xref: /linux/block/partitions/ldm.c (revision 03f7c1d2a49acd30e38789cd809d3300721e9b0e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * ldm - Support for Windows Logical Disk Manager (Dynamic Disks)
4  *
5  * Copyright (C) 2001,2002 Richard Russon <ldm@flatcap.org>
6  * Copyright (c) 2001-2012 Anton Altaparmakov
7  * Copyright (C) 2001,2002 Jakob Kemi <jakob.kemi@telia.com>
8  *
9  * Documentation is available at http://www.linux-ntfs.org/doku.php?id=downloads
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/pagemap.h>
14 #include <linux/stringify.h>
15 #include <linux/kernel.h>
16 #include <linux/uuid.h>
17 #include <linux/msdos_partition.h>
18 
19 #include "ldm.h"
20 #include "check.h"
21 
22 /*
23  * ldm_debug/info/error/crit - Output an error message
24  * @f:    A printf format string containing the message
25  * @...:  Variables to substitute into @f
26  *
27  * ldm_debug() writes a DEBUG level message to the syslog but only if the
28  * driver was compiled with debug enabled. Otherwise, the call turns into a NOP.
29  */
30 #ifndef CONFIG_LDM_DEBUG
31 #define ldm_debug(...)	do {} while (0)
32 #else
33 #define ldm_debug(f, a...) _ldm_printk (KERN_DEBUG, __func__, f, ##a)
34 #endif
35 
36 #define ldm_crit(f, a...)  _ldm_printk (KERN_CRIT,  __func__, f, ##a)
37 #define ldm_error(f, a...) _ldm_printk (KERN_ERR,   __func__, f, ##a)
38 #define ldm_info(f, a...)  _ldm_printk (KERN_INFO,  __func__, f, ##a)
39 
40 static __printf(3, 4)
41 void _ldm_printk(const char *level, const char *function, const char *fmt, ...)
42 {
43 	struct va_format vaf;
44 	va_list args;
45 
46 	va_start (args, fmt);
47 
48 	vaf.fmt = fmt;
49 	vaf.va = &args;
50 
51 	printk("%s%s(): %pV\n", level, function, &vaf);
52 
53 	va_end(args);
54 }
55 
56 /**
57  * ldm_parse_privhead - Read the LDM Database PRIVHEAD structure
58  * @data:  Raw database PRIVHEAD structure loaded from the device
59  * @ph:    In-memory privhead structure in which to return parsed information
60  *
61  * This parses the LDM database PRIVHEAD structure supplied in @data and
62  * sets up the in-memory privhead structure @ph with the obtained information.
63  *
64  * Return:  'true'   @ph contains the PRIVHEAD data
65  *          'false'  @ph contents are undefined
66  */
67 static bool ldm_parse_privhead(const u8 *data, struct privhead *ph)
68 {
69 	bool is_vista = false;
70 
71 	BUG_ON(!data || !ph);
72 	if (MAGIC_PRIVHEAD != get_unaligned_be64(data)) {
73 		ldm_error("Cannot find PRIVHEAD structure. LDM database is"
74 			" corrupt. Aborting.");
75 		return false;
76 	}
77 	ph->ver_major = get_unaligned_be16(data + 0x000C);
78 	ph->ver_minor = get_unaligned_be16(data + 0x000E);
79 	ph->logical_disk_start = get_unaligned_be64(data + 0x011B);
80 	ph->logical_disk_size = get_unaligned_be64(data + 0x0123);
81 	ph->config_start = get_unaligned_be64(data + 0x012B);
82 	ph->config_size = get_unaligned_be64(data + 0x0133);
83 	/* Version 2.11 is Win2k/XP and version 2.12 is Vista. */
84 	if (ph->ver_major == 2 && ph->ver_minor == 12)
85 		is_vista = true;
86 	if (!is_vista && (ph->ver_major != 2 || ph->ver_minor != 11)) {
87 		ldm_error("Expected PRIVHEAD version 2.11 or 2.12, got %d.%d."
88 			" Aborting.", ph->ver_major, ph->ver_minor);
89 		return false;
90 	}
91 	ldm_debug("PRIVHEAD version %d.%d (Windows %s).", ph->ver_major,
92 			ph->ver_minor, is_vista ? "Vista" : "2000/XP");
93 	if (ph->config_size != LDM_DB_SIZE) {	/* 1 MiB in sectors. */
94 		/* Warn the user and continue, carefully. */
95 		ldm_info("Database is normally %u bytes, it claims to "
96 			"be %llu bytes.", LDM_DB_SIZE,
97 			(unsigned long long)ph->config_size);
98 	}
99 	if ((ph->logical_disk_size == 0) || (ph->logical_disk_start +
100 			ph->logical_disk_size > ph->config_start)) {
101 		ldm_error("PRIVHEAD disk size doesn't match real disk size");
102 		return false;
103 	}
104 	if (uuid_parse(data + 0x0030, &ph->disk_id)) {
105 		ldm_error("PRIVHEAD contains an invalid GUID.");
106 		return false;
107 	}
108 	ldm_debug("Parsed PRIVHEAD successfully.");
109 	return true;
110 }
111 
112 /**
113  * ldm_parse_tocblock - Read the LDM Database TOCBLOCK structure
114  * @data:  Raw database TOCBLOCK structure loaded from the device
115  * @toc:   In-memory toc structure in which to return parsed information
116  *
117  * This parses the LDM Database TOCBLOCK (table of contents) structure supplied
118  * in @data and sets up the in-memory tocblock structure @toc with the obtained
119  * information.
120  *
121  * N.B.  The *_start and *_size values returned in @toc are not range-checked.
122  *
123  * Return:  'true'   @toc contains the TOCBLOCK data
124  *          'false'  @toc contents are undefined
125  */
126 static bool ldm_parse_tocblock (const u8 *data, struct tocblock *toc)
127 {
128 	BUG_ON (!data || !toc);
129 
130 	if (MAGIC_TOCBLOCK != get_unaligned_be64(data)) {
131 		ldm_crit ("Cannot find TOCBLOCK, database may be corrupt.");
132 		return false;
133 	}
134 	strncpy (toc->bitmap1_name, data + 0x24, sizeof (toc->bitmap1_name));
135 	toc->bitmap1_name[sizeof (toc->bitmap1_name) - 1] = 0;
136 	toc->bitmap1_start = get_unaligned_be64(data + 0x2E);
137 	toc->bitmap1_size  = get_unaligned_be64(data + 0x36);
138 
139 	if (strncmp (toc->bitmap1_name, TOC_BITMAP1,
140 			sizeof (toc->bitmap1_name)) != 0) {
141 		ldm_crit ("TOCBLOCK's first bitmap is '%s', should be '%s'.",
142 				TOC_BITMAP1, toc->bitmap1_name);
143 		return false;
144 	}
145 	strncpy (toc->bitmap2_name, data + 0x46, sizeof (toc->bitmap2_name));
146 	toc->bitmap2_name[sizeof (toc->bitmap2_name) - 1] = 0;
147 	toc->bitmap2_start = get_unaligned_be64(data + 0x50);
148 	toc->bitmap2_size  = get_unaligned_be64(data + 0x58);
149 	if (strncmp (toc->bitmap2_name, TOC_BITMAP2,
150 			sizeof (toc->bitmap2_name)) != 0) {
151 		ldm_crit ("TOCBLOCK's second bitmap is '%s', should be '%s'.",
152 				TOC_BITMAP2, toc->bitmap2_name);
153 		return false;
154 	}
155 	ldm_debug ("Parsed TOCBLOCK successfully.");
156 	return true;
157 }
158 
159 /**
160  * ldm_parse_vmdb - Read the LDM Database VMDB structure
161  * @data:  Raw database VMDB structure loaded from the device
162  * @vm:    In-memory vmdb structure in which to return parsed information
163  *
164  * This parses the LDM Database VMDB structure supplied in @data and sets up
165  * the in-memory vmdb structure @vm with the obtained information.
166  *
167  * N.B.  The *_start, *_size and *_seq values will be range-checked later.
168  *
169  * Return:  'true'   @vm contains VMDB info
170  *          'false'  @vm contents are undefined
171  */
172 static bool ldm_parse_vmdb (const u8 *data, struct vmdb *vm)
173 {
174 	BUG_ON (!data || !vm);
175 
176 	if (MAGIC_VMDB != get_unaligned_be32(data)) {
177 		ldm_crit ("Cannot find the VMDB, database may be corrupt.");
178 		return false;
179 	}
180 
181 	vm->ver_major = get_unaligned_be16(data + 0x12);
182 	vm->ver_minor = get_unaligned_be16(data + 0x14);
183 	if ((vm->ver_major != 4) || (vm->ver_minor != 10)) {
184 		ldm_error ("Expected VMDB version %d.%d, got %d.%d. "
185 			"Aborting.", 4, 10, vm->ver_major, vm->ver_minor);
186 		return false;
187 	}
188 
189 	vm->vblk_size     = get_unaligned_be32(data + 0x08);
190 	if (vm->vblk_size == 0) {
191 		ldm_error ("Illegal VBLK size");
192 		return false;
193 	}
194 
195 	vm->vblk_offset   = get_unaligned_be32(data + 0x0C);
196 	vm->last_vblk_seq = get_unaligned_be32(data + 0x04);
197 
198 	ldm_debug ("Parsed VMDB successfully.");
199 	return true;
200 }
201 
202 /**
203  * ldm_compare_privheads - Compare two privhead objects
204  * @ph1:  First privhead
205  * @ph2:  Second privhead
206  *
207  * This compares the two privhead structures @ph1 and @ph2.
208  *
209  * Return:  'true'   Identical
210  *          'false'  Different
211  */
212 static bool ldm_compare_privheads (const struct privhead *ph1,
213 				   const struct privhead *ph2)
214 {
215 	BUG_ON (!ph1 || !ph2);
216 
217 	return ((ph1->ver_major          == ph2->ver_major)		&&
218 		(ph1->ver_minor          == ph2->ver_minor)		&&
219 		(ph1->logical_disk_start == ph2->logical_disk_start)	&&
220 		(ph1->logical_disk_size  == ph2->logical_disk_size)	&&
221 		(ph1->config_start       == ph2->config_start)		&&
222 		(ph1->config_size        == ph2->config_size)		&&
223 		uuid_equal(&ph1->disk_id, &ph2->disk_id));
224 }
225 
226 /**
227  * ldm_compare_tocblocks - Compare two tocblock objects
228  * @toc1:  First toc
229  * @toc2:  Second toc
230  *
231  * This compares the two tocblock structures @toc1 and @toc2.
232  *
233  * Return:  'true'   Identical
234  *          'false'  Different
235  */
236 static bool ldm_compare_tocblocks (const struct tocblock *toc1,
237 				   const struct tocblock *toc2)
238 {
239 	BUG_ON (!toc1 || !toc2);
240 
241 	return ((toc1->bitmap1_start == toc2->bitmap1_start)	&&
242 		(toc1->bitmap1_size  == toc2->bitmap1_size)	&&
243 		(toc1->bitmap2_start == toc2->bitmap2_start)	&&
244 		(toc1->bitmap2_size  == toc2->bitmap2_size)	&&
245 		!strncmp (toc1->bitmap1_name, toc2->bitmap1_name,
246 			sizeof (toc1->bitmap1_name))		&&
247 		!strncmp (toc1->bitmap2_name, toc2->bitmap2_name,
248 			sizeof (toc1->bitmap2_name)));
249 }
250 
251 /**
252  * ldm_validate_privheads - Compare the primary privhead with its backups
253  * @state: Partition check state including device holding the LDM Database
254  * @ph1:   Memory struct to fill with ph contents
255  *
256  * Read and compare all three privheads from disk.
257  *
258  * The privheads on disk show the size and location of the main disk area and
259  * the configuration area (the database).  The values are range-checked against
260  * @hd, which contains the real size of the disk.
261  *
262  * Return:  'true'   Success
263  *          'false'  Error
264  */
265 static bool ldm_validate_privheads(struct parsed_partitions *state,
266 				   struct privhead *ph1)
267 {
268 	static const int off[3] = { OFF_PRIV1, OFF_PRIV2, OFF_PRIV3 };
269 	struct privhead *ph[3] = { ph1 };
270 	Sector sect;
271 	u8 *data;
272 	bool result = false;
273 	long num_sects;
274 	int i;
275 
276 	BUG_ON (!state || !ph1);
277 
278 	ph[1] = kmalloc (sizeof (*ph[1]), GFP_KERNEL);
279 	ph[2] = kmalloc (sizeof (*ph[2]), GFP_KERNEL);
280 	if (!ph[1] || !ph[2]) {
281 		ldm_crit ("Out of memory.");
282 		goto out;
283 	}
284 
285 	/* off[1 & 2] are relative to ph[0]->config_start */
286 	ph[0]->config_start = 0;
287 
288 	/* Read and parse privheads */
289 	for (i = 0; i < 3; i++) {
290 		data = read_part_sector(state, ph[0]->config_start + off[i],
291 					&sect);
292 		if (!data) {
293 			ldm_crit ("Disk read failed.");
294 			goto out;
295 		}
296 		result = ldm_parse_privhead (data, ph[i]);
297 		put_dev_sector (sect);
298 		if (!result) {
299 			ldm_error ("Cannot find PRIVHEAD %d.", i+1); /* Log again */
300 			if (i < 2)
301 				goto out;	/* Already logged */
302 			else
303 				break;	/* FIXME ignore for now, 3rd PH can fail on odd-sized disks */
304 		}
305 	}
306 
307 	num_sects = get_capacity(state->disk);
308 
309 	if ((ph[0]->config_start > num_sects) ||
310 	   ((ph[0]->config_start + ph[0]->config_size) > num_sects)) {
311 		ldm_crit ("Database extends beyond the end of the disk.");
312 		goto out;
313 	}
314 
315 	if ((ph[0]->logical_disk_start > ph[0]->config_start) ||
316 	   ((ph[0]->logical_disk_start + ph[0]->logical_disk_size)
317 		    > ph[0]->config_start)) {
318 		ldm_crit ("Disk and database overlap.");
319 		goto out;
320 	}
321 
322 	if (!ldm_compare_privheads (ph[0], ph[1])) {
323 		ldm_crit ("Primary and backup PRIVHEADs don't match.");
324 		goto out;
325 	}
326 	/* FIXME ignore this for now
327 	if (!ldm_compare_privheads (ph[0], ph[2])) {
328 		ldm_crit ("Primary and backup PRIVHEADs don't match.");
329 		goto out;
330 	}*/
331 	ldm_debug ("Validated PRIVHEADs successfully.");
332 	result = true;
333 out:
334 	kfree (ph[1]);
335 	kfree (ph[2]);
336 	return result;
337 }
338 
339 /**
340  * ldm_validate_tocblocks - Validate the table of contents and its backups
341  * @state: Partition check state including device holding the LDM Database
342  * @base:  Offset, into @state->disk, of the database
343  * @ldb:   Cache of the database structures
344  *
345  * Find and compare the four tables of contents of the LDM Database stored on
346  * @state->disk and return the parsed information into @toc1.
347  *
348  * The offsets and sizes of the configs are range-checked against a privhead.
349  *
350  * Return:  'true'   @toc1 contains validated TOCBLOCK info
351  *          'false'  @toc1 contents are undefined
352  */
353 static bool ldm_validate_tocblocks(struct parsed_partitions *state,
354 				   unsigned long base, struct ldmdb *ldb)
355 {
356 	static const int off[4] = { OFF_TOCB1, OFF_TOCB2, OFF_TOCB3, OFF_TOCB4};
357 	struct tocblock *tb[4];
358 	struct privhead *ph;
359 	Sector sect;
360 	u8 *data;
361 	int i, nr_tbs;
362 	bool result = false;
363 
364 	BUG_ON(!state || !ldb);
365 	ph = &ldb->ph;
366 	tb[0] = &ldb->toc;
367 	tb[1] = kmalloc_array(3, sizeof(*tb[1]), GFP_KERNEL);
368 	if (!tb[1]) {
369 		ldm_crit("Out of memory.");
370 		goto err;
371 	}
372 	tb[2] = (struct tocblock*)((u8*)tb[1] + sizeof(*tb[1]));
373 	tb[3] = (struct tocblock*)((u8*)tb[2] + sizeof(*tb[2]));
374 	/*
375 	 * Try to read and parse all four TOCBLOCKs.
376 	 *
377 	 * Windows Vista LDM v2.12 does not always have all four TOCBLOCKs so
378 	 * skip any that fail as long as we get at least one valid TOCBLOCK.
379 	 */
380 	for (nr_tbs = i = 0; i < 4; i++) {
381 		data = read_part_sector(state, base + off[i], &sect);
382 		if (!data) {
383 			ldm_error("Disk read failed for TOCBLOCK %d.", i);
384 			continue;
385 		}
386 		if (ldm_parse_tocblock(data, tb[nr_tbs]))
387 			nr_tbs++;
388 		put_dev_sector(sect);
389 	}
390 	if (!nr_tbs) {
391 		ldm_crit("Failed to find a valid TOCBLOCK.");
392 		goto err;
393 	}
394 	/* Range check the TOCBLOCK against a privhead. */
395 	if (((tb[0]->bitmap1_start + tb[0]->bitmap1_size) > ph->config_size) ||
396 			((tb[0]->bitmap2_start + tb[0]->bitmap2_size) >
397 			ph->config_size)) {
398 		ldm_crit("The bitmaps are out of range.  Giving up.");
399 		goto err;
400 	}
401 	/* Compare all loaded TOCBLOCKs. */
402 	for (i = 1; i < nr_tbs; i++) {
403 		if (!ldm_compare_tocblocks(tb[0], tb[i])) {
404 			ldm_crit("TOCBLOCKs 0 and %d do not match.", i);
405 			goto err;
406 		}
407 	}
408 	ldm_debug("Validated %d TOCBLOCKs successfully.", nr_tbs);
409 	result = true;
410 err:
411 	kfree(tb[1]);
412 	return result;
413 }
414 
415 /**
416  * ldm_validate_vmdb - Read the VMDB and validate it
417  * @state: Partition check state including device holding the LDM Database
418  * @base:  Offset, into @bdev, of the database
419  * @ldb:   Cache of the database structures
420  *
421  * Find the vmdb of the LDM Database stored on @bdev and return the parsed
422  * information in @ldb.
423  *
424  * Return:  'true'   @ldb contains validated VBDB info
425  *          'false'  @ldb contents are undefined
426  */
427 static bool ldm_validate_vmdb(struct parsed_partitions *state,
428 			      unsigned long base, struct ldmdb *ldb)
429 {
430 	Sector sect;
431 	u8 *data;
432 	bool result = false;
433 	struct vmdb *vm;
434 	struct tocblock *toc;
435 
436 	BUG_ON (!state || !ldb);
437 
438 	vm  = &ldb->vm;
439 	toc = &ldb->toc;
440 
441 	data = read_part_sector(state, base + OFF_VMDB, &sect);
442 	if (!data) {
443 		ldm_crit ("Disk read failed.");
444 		return false;
445 	}
446 
447 	if (!ldm_parse_vmdb (data, vm))
448 		goto out;				/* Already logged */
449 
450 	/* Are there uncommitted transactions? */
451 	if (get_unaligned_be16(data + 0x10) != 0x01) {
452 		ldm_crit ("Database is not in a consistent state.  Aborting.");
453 		goto out;
454 	}
455 
456 	if (vm->vblk_offset != 512)
457 		ldm_info ("VBLKs start at offset 0x%04x.", vm->vblk_offset);
458 
459 	/*
460 	 * The last_vblkd_seq can be before the end of the vmdb, just make sure
461 	 * it is not out of bounds.
462 	 */
463 	if ((vm->vblk_size * vm->last_vblk_seq) > (toc->bitmap1_size << 9)) {
464 		ldm_crit ("VMDB exceeds allowed size specified by TOCBLOCK.  "
465 				"Database is corrupt.  Aborting.");
466 		goto out;
467 	}
468 
469 	result = true;
470 out:
471 	put_dev_sector (sect);
472 	return result;
473 }
474 
475 
476 /**
477  * ldm_validate_partition_table - Determine whether bdev might be a dynamic disk
478  * @state: Partition check state including device holding the LDM Database
479  *
480  * This function provides a weak test to decide whether the device is a dynamic
481  * disk or not.  It looks for an MS-DOS-style partition table containing at
482  * least one partition of type 0x42 (formerly SFS, now used by Windows for
483  * dynamic disks).
484  *
485  * N.B.  The only possible error can come from the read_part_sector and that is
486  *       only likely to happen if the underlying device is strange.  If that IS
487  *       the case we should return zero to let someone else try.
488  *
489  * Return:  'true'   @state->disk is a dynamic disk
490  *          'false'  @state->disk is not a dynamic disk, or an error occurred
491  */
492 static bool ldm_validate_partition_table(struct parsed_partitions *state)
493 {
494 	Sector sect;
495 	u8 *data;
496 	struct msdos_partition *p;
497 	int i;
498 	bool result = false;
499 
500 	BUG_ON(!state);
501 
502 	data = read_part_sector(state, 0, &sect);
503 	if (!data) {
504 		ldm_info ("Disk read failed.");
505 		return false;
506 	}
507 
508 	if (*(__le16*) (data + 0x01FE) != cpu_to_le16 (MSDOS_LABEL_MAGIC))
509 		goto out;
510 
511 	p = (struct msdos_partition *)(data + 0x01BE);
512 	for (i = 0; i < 4; i++, p++)
513 		if (p->sys_ind == LDM_PARTITION) {
514 			result = true;
515 			break;
516 		}
517 
518 	if (result)
519 		ldm_debug ("Found W2K dynamic disk partition type.");
520 
521 out:
522 	put_dev_sector (sect);
523 	return result;
524 }
525 
526 /**
527  * ldm_get_disk_objid - Search a linked list of vblk's for a given Disk Id
528  * @ldb:  Cache of the database structures
529  *
530  * The LDM Database contains a list of all partitions on all dynamic disks.
531  * The primary PRIVHEAD, at the beginning of the physical disk, tells us
532  * the GUID of this disk.  This function searches for the GUID in a linked
533  * list of vblk's.
534  *
535  * Return:  Pointer, A matching vblk was found
536  *          NULL,    No match, or an error
537  */
538 static struct vblk * ldm_get_disk_objid (const struct ldmdb *ldb)
539 {
540 	struct list_head *item;
541 
542 	BUG_ON (!ldb);
543 
544 	list_for_each (item, &ldb->v_disk) {
545 		struct vblk *v = list_entry (item, struct vblk, list);
546 		if (uuid_equal(&v->vblk.disk.disk_id, &ldb->ph.disk_id))
547 			return v;
548 	}
549 
550 	return NULL;
551 }
552 
553 /**
554  * ldm_create_data_partitions - Create data partitions for this device
555  * @pp:   List of the partitions parsed so far
556  * @ldb:  Cache of the database structures
557  *
558  * The database contains ALL the partitions for ALL disk groups, so we need to
559  * filter out this specific disk. Using the disk's object id, we can find all
560  * the partitions in the database that belong to this disk.
561  *
562  * Add each partition in our database, to the parsed_partitions structure.
563  *
564  * N.B.  This function creates the partitions in the order it finds partition
565  *       objects in the linked list.
566  *
567  * Return:  'true'   Partition created
568  *          'false'  Error, probably a range checking problem
569  */
570 static bool ldm_create_data_partitions (struct parsed_partitions *pp,
571 					const struct ldmdb *ldb)
572 {
573 	struct list_head *item;
574 	struct vblk *vb;
575 	struct vblk *disk;
576 	struct vblk_part *part;
577 	int part_num = 1;
578 
579 	BUG_ON (!pp || !ldb);
580 
581 	disk = ldm_get_disk_objid (ldb);
582 	if (!disk) {
583 		ldm_crit ("Can't find the ID of this disk in the database.");
584 		return false;
585 	}
586 
587 	strlcat(pp->pp_buf, " [LDM]", PAGE_SIZE);
588 
589 	/* Create the data partitions */
590 	list_for_each (item, &ldb->v_part) {
591 		vb = list_entry (item, struct vblk, list);
592 		part = &vb->vblk.part;
593 
594 		if (part->disk_id != disk->obj_id)
595 			continue;
596 
597 		put_partition (pp, part_num, ldb->ph.logical_disk_start +
598 				part->start, part->size);
599 		part_num++;
600 	}
601 
602 	strlcat(pp->pp_buf, "\n", PAGE_SIZE);
603 	return true;
604 }
605 
606 
607 /**
608  * ldm_relative - Calculate the next relative offset
609  * @buffer:  Block of data being worked on
610  * @buflen:  Size of the block of data
611  * @base:    Size of the previous fixed width fields
612  * @offset:  Cumulative size of the previous variable-width fields
613  *
614  * Because many of the VBLK fields are variable-width, it's necessary
615  * to calculate each offset based on the previous one and the length
616  * of the field it pointed to.
617  *
618  * Return:  -1 Error, the calculated offset exceeded the size of the buffer
619  *           n OK, a range-checked offset into buffer
620  */
621 static int ldm_relative(const u8 *buffer, int buflen, int base, int offset)
622 {
623 
624 	base += offset;
625 	if (!buffer || offset < 0 || base > buflen) {
626 		if (!buffer)
627 			ldm_error("!buffer");
628 		if (offset < 0)
629 			ldm_error("offset (%d) < 0", offset);
630 		if (base > buflen)
631 			ldm_error("base (%d) > buflen (%d)", base, buflen);
632 		return -1;
633 	}
634 	if (base + buffer[base] >= buflen) {
635 		ldm_error("base (%d) + buffer[base] (%d) >= buflen (%d)", base,
636 				buffer[base], buflen);
637 		return -1;
638 	}
639 	return buffer[base] + offset + 1;
640 }
641 
642 /**
643  * ldm_get_vnum - Convert a variable-width, big endian number, into cpu order
644  * @block:  Pointer to the variable-width number to convert
645  *
646  * Large numbers in the LDM Database are often stored in a packed format.  Each
647  * number is prefixed by a one byte width marker.  All numbers in the database
648  * are stored in big-endian byte order.  This function reads one of these
649  * numbers and returns the result
650  *
651  * N.B.  This function DOES NOT perform any range checking, though the most
652  *       it will read is eight bytes.
653  *
654  * Return:  n A number
655  *          0 Zero, or an error occurred
656  */
657 static u64 ldm_get_vnum (const u8 *block)
658 {
659 	u64 tmp = 0;
660 	u8 length;
661 
662 	BUG_ON (!block);
663 
664 	length = *block++;
665 
666 	if (length && length <= 8)
667 		while (length--)
668 			tmp = (tmp << 8) | *block++;
669 	else
670 		ldm_error ("Illegal length %d.", length);
671 
672 	return tmp;
673 }
674 
675 /**
676  * ldm_get_vstr - Read a length-prefixed string into a buffer
677  * @block:   Pointer to the length marker
678  * @buffer:  Location to copy string to
679  * @buflen:  Size of the output buffer
680  *
681  * Many of the strings in the LDM Database are not NULL terminated.  Instead
682  * they are prefixed by a one byte length marker.  This function copies one of
683  * these strings into a buffer.
684  *
685  * N.B.  This function DOES NOT perform any range checking on the input.
686  *       If the buffer is too small, the output will be truncated.
687  *
688  * Return:  0, Error and @buffer contents are undefined
689  *          n, String length in characters (excluding NULL)
690  *          buflen-1, String was truncated.
691  */
692 static int ldm_get_vstr (const u8 *block, u8 *buffer, int buflen)
693 {
694 	int length;
695 
696 	BUG_ON (!block || !buffer);
697 
698 	length = block[0];
699 	if (length >= buflen) {
700 		ldm_error ("Truncating string %d -> %d.", length, buflen);
701 		length = buflen - 1;
702 	}
703 	memcpy (buffer, block + 1, length);
704 	buffer[length] = 0;
705 	return length;
706 }
707 
708 
709 /**
710  * ldm_parse_cmp3 - Read a raw VBLK Component object into a vblk structure
711  * @buffer:  Block of data being worked on
712  * @buflen:  Size of the block of data
713  * @vb:      In-memory vblk in which to return information
714  *
715  * Read a raw VBLK Component object (version 3) into a vblk structure.
716  *
717  * Return:  'true'   @vb contains a Component VBLK
718  *          'false'  @vb contents are not defined
719  */
720 static bool ldm_parse_cmp3 (const u8 *buffer, int buflen, struct vblk *vb)
721 {
722 	int r_objid, r_name, r_vstate, r_child, r_parent, r_stripe, r_cols, len;
723 	struct vblk_comp *comp;
724 
725 	BUG_ON (!buffer || !vb);
726 
727 	r_objid  = ldm_relative (buffer, buflen, 0x18, 0);
728 	r_name   = ldm_relative (buffer, buflen, 0x18, r_objid);
729 	r_vstate = ldm_relative (buffer, buflen, 0x18, r_name);
730 	r_child  = ldm_relative (buffer, buflen, 0x1D, r_vstate);
731 	r_parent = ldm_relative (buffer, buflen, 0x2D, r_child);
732 
733 	if (buffer[0x12] & VBLK_FLAG_COMP_STRIPE) {
734 		r_stripe = ldm_relative (buffer, buflen, 0x2E, r_parent);
735 		r_cols   = ldm_relative (buffer, buflen, 0x2E, r_stripe);
736 		len = r_cols;
737 	} else {
738 		r_stripe = 0;
739 		len = r_parent;
740 	}
741 	if (len < 0)
742 		return false;
743 
744 	len += VBLK_SIZE_CMP3;
745 	if (len != get_unaligned_be32(buffer + 0x14))
746 		return false;
747 
748 	comp = &vb->vblk.comp;
749 	ldm_get_vstr (buffer + 0x18 + r_name, comp->state,
750 		sizeof (comp->state));
751 	comp->type      = buffer[0x18 + r_vstate];
752 	comp->children  = ldm_get_vnum (buffer + 0x1D + r_vstate);
753 	comp->parent_id = ldm_get_vnum (buffer + 0x2D + r_child);
754 	comp->chunksize = r_stripe ? ldm_get_vnum (buffer+r_parent+0x2E) : 0;
755 
756 	return true;
757 }
758 
759 /**
760  * ldm_parse_dgr3 - Read a raw VBLK Disk Group object into a vblk structure
761  * @buffer:  Block of data being worked on
762  * @buflen:  Size of the block of data
763  * @vb:      In-memory vblk in which to return information
764  *
765  * Read a raw VBLK Disk Group object (version 3) into a vblk structure.
766  *
767  * Return:  'true'   @vb contains a Disk Group VBLK
768  *          'false'  @vb contents are not defined
769  */
770 static int ldm_parse_dgr3 (const u8 *buffer, int buflen, struct vblk *vb)
771 {
772 	int r_objid, r_name, r_diskid, r_id1, r_id2, len;
773 	struct vblk_dgrp *dgrp;
774 
775 	BUG_ON (!buffer || !vb);
776 
777 	r_objid  = ldm_relative (buffer, buflen, 0x18, 0);
778 	r_name   = ldm_relative (buffer, buflen, 0x18, r_objid);
779 	r_diskid = ldm_relative (buffer, buflen, 0x18, r_name);
780 
781 	if (buffer[0x12] & VBLK_FLAG_DGR3_IDS) {
782 		r_id1 = ldm_relative (buffer, buflen, 0x24, r_diskid);
783 		r_id2 = ldm_relative (buffer, buflen, 0x24, r_id1);
784 		len = r_id2;
785 	} else
786 		len = r_diskid;
787 	if (len < 0)
788 		return false;
789 
790 	len += VBLK_SIZE_DGR3;
791 	if (len != get_unaligned_be32(buffer + 0x14))
792 		return false;
793 
794 	dgrp = &vb->vblk.dgrp;
795 	ldm_get_vstr (buffer + 0x18 + r_name, dgrp->disk_id,
796 		sizeof (dgrp->disk_id));
797 	return true;
798 }
799 
800 /**
801  * ldm_parse_dgr4 - Read a raw VBLK Disk Group object into a vblk structure
802  * @buffer:  Block of data being worked on
803  * @buflen:  Size of the block of data
804  * @vb:      In-memory vblk in which to return information
805  *
806  * Read a raw VBLK Disk Group object (version 4) into a vblk structure.
807  *
808  * Return:  'true'   @vb contains a Disk Group VBLK
809  *          'false'  @vb contents are not defined
810  */
811 static bool ldm_parse_dgr4 (const u8 *buffer, int buflen, struct vblk *vb)
812 {
813 	char buf[64];
814 	int r_objid, r_name, r_id1, r_id2, len;
815 
816 	BUG_ON (!buffer || !vb);
817 
818 	r_objid  = ldm_relative (buffer, buflen, 0x18, 0);
819 	r_name   = ldm_relative (buffer, buflen, 0x18, r_objid);
820 
821 	if (buffer[0x12] & VBLK_FLAG_DGR4_IDS) {
822 		r_id1 = ldm_relative (buffer, buflen, 0x44, r_name);
823 		r_id2 = ldm_relative (buffer, buflen, 0x44, r_id1);
824 		len = r_id2;
825 	} else
826 		len = r_name;
827 	if (len < 0)
828 		return false;
829 
830 	len += VBLK_SIZE_DGR4;
831 	if (len != get_unaligned_be32(buffer + 0x14))
832 		return false;
833 
834 	ldm_get_vstr (buffer + 0x18 + r_objid, buf, sizeof (buf));
835 	return true;
836 }
837 
838 /**
839  * ldm_parse_dsk3 - Read a raw VBLK Disk object into a vblk structure
840  * @buffer:  Block of data being worked on
841  * @buflen:  Size of the block of data
842  * @vb:      In-memory vblk in which to return information
843  *
844  * Read a raw VBLK Disk object (version 3) into a vblk structure.
845  *
846  * Return:  'true'   @vb contains a Disk VBLK
847  *          'false'  @vb contents are not defined
848  */
849 static bool ldm_parse_dsk3 (const u8 *buffer, int buflen, struct vblk *vb)
850 {
851 	int r_objid, r_name, r_diskid, r_altname, len;
852 	struct vblk_disk *disk;
853 
854 	BUG_ON (!buffer || !vb);
855 
856 	r_objid   = ldm_relative (buffer, buflen, 0x18, 0);
857 	r_name    = ldm_relative (buffer, buflen, 0x18, r_objid);
858 	r_diskid  = ldm_relative (buffer, buflen, 0x18, r_name);
859 	r_altname = ldm_relative (buffer, buflen, 0x18, r_diskid);
860 	len = r_altname;
861 	if (len < 0)
862 		return false;
863 
864 	len += VBLK_SIZE_DSK3;
865 	if (len != get_unaligned_be32(buffer + 0x14))
866 		return false;
867 
868 	disk = &vb->vblk.disk;
869 	ldm_get_vstr (buffer + 0x18 + r_diskid, disk->alt_name,
870 		sizeof (disk->alt_name));
871 	if (uuid_parse(buffer + 0x19 + r_name, &disk->disk_id))
872 		return false;
873 
874 	return true;
875 }
876 
877 /**
878  * ldm_parse_dsk4 - Read a raw VBLK Disk object into a vblk structure
879  * @buffer:  Block of data being worked on
880  * @buflen:  Size of the block of data
881  * @vb:      In-memory vblk in which to return information
882  *
883  * Read a raw VBLK Disk object (version 4) into a vblk structure.
884  *
885  * Return:  'true'   @vb contains a Disk VBLK
886  *          'false'  @vb contents are not defined
887  */
888 static bool ldm_parse_dsk4 (const u8 *buffer, int buflen, struct vblk *vb)
889 {
890 	int r_objid, r_name, len;
891 	struct vblk_disk *disk;
892 
893 	BUG_ON (!buffer || !vb);
894 
895 	r_objid = ldm_relative (buffer, buflen, 0x18, 0);
896 	r_name  = ldm_relative (buffer, buflen, 0x18, r_objid);
897 	len     = r_name;
898 	if (len < 0)
899 		return false;
900 
901 	len += VBLK_SIZE_DSK4;
902 	if (len != get_unaligned_be32(buffer + 0x14))
903 		return false;
904 
905 	disk = &vb->vblk.disk;
906 	import_uuid(&disk->disk_id, buffer + 0x18 + r_name);
907 	return true;
908 }
909 
910 /**
911  * ldm_parse_prt3 - Read a raw VBLK Partition object into a vblk structure
912  * @buffer:  Block of data being worked on
913  * @buflen:  Size of the block of data
914  * @vb:      In-memory vblk in which to return information
915  *
916  * Read a raw VBLK Partition object (version 3) into a vblk structure.
917  *
918  * Return:  'true'   @vb contains a Partition VBLK
919  *          'false'  @vb contents are not defined
920  */
921 static bool ldm_parse_prt3(const u8 *buffer, int buflen, struct vblk *vb)
922 {
923 	int r_objid, r_name, r_size, r_parent, r_diskid, r_index, len;
924 	struct vblk_part *part;
925 
926 	BUG_ON(!buffer || !vb);
927 	r_objid = ldm_relative(buffer, buflen, 0x18, 0);
928 	if (r_objid < 0) {
929 		ldm_error("r_objid %d < 0", r_objid);
930 		return false;
931 	}
932 	r_name = ldm_relative(buffer, buflen, 0x18, r_objid);
933 	if (r_name < 0) {
934 		ldm_error("r_name %d < 0", r_name);
935 		return false;
936 	}
937 	r_size = ldm_relative(buffer, buflen, 0x34, r_name);
938 	if (r_size < 0) {
939 		ldm_error("r_size %d < 0", r_size);
940 		return false;
941 	}
942 	r_parent = ldm_relative(buffer, buflen, 0x34, r_size);
943 	if (r_parent < 0) {
944 		ldm_error("r_parent %d < 0", r_parent);
945 		return false;
946 	}
947 	r_diskid = ldm_relative(buffer, buflen, 0x34, r_parent);
948 	if (r_diskid < 0) {
949 		ldm_error("r_diskid %d < 0", r_diskid);
950 		return false;
951 	}
952 	if (buffer[0x12] & VBLK_FLAG_PART_INDEX) {
953 		r_index = ldm_relative(buffer, buflen, 0x34, r_diskid);
954 		if (r_index < 0) {
955 			ldm_error("r_index %d < 0", r_index);
956 			return false;
957 		}
958 		len = r_index;
959 	} else
960 		len = r_diskid;
961 	if (len < 0) {
962 		ldm_error("len %d < 0", len);
963 		return false;
964 	}
965 	len += VBLK_SIZE_PRT3;
966 	if (len > get_unaligned_be32(buffer + 0x14)) {
967 		ldm_error("len %d > BE32(buffer + 0x14) %d", len,
968 				get_unaligned_be32(buffer + 0x14));
969 		return false;
970 	}
971 	part = &vb->vblk.part;
972 	part->start = get_unaligned_be64(buffer + 0x24 + r_name);
973 	part->volume_offset = get_unaligned_be64(buffer + 0x2C + r_name);
974 	part->size = ldm_get_vnum(buffer + 0x34 + r_name);
975 	part->parent_id = ldm_get_vnum(buffer + 0x34 + r_size);
976 	part->disk_id = ldm_get_vnum(buffer + 0x34 + r_parent);
977 	if (vb->flags & VBLK_FLAG_PART_INDEX)
978 		part->partnum = buffer[0x35 + r_diskid];
979 	else
980 		part->partnum = 0;
981 	return true;
982 }
983 
984 /**
985  * ldm_parse_vol5 - Read a raw VBLK Volume object into a vblk structure
986  * @buffer:  Block of data being worked on
987  * @buflen:  Size of the block of data
988  * @vb:      In-memory vblk in which to return information
989  *
990  * Read a raw VBLK Volume object (version 5) into a vblk structure.
991  *
992  * Return:  'true'   @vb contains a Volume VBLK
993  *          'false'  @vb contents are not defined
994  */
995 static bool ldm_parse_vol5(const u8 *buffer, int buflen, struct vblk *vb)
996 {
997 	int r_objid, r_name, r_vtype, r_disable_drive_letter, r_child, r_size;
998 	int r_id1, r_id2, r_size2, r_drive, len;
999 	struct vblk_volu *volu;
1000 
1001 	BUG_ON(!buffer || !vb);
1002 	r_objid = ldm_relative(buffer, buflen, 0x18, 0);
1003 	if (r_objid < 0) {
1004 		ldm_error("r_objid %d < 0", r_objid);
1005 		return false;
1006 	}
1007 	r_name = ldm_relative(buffer, buflen, 0x18, r_objid);
1008 	if (r_name < 0) {
1009 		ldm_error("r_name %d < 0", r_name);
1010 		return false;
1011 	}
1012 	r_vtype = ldm_relative(buffer, buflen, 0x18, r_name);
1013 	if (r_vtype < 0) {
1014 		ldm_error("r_vtype %d < 0", r_vtype);
1015 		return false;
1016 	}
1017 	r_disable_drive_letter = ldm_relative(buffer, buflen, 0x18, r_vtype);
1018 	if (r_disable_drive_letter < 0) {
1019 		ldm_error("r_disable_drive_letter %d < 0",
1020 				r_disable_drive_letter);
1021 		return false;
1022 	}
1023 	r_child = ldm_relative(buffer, buflen, 0x2D, r_disable_drive_letter);
1024 	if (r_child < 0) {
1025 		ldm_error("r_child %d < 0", r_child);
1026 		return false;
1027 	}
1028 	r_size = ldm_relative(buffer, buflen, 0x3D, r_child);
1029 	if (r_size < 0) {
1030 		ldm_error("r_size %d < 0", r_size);
1031 		return false;
1032 	}
1033 	if (buffer[0x12] & VBLK_FLAG_VOLU_ID1) {
1034 		r_id1 = ldm_relative(buffer, buflen, 0x52, r_size);
1035 		if (r_id1 < 0) {
1036 			ldm_error("r_id1 %d < 0", r_id1);
1037 			return false;
1038 		}
1039 	} else
1040 		r_id1 = r_size;
1041 	if (buffer[0x12] & VBLK_FLAG_VOLU_ID2) {
1042 		r_id2 = ldm_relative(buffer, buflen, 0x52, r_id1);
1043 		if (r_id2 < 0) {
1044 			ldm_error("r_id2 %d < 0", r_id2);
1045 			return false;
1046 		}
1047 	} else
1048 		r_id2 = r_id1;
1049 	if (buffer[0x12] & VBLK_FLAG_VOLU_SIZE) {
1050 		r_size2 = ldm_relative(buffer, buflen, 0x52, r_id2);
1051 		if (r_size2 < 0) {
1052 			ldm_error("r_size2 %d < 0", r_size2);
1053 			return false;
1054 		}
1055 	} else
1056 		r_size2 = r_id2;
1057 	if (buffer[0x12] & VBLK_FLAG_VOLU_DRIVE) {
1058 		r_drive = ldm_relative(buffer, buflen, 0x52, r_size2);
1059 		if (r_drive < 0) {
1060 			ldm_error("r_drive %d < 0", r_drive);
1061 			return false;
1062 		}
1063 	} else
1064 		r_drive = r_size2;
1065 	len = r_drive;
1066 	if (len < 0) {
1067 		ldm_error("len %d < 0", len);
1068 		return false;
1069 	}
1070 	len += VBLK_SIZE_VOL5;
1071 	if (len > get_unaligned_be32(buffer + 0x14)) {
1072 		ldm_error("len %d > BE32(buffer + 0x14) %d", len,
1073 				get_unaligned_be32(buffer + 0x14));
1074 		return false;
1075 	}
1076 	volu = &vb->vblk.volu;
1077 	ldm_get_vstr(buffer + 0x18 + r_name, volu->volume_type,
1078 			sizeof(volu->volume_type));
1079 	memcpy(volu->volume_state, buffer + 0x18 + r_disable_drive_letter,
1080 			sizeof(volu->volume_state));
1081 	volu->size = ldm_get_vnum(buffer + 0x3D + r_child);
1082 	volu->partition_type = buffer[0x41 + r_size];
1083 	memcpy(volu->guid, buffer + 0x42 + r_size, sizeof(volu->guid));
1084 	if (buffer[0x12] & VBLK_FLAG_VOLU_DRIVE) {
1085 		ldm_get_vstr(buffer + 0x52 + r_size, volu->drive_hint,
1086 				sizeof(volu->drive_hint));
1087 	}
1088 	return true;
1089 }
1090 
1091 /**
1092  * ldm_parse_vblk - Read a raw VBLK object into a vblk structure
1093  * @buf:  Block of data being worked on
1094  * @len:  Size of the block of data
1095  * @vb:   In-memory vblk in which to return information
1096  *
1097  * Read a raw VBLK object into a vblk structure.  This function just reads the
1098  * information common to all VBLK types, then delegates the rest of the work to
1099  * helper functions: ldm_parse_*.
1100  *
1101  * Return:  'true'   @vb contains a VBLK
1102  *          'false'  @vb contents are not defined
1103  */
1104 static bool ldm_parse_vblk (const u8 *buf, int len, struct vblk *vb)
1105 {
1106 	bool result = false;
1107 	int r_objid;
1108 
1109 	BUG_ON (!buf || !vb);
1110 
1111 	r_objid = ldm_relative (buf, len, 0x18, 0);
1112 	if (r_objid < 0) {
1113 		ldm_error ("VBLK header is corrupt.");
1114 		return false;
1115 	}
1116 
1117 	vb->flags  = buf[0x12];
1118 	vb->type   = buf[0x13];
1119 	vb->obj_id = ldm_get_vnum (buf + 0x18);
1120 	ldm_get_vstr (buf+0x18+r_objid, vb->name, sizeof (vb->name));
1121 
1122 	switch (vb->type) {
1123 		case VBLK_CMP3:  result = ldm_parse_cmp3 (buf, len, vb); break;
1124 		case VBLK_DSK3:  result = ldm_parse_dsk3 (buf, len, vb); break;
1125 		case VBLK_DSK4:  result = ldm_parse_dsk4 (buf, len, vb); break;
1126 		case VBLK_DGR3:  result = ldm_parse_dgr3 (buf, len, vb); break;
1127 		case VBLK_DGR4:  result = ldm_parse_dgr4 (buf, len, vb); break;
1128 		case VBLK_PRT3:  result = ldm_parse_prt3 (buf, len, vb); break;
1129 		case VBLK_VOL5:  result = ldm_parse_vol5 (buf, len, vb); break;
1130 	}
1131 
1132 	if (result)
1133 		ldm_debug ("Parsed VBLK 0x%llx (type: 0x%02x) ok.",
1134 			 (unsigned long long) vb->obj_id, vb->type);
1135 	else
1136 		ldm_error ("Failed to parse VBLK 0x%llx (type: 0x%02x).",
1137 			(unsigned long long) vb->obj_id, vb->type);
1138 
1139 	return result;
1140 }
1141 
1142 
1143 /**
1144  * ldm_ldmdb_add - Adds a raw VBLK entry to the ldmdb database
1145  * @data:  Raw VBLK to add to the database
1146  * @len:   Size of the raw VBLK
1147  * @ldb:   Cache of the database structures
1148  *
1149  * The VBLKs are sorted into categories.  Partitions are also sorted by offset.
1150  *
1151  * N.B.  This function does not check the validity of the VBLKs.
1152  *
1153  * Return:  'true'   The VBLK was added
1154  *          'false'  An error occurred
1155  */
1156 static bool ldm_ldmdb_add (u8 *data, int len, struct ldmdb *ldb)
1157 {
1158 	struct vblk *vb;
1159 	struct list_head *item;
1160 
1161 	BUG_ON (!data || !ldb);
1162 
1163 	vb = kmalloc (sizeof (*vb), GFP_KERNEL);
1164 	if (!vb) {
1165 		ldm_crit ("Out of memory.");
1166 		return false;
1167 	}
1168 
1169 	if (!ldm_parse_vblk (data, len, vb)) {
1170 		kfree(vb);
1171 		return false;			/* Already logged */
1172 	}
1173 
1174 	/* Put vblk into the correct list. */
1175 	switch (vb->type) {
1176 	case VBLK_DGR3:
1177 	case VBLK_DGR4:
1178 		list_add (&vb->list, &ldb->v_dgrp);
1179 		break;
1180 	case VBLK_DSK3:
1181 	case VBLK_DSK4:
1182 		list_add (&vb->list, &ldb->v_disk);
1183 		break;
1184 	case VBLK_VOL5:
1185 		list_add (&vb->list, &ldb->v_volu);
1186 		break;
1187 	case VBLK_CMP3:
1188 		list_add (&vb->list, &ldb->v_comp);
1189 		break;
1190 	case VBLK_PRT3:
1191 		/* Sort by the partition's start sector. */
1192 		list_for_each (item, &ldb->v_part) {
1193 			struct vblk *v = list_entry (item, struct vblk, list);
1194 			if ((v->vblk.part.disk_id == vb->vblk.part.disk_id) &&
1195 			    (v->vblk.part.start > vb->vblk.part.start)) {
1196 				list_add_tail (&vb->list, &v->list);
1197 				return true;
1198 			}
1199 		}
1200 		list_add_tail (&vb->list, &ldb->v_part);
1201 		break;
1202 	}
1203 	return true;
1204 }
1205 
1206 /**
1207  * ldm_frag_add - Add a VBLK fragment to a list
1208  * @data:   Raw fragment to be added to the list
1209  * @size:   Size of the raw fragment
1210  * @frags:  Linked list of VBLK fragments
1211  *
1212  * Fragmented VBLKs may not be consecutive in the database, so they are placed
1213  * in a list so they can be pieced together later.
1214  *
1215  * Return:  'true'   Success, the VBLK was added to the list
1216  *          'false'  Error, a problem occurred
1217  */
1218 static bool ldm_frag_add (const u8 *data, int size, struct list_head *frags)
1219 {
1220 	struct frag *f;
1221 	struct list_head *item;
1222 	int rec, num, group;
1223 
1224 	BUG_ON (!data || !frags);
1225 
1226 	if (size < 2 * VBLK_SIZE_HEAD) {
1227 		ldm_error("Value of size is too small.");
1228 		return false;
1229 	}
1230 
1231 	group = get_unaligned_be32(data + 0x08);
1232 	rec   = get_unaligned_be16(data + 0x0C);
1233 	num   = get_unaligned_be16(data + 0x0E);
1234 	if ((num < 1) || (num > 4)) {
1235 		ldm_error ("A VBLK claims to have %d parts.", num);
1236 		return false;
1237 	}
1238 	if (rec >= num) {
1239 		ldm_error("REC value (%d) exceeds NUM value (%d)", rec, num);
1240 		return false;
1241 	}
1242 
1243 	list_for_each (item, frags) {
1244 		f = list_entry (item, struct frag, list);
1245 		if (f->group == group)
1246 			goto found;
1247 	}
1248 
1249 	f = kmalloc (sizeof (*f) + size*num, GFP_KERNEL);
1250 	if (!f) {
1251 		ldm_crit ("Out of memory.");
1252 		return false;
1253 	}
1254 
1255 	f->group = group;
1256 	f->num   = num;
1257 	f->rec   = rec;
1258 	f->map   = 0xFF << num;
1259 
1260 	list_add_tail (&f->list, frags);
1261 found:
1262 	if (rec >= f->num) {
1263 		ldm_error("REC value (%d) exceeds NUM value (%d)", rec, f->num);
1264 		return false;
1265 	}
1266 	if (f->map & (1 << rec)) {
1267 		ldm_error ("Duplicate VBLK, part %d.", rec);
1268 		f->map &= 0x7F;			/* Mark the group as broken */
1269 		return false;
1270 	}
1271 	f->map |= (1 << rec);
1272 	if (!rec)
1273 		memcpy(f->data, data, VBLK_SIZE_HEAD);
1274 	data += VBLK_SIZE_HEAD;
1275 	size -= VBLK_SIZE_HEAD;
1276 	memcpy(f->data + VBLK_SIZE_HEAD + rec * size, data, size);
1277 	return true;
1278 }
1279 
1280 /**
1281  * ldm_frag_free - Free a linked list of VBLK fragments
1282  * @list:  Linked list of fragments
1283  *
1284  * Free a linked list of VBLK fragments
1285  *
1286  * Return:  none
1287  */
1288 static void ldm_frag_free (struct list_head *list)
1289 {
1290 	struct list_head *item, *tmp;
1291 
1292 	BUG_ON (!list);
1293 
1294 	list_for_each_safe (item, tmp, list)
1295 		kfree (list_entry (item, struct frag, list));
1296 }
1297 
1298 /**
1299  * ldm_frag_commit - Validate fragmented VBLKs and add them to the database
1300  * @frags:  Linked list of VBLK fragments
1301  * @ldb:    Cache of the database structures
1302  *
1303  * Now that all the fragmented VBLKs have been collected, they must be added to
1304  * the database for later use.
1305  *
1306  * Return:  'true'   All the fragments we added successfully
1307  *          'false'  One or more of the fragments we invalid
1308  */
1309 static bool ldm_frag_commit (struct list_head *frags, struct ldmdb *ldb)
1310 {
1311 	struct frag *f;
1312 	struct list_head *item;
1313 
1314 	BUG_ON (!frags || !ldb);
1315 
1316 	list_for_each (item, frags) {
1317 		f = list_entry (item, struct frag, list);
1318 
1319 		if (f->map != 0xFF) {
1320 			ldm_error ("VBLK group %d is incomplete (0x%02x).",
1321 				f->group, f->map);
1322 			return false;
1323 		}
1324 
1325 		if (!ldm_ldmdb_add (f->data, f->num*ldb->vm.vblk_size, ldb))
1326 			return false;		/* Already logged */
1327 	}
1328 	return true;
1329 }
1330 
1331 /**
1332  * ldm_get_vblks - Read the on-disk database of VBLKs into memory
1333  * @state: Partition check state including device holding the LDM Database
1334  * @base:  Offset, into @state->disk, of the database
1335  * @ldb:   Cache of the database structures
1336  *
1337  * To use the information from the VBLKs, they need to be read from the disk,
1338  * unpacked and validated.  We cache them in @ldb according to their type.
1339  *
1340  * Return:  'true'   All the VBLKs were read successfully
1341  *          'false'  An error occurred
1342  */
1343 static bool ldm_get_vblks(struct parsed_partitions *state, unsigned long base,
1344 			  struct ldmdb *ldb)
1345 {
1346 	int size, perbuf, skip, finish, s, v, recs;
1347 	u8 *data = NULL;
1348 	Sector sect;
1349 	bool result = false;
1350 	LIST_HEAD (frags);
1351 
1352 	BUG_ON(!state || !ldb);
1353 
1354 	size   = ldb->vm.vblk_size;
1355 	perbuf = 512 / size;
1356 	skip   = ldb->vm.vblk_offset >> 9;		/* Bytes to sectors */
1357 	finish = (size * ldb->vm.last_vblk_seq) >> 9;
1358 
1359 	for (s = skip; s < finish; s++) {		/* For each sector */
1360 		data = read_part_sector(state, base + OFF_VMDB + s, &sect);
1361 		if (!data) {
1362 			ldm_crit ("Disk read failed.");
1363 			goto out;
1364 		}
1365 
1366 		for (v = 0; v < perbuf; v++, data+=size) {  /* For each vblk */
1367 			if (MAGIC_VBLK != get_unaligned_be32(data)) {
1368 				ldm_error ("Expected to find a VBLK.");
1369 				goto out;
1370 			}
1371 
1372 			recs = get_unaligned_be16(data + 0x0E);	/* Number of records */
1373 			if (recs == 1) {
1374 				if (!ldm_ldmdb_add (data, size, ldb))
1375 					goto out;	/* Already logged */
1376 			} else if (recs > 1) {
1377 				if (!ldm_frag_add (data, size, &frags))
1378 					goto out;	/* Already logged */
1379 			}
1380 			/* else Record is not in use, ignore it. */
1381 		}
1382 		put_dev_sector (sect);
1383 		data = NULL;
1384 	}
1385 
1386 	result = ldm_frag_commit (&frags, ldb);	/* Failures, already logged */
1387 out:
1388 	if (data)
1389 		put_dev_sector (sect);
1390 	ldm_frag_free (&frags);
1391 
1392 	return result;
1393 }
1394 
1395 /**
1396  * ldm_free_vblks - Free a linked list of vblk's
1397  * @lh:  Head of a linked list of struct vblk
1398  *
1399  * Free a list of vblk's and free the memory used to maintain the list.
1400  *
1401  * Return:  none
1402  */
1403 static void ldm_free_vblks (struct list_head *lh)
1404 {
1405 	struct list_head *item, *tmp;
1406 
1407 	BUG_ON (!lh);
1408 
1409 	list_for_each_safe (item, tmp, lh)
1410 		kfree (list_entry (item, struct vblk, list));
1411 }
1412 
1413 
1414 /**
1415  * ldm_partition - Find out whether a device is a dynamic disk and handle it
1416  * @state: Partition check state including device holding the LDM Database
1417  *
1418  * This determines whether the device @bdev is a dynamic disk and if so creates
1419  * the partitions necessary in the gendisk structure pointed to by @hd.
1420  *
1421  * We create a dummy device 1, which contains the LDM database, and then create
1422  * each partition described by the LDM database in sequence as devices 2+. For
1423  * example, if the device is hda, we would have: hda1: LDM database, hda2, hda3,
1424  * and so on: the actual data containing partitions.
1425  *
1426  * Return:  1 Success, @state->disk is a dynamic disk and we handled it
1427  *          0 Success, @state->disk is not a dynamic disk
1428  *         -1 An error occurred before enough information had been read
1429  *            Or @state->disk is a dynamic disk, but it may be corrupted
1430  */
1431 int ldm_partition(struct parsed_partitions *state)
1432 {
1433 	struct ldmdb  *ldb;
1434 	unsigned long base;
1435 	int result = -1;
1436 
1437 	BUG_ON(!state);
1438 
1439 	/* Look for signs of a Dynamic Disk */
1440 	if (!ldm_validate_partition_table(state))
1441 		return 0;
1442 
1443 	ldb = kmalloc (sizeof (*ldb), GFP_KERNEL);
1444 	if (!ldb) {
1445 		ldm_crit ("Out of memory.");
1446 		goto out;
1447 	}
1448 
1449 	/* Parse and check privheads. */
1450 	if (!ldm_validate_privheads(state, &ldb->ph))
1451 		goto out;		/* Already logged */
1452 
1453 	/* All further references are relative to base (database start). */
1454 	base = ldb->ph.config_start;
1455 
1456 	/* Parse and check tocs and vmdb. */
1457 	if (!ldm_validate_tocblocks(state, base, ldb) ||
1458 	    !ldm_validate_vmdb(state, base, ldb))
1459 	    	goto out;		/* Already logged */
1460 
1461 	/* Initialize vblk lists in ldmdb struct */
1462 	INIT_LIST_HEAD (&ldb->v_dgrp);
1463 	INIT_LIST_HEAD (&ldb->v_disk);
1464 	INIT_LIST_HEAD (&ldb->v_volu);
1465 	INIT_LIST_HEAD (&ldb->v_comp);
1466 	INIT_LIST_HEAD (&ldb->v_part);
1467 
1468 	if (!ldm_get_vblks(state, base, ldb)) {
1469 		ldm_crit ("Failed to read the VBLKs from the database.");
1470 		goto cleanup;
1471 	}
1472 
1473 	/* Finally, create the data partition devices. */
1474 	if (ldm_create_data_partitions(state, ldb)) {
1475 		ldm_debug ("Parsed LDM database successfully.");
1476 		result = 1;
1477 	}
1478 	/* else Already logged */
1479 
1480 cleanup:
1481 	ldm_free_vblks (&ldb->v_dgrp);
1482 	ldm_free_vblks (&ldb->v_disk);
1483 	ldm_free_vblks (&ldb->v_volu);
1484 	ldm_free_vblks (&ldb->v_comp);
1485 	ldm_free_vblks (&ldb->v_part);
1486 out:
1487 	kfree (ldb);
1488 	return result;
1489 }
1490