exceeds NUM value (%d)", rec, num); 1238 return false; 1239 } 1240 1241 list_for_each (item, frags) { 1242 f = list_entry (item, struct frag, list); 1243 if (f->group == group) 1244 goto found; 1245 } 1246 1247 f = kmalloc (sizeof (*f) + size*num, GFP_KERNEL); 1248 if (!f) { 1249 ldm_crit ("Out of memory."); 1250 return false; 1251 } 1252 1253 f->group = group; 1254 f->num = num; 1255 f->rec = rec; 1256 f->map = 0xFF << num; 1257 1258 list_add_tail (&f->list, frags); 1259 found: 1260 if (rec >= f->num) { 1261 ldm_error("REC value (%d) exceeds NUM value (%d)", rec, f->num); 1262 return false; 1263 } 1264 if (f->map & (1 << rec)) { 1265 ldm_error ("Duplicate VBLK, part %d.", rec); 1266 f->map &= 0x7F; /* Mark the group as broken */ 1267 return false; 1268 } 1269 f->map |= (1 << rec); 1270 if (!rec) 1271 memcpy(f->data, data, VBLK_SIZE_HEAD); 1272 data += VBLK_SIZE_HEAD; 1273 size -= VBLK_SIZE_HEAD; 1274 memcpy(f->data + VBLK_SIZE_HEAD + rec * size, data, size); 1275 return true; 1276 } 1277 1278 /** 1279 * ldm_frag_free - Free a linked list of VBLK fragments 1280 * @list: Linked list of fragments 1281 * 1282 * Free a linked list of VBLK fragments 1283 * 1284 * Return: none 1285 */ 1286 static void ldm_frag_free (struct list_head *list) 1287 { 1288 struct list_head *item, *tmp; 1289 1290 BUG_ON (!list); 1291 1292 list_for_each_safe (item, tmp, list) 1293 kfree (list_entry (item, struct frag, list)); 1294 } 1295 1296 /** 1297 * ldm_frag_commit - Validate fragmented VBLKs and add them to the database 1298 * @frags: Linked list of VBLK fragments 1299 * @ldb: Cache of the database structures 1300 * 1301 * Now that all the fragmented VBLKs have been collected, they must be added to 1302 * the database for later use. 1303 * 1304 * Return: 'true' All the fragments we added successfully 1305 * 'false' One or more of the fragments we invalid 1306 */ 1307 static bool ldm_frag_commit (struct list_head *frags, struct ldmdb *ldb) 1308 { 1309 struct frag *f; 1310 struct list_head *item; 1311 1312 BUG_ON (!frags || !ldb); 1313 1314 list_for_each (item, frags) { 1315 f = list_entry (item, struct frag, list); 1316 1317 if (f->map != 0xFF) { 1318 ldm_error ("VBLK group %d is incomplete (0x%02x).", 1319 f->group, f->map); 1320 return false; 1321 } 1322 1323 if (!ldm_ldmdb_add (f->data, f->num*ldb->vm.vblk_size, ldb)) 1324 return false; /* Already logged */ 1325 } 1326 return true; 1327 } 1328 1329 /** 1330 * ldm_get_vblks - Read the on-disk database of VBLKs into memory 1331 * @state: Partition check state including device holding the LDM Database 1332 * @base: Offset, into @state->disk, of the database 1333 * @ldb: Cache of the database structures 1334 * 1335 * To use the information from the VBLKs, they need to be read from the disk, 1336 * unpacked and validated. We cache them in @ldb according to their type. 1337 * 1338 * Return: 'true' All the VBLKs were read successfully 1339 * 'false' An error occurred 1340 */ 1341 static bool ldm_get_vblks(struct parsed_partitions *state, unsigned long base, 1342 struct ldmdb *ldb) 1343 { 1344 int size, perbuf, skip, finish, s, v, recs; 1345 u8 *data = NULL; 1346 Sector sect; 1347 bool result = false; 1348 LIST_HEAD (frags); 1349 1350 BUG_ON(!state || !ldb); 1351 1352 size = ldb->vm.vblk_size; 1353 perbuf = 512 / size; 1354 skip = ldb->vm.vblk_offset >> 9; /* Bytes to sectors */ 1355 finish = (size * ldb->vm.last_vblk_seq) >> 9; 1356 1357 for (s = skip; s < finish; s++) { /* For each sector */ 1358 data = read_part_sector(state, base + OFF_VMDB + s, §); 1359 if (!data) { 1360 ldm_crit ("Disk read failed."); 1361 goto out; 1362 } 1363 1364 for (v = 0; v < perbuf; v++, data+=size) { /* For each vblk */ 1365 if (MAGIC_VBLK != get_unaligned_be32(data)) { 1366 ldm_error ("Expected to find a VBLK."); 1367 goto out; 1368 } 1369 1370 recs = get_unaligned_be16(data + 0x0E); /* Number of records */ 1371 if (recs == 1) { 1372 if (!ldm_ldmdb_add (data, size, ldb)) 1373 goto out; /* Already logged */ 1374 } else if (recs > 1) { 1375 if (!ldm_frag_add (data, size, &frags)) 1376 goto out; /* Already logged */ 1377 } 1378 /* else Record is not in use, ignore it. */ 1379 } 1380 put_dev_sector (sect); 1381 data = NULL; 1382 } 1383 1384 result = ldm_frag_commit (&frags, ldb); /* Failures, already logged */ 1385 out: 1386 if (data) 1387 put_dev_sector (sect); 1388 ldm_frag_free (&frags); 1389 1390 return result; 1391 } 1392 1393 /** 1394 * ldm_free_vblks - Free a linked list of vblk's 1395 * @lh: Head of a linked list of struct vblk 1396 * 1397 * Free a list of vblk's and free the memory used to maintain the list. 1398 * 1399 * Return: none 1400 */ 1401 static void ldm_free_vblks (struct list_head *lh) 1402 { 1403 struct list_head *item, *tmp; 1404 1405 BUG_ON (!lh); 1406 1407 list_for_each_safe (item, tmp, lh) 1408 kfree (list_entry (item, struct vblk, list)); 1409 } 1410 1411 1412 /** 1413 * ldm_partition - Find out whether a device is a dynamic disk and handle it 1414 * @state: Partition check state including device holding the LDM Database 1415 * 1416 * This determines whether the device @bdev is a dynamic disk and if so creates 1417 * the partitions necessary in the gendisk structure pointed to by @hd. 1418 * 1419 * We create a dummy device 1, which contains the LDM database, and then create 1420 * each partition described by the LDM database in sequence as devices 2+. For 1421 * example, if the device is hda, we would have: hda1: LDM database, hda2, hda3, 1422 * and so on: the actual data containing partitions. 1423 * 1424 * Return: 1 Success, @state->disk is a dynamic disk and we handled it 1425 * 0 Success, @state->disk is not a dynamic disk 1426 * -1 An error occurred before enough information had been read 1427 * Or @state->disk is a dynamic disk, but it may be corrupted 1428 */ 1429 int ldm_partition(struct parsed_partitions *state) 1430 { 1431 struct ldmdb *ldb; 1432 unsigned long base; 1433 int result = -1; 1434 1435 BUG_ON(!state); 1436 1437 /* Look for signs of a Dynamic Disk */ 1438 if (!ldm_validate_partition_table(state)) 1439 return 0; 1440 1441 ldb = kmalloc (sizeof (*ldb), GFP_KERNEL); 1442 if (!ldb) { 1443 ldm_crit ("Out of memory."); 1444 goto out; 1445 } 1446 1447 /* Parse and check privheads. */ 1448 if (!ldm_validate_privheads(state, &ldb->ph)) 1449 goto out; /* Already logged */ 1450 1451 /* All further references are relative to base (database start). */ 1452 base = ldb->ph.config_start; 1453 1454 /* Parse and check tocs and vmdb. */ 1455 if (!ldm_validate_tocblocks(state, base, ldb) || 1456 !ldm_validate_vmdb(state, base, ldb)) 1457 goto out; /* Already logged */ 1458 1459 /* Initialize vblk lists in ldmdb struct */ 1460 INIT_LIST_HEAD (&ldb->v_dgrp); 1461 INIT_LIST_HEAD (&ldb->v_disk); 1462 INIT_LIST_HEAD (&ldb->v_volu); 1463 INIT_LIST_HEAD (&ldb->v_comp); 1464 INIT_LIST_HEAD (&ldb->v_part); 1465 1466 if (!ldm_get_vblks(state, base, ldb)) { 1467 ldm_crit ("Failed to read the VBLKs from the database."); 1468 goto cleanup; 1469 } 1470 1471 /* Finally, create the data partition devices. */ 1472 if (ldm_create_data_partitions(state, ldb)) { 1473 ldm_debug ("Parsed LDM database successfully."); 1474 result = 1; 1475 } 1476 /* else Already logged */ 1477 1478 cleanup: 1479 ldm_free_vblks (&ldb->v_dgrp); 1480 ldm_free_vblks (&ldb->v_disk); 1481 ldm_free_vblks (&ldb->v_volu); 1482 ldm_free_vblks (&ldb->v_comp); 1483 ldm_free_vblks (&ldb->v_part); 1484 out: 1485 kfree (ldb); 1486 return result; 1487 } 1488