1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using 4 * scalable techniques. 5 * 6 * Copyright (C) 2017 Facebook 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/blkdev.h> 11 #include <linux/module.h> 12 #include <linux/sbitmap.h> 13 14 #include <trace/events/block.h> 15 16 #include "elevator.h" 17 #include "blk.h" 18 #include "blk-mq.h" 19 #include "blk-mq-debugfs.h" 20 #include "blk-mq-sched.h" 21 22 #define CREATE_TRACE_POINTS 23 #include <trace/events/kyber.h> 24 25 /* 26 * Scheduling domains: the device is divided into multiple domains based on the 27 * request type. 28 */ 29 enum { 30 KYBER_READ, 31 KYBER_WRITE, 32 KYBER_DISCARD, 33 KYBER_OTHER, 34 KYBER_NUM_DOMAINS, 35 }; 36 37 static const char *kyber_domain_names[] = { 38 [KYBER_READ] = "READ", 39 [KYBER_WRITE] = "WRITE", 40 [KYBER_DISCARD] = "DISCARD", 41 [KYBER_OTHER] = "OTHER", 42 }; 43 44 enum { 45 /* 46 * In order to prevent starvation of synchronous requests by a flood of 47 * asynchronous requests, we reserve 25% of requests for synchronous 48 * operations. 49 */ 50 KYBER_ASYNC_PERCENT = 75, 51 }; 52 53 /* 54 * Maximum device-wide depth for each scheduling domain. 55 * 56 * Even for fast devices with lots of tags like NVMe, you can saturate the 57 * device with only a fraction of the maximum possible queue depth. So, we cap 58 * these to a reasonable value. 59 */ 60 static const unsigned int kyber_depth[] = { 61 [KYBER_READ] = 256, 62 [KYBER_WRITE] = 128, 63 [KYBER_DISCARD] = 64, 64 [KYBER_OTHER] = 16, 65 }; 66 67 /* 68 * Default latency targets for each scheduling domain. 69 */ 70 static const u64 kyber_latency_targets[] = { 71 [KYBER_READ] = 2ULL * NSEC_PER_MSEC, 72 [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC, 73 [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC, 74 }; 75 76 /* 77 * Batch size (number of requests we'll dispatch in a row) for each scheduling 78 * domain. 79 */ 80 static const unsigned int kyber_batch_size[] = { 81 [KYBER_READ] = 16, 82 [KYBER_WRITE] = 8, 83 [KYBER_DISCARD] = 1, 84 [KYBER_OTHER] = 1, 85 }; 86 87 /* 88 * Requests latencies are recorded in a histogram with buckets defined relative 89 * to the target latency: 90 * 91 * <= 1/4 * target latency 92 * <= 1/2 * target latency 93 * <= 3/4 * target latency 94 * <= target latency 95 * <= 1 1/4 * target latency 96 * <= 1 1/2 * target latency 97 * <= 1 3/4 * target latency 98 * > 1 3/4 * target latency 99 */ 100 enum { 101 /* 102 * The width of the latency histogram buckets is 103 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency. 104 */ 105 KYBER_LATENCY_SHIFT = 2, 106 /* 107 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency, 108 * thus, "good". 109 */ 110 KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT, 111 /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */ 112 KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT, 113 }; 114 115 /* 116 * We measure both the total latency and the I/O latency (i.e., latency after 117 * submitting to the device). 118 */ 119 enum { 120 KYBER_TOTAL_LATENCY, 121 KYBER_IO_LATENCY, 122 }; 123 124 static const char *kyber_latency_type_names[] = { 125 [KYBER_TOTAL_LATENCY] = "total", 126 [KYBER_IO_LATENCY] = "I/O", 127 }; 128 129 /* 130 * Per-cpu latency histograms: total latency and I/O latency for each scheduling 131 * domain except for KYBER_OTHER. 132 */ 133 struct kyber_cpu_latency { 134 atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS]; 135 }; 136 137 /* 138 * There is a same mapping between ctx & hctx and kcq & khd, 139 * we use request->mq_ctx->index_hw to index the kcq in khd. 140 */ 141 struct kyber_ctx_queue { 142 /* 143 * Used to ensure operations on rq_list and kcq_map to be an atmoic one. 144 * Also protect the rqs on rq_list when merge. 145 */ 146 spinlock_t lock; 147 struct list_head rq_list[KYBER_NUM_DOMAINS]; 148 } ____cacheline_aligned_in_smp; 149 150 struct kyber_queue_data { 151 struct request_queue *q; 152 dev_t dev; 153 154 /* 155 * Each scheduling domain has a limited number of in-flight requests 156 * device-wide, limited by these tokens. 157 */ 158 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS]; 159 160 /* Number of allowed async requests. */ 161 unsigned int async_depth; 162 163 struct kyber_cpu_latency __percpu *cpu_latency; 164 165 /* Timer for stats aggregation and adjusting domain tokens. */ 166 struct timer_list timer; 167 168 unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS]; 169 170 unsigned long latency_timeout[KYBER_OTHER]; 171 172 int domain_p99[KYBER_OTHER]; 173 174 /* Target latencies in nanoseconds. */ 175 u64 latency_targets[KYBER_OTHER]; 176 }; 177 178 struct kyber_hctx_data { 179 spinlock_t lock; 180 struct list_head rqs[KYBER_NUM_DOMAINS]; 181 unsigned int cur_domain; 182 unsigned int batching; 183 struct kyber_ctx_queue *kcqs; 184 struct sbitmap kcq_map[KYBER_NUM_DOMAINS]; 185 struct sbq_wait domain_wait[KYBER_NUM_DOMAINS]; 186 struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS]; 187 atomic_t wait_index[KYBER_NUM_DOMAINS]; 188 }; 189 190 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags, 191 void *key); 192 193 static unsigned int kyber_sched_domain(blk_opf_t opf) 194 { 195 switch (opf & REQ_OP_MASK) { 196 case REQ_OP_READ: 197 return KYBER_READ; 198 case REQ_OP_WRITE: 199 return KYBER_WRITE; 200 case REQ_OP_DISCARD: 201 return KYBER_DISCARD; 202 default: 203 return KYBER_OTHER; 204 } 205 } 206 207 static void flush_latency_buckets(struct kyber_queue_data *kqd, 208 struct kyber_cpu_latency *cpu_latency, 209 unsigned int sched_domain, unsigned int type) 210 { 211 unsigned int *buckets = kqd->latency_buckets[sched_domain][type]; 212 atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type]; 213 unsigned int bucket; 214 215 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++) 216 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0); 217 } 218 219 /* 220 * Calculate the histogram bucket with the given percentile rank, or -1 if there 221 * aren't enough samples yet. 222 */ 223 static int calculate_percentile(struct kyber_queue_data *kqd, 224 unsigned int sched_domain, unsigned int type, 225 unsigned int percentile) 226 { 227 unsigned int *buckets = kqd->latency_buckets[sched_domain][type]; 228 unsigned int bucket, samples = 0, percentile_samples; 229 230 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++) 231 samples += buckets[bucket]; 232 233 if (!samples) 234 return -1; 235 236 /* 237 * We do the calculation once we have 500 samples or one second passes 238 * since the first sample was recorded, whichever comes first. 239 */ 240 if (!kqd->latency_timeout[sched_domain]) 241 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL); 242 if (samples < 500 && 243 time_is_after_jiffies(kqd->latency_timeout[sched_domain])) { 244 return -1; 245 } 246 kqd->latency_timeout[sched_domain] = 0; 247 248 percentile_samples = DIV_ROUND_UP(samples * percentile, 100); 249 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) { 250 if (buckets[bucket] >= percentile_samples) 251 break; 252 percentile_samples -= buckets[bucket]; 253 } 254 memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type])); 255 256 trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain], 257 kyber_latency_type_names[type], percentile, 258 bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples); 259 260 return bucket; 261 } 262 263 static void kyber_resize_domain(struct kyber_queue_data *kqd, 264 unsigned int sched_domain, unsigned int depth) 265 { 266 depth = clamp(depth, 1U, kyber_depth[sched_domain]); 267 if (depth != kqd->domain_tokens[sched_domain].sb.depth) { 268 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth); 269 trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain], 270 depth); 271 } 272 } 273 274 static void kyber_timer_fn(struct timer_list *t) 275 { 276 struct kyber_queue_data *kqd = timer_container_of(kqd, t, timer); 277 unsigned int sched_domain; 278 int cpu; 279 bool bad = false; 280 281 /* Sum all of the per-cpu latency histograms. */ 282 for_each_online_cpu(cpu) { 283 struct kyber_cpu_latency *cpu_latency; 284 285 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu); 286 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { 287 flush_latency_buckets(kqd, cpu_latency, sched_domain, 288 KYBER_TOTAL_LATENCY); 289 flush_latency_buckets(kqd, cpu_latency, sched_domain, 290 KYBER_IO_LATENCY); 291 } 292 } 293 294 /* 295 * Check if any domains have a high I/O latency, which might indicate 296 * congestion in the device. Note that we use the p90; we don't want to 297 * be too sensitive to outliers here. 298 */ 299 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { 300 int p90; 301 302 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY, 303 90); 304 if (p90 >= KYBER_GOOD_BUCKETS) 305 bad = true; 306 } 307 308 /* 309 * Adjust the scheduling domain depths. If we determined that there was 310 * congestion, we throttle all domains with good latencies. Either way, 311 * we ease up on throttling domains with bad latencies. 312 */ 313 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { 314 unsigned int orig_depth, depth; 315 int p99; 316 317 p99 = calculate_percentile(kqd, sched_domain, 318 KYBER_TOTAL_LATENCY, 99); 319 /* 320 * This is kind of subtle: different domains will not 321 * necessarily have enough samples to calculate the latency 322 * percentiles during the same window, so we have to remember 323 * the p99 for the next time we observe congestion; once we do, 324 * we don't want to throttle again until we get more data, so we 325 * reset it to -1. 326 */ 327 if (bad) { 328 if (p99 < 0) 329 p99 = kqd->domain_p99[sched_domain]; 330 kqd->domain_p99[sched_domain] = -1; 331 } else if (p99 >= 0) { 332 kqd->domain_p99[sched_domain] = p99; 333 } 334 if (p99 < 0) 335 continue; 336 337 /* 338 * If this domain has bad latency, throttle less. Otherwise, 339 * throttle more iff we determined that there is congestion. 340 * 341 * The new depth is scaled linearly with the p99 latency vs the 342 * latency target. E.g., if the p99 is 3/4 of the target, then 343 * we throttle down to 3/4 of the current depth, and if the p99 344 * is 2x the target, then we double the depth. 345 */ 346 if (bad || p99 >= KYBER_GOOD_BUCKETS) { 347 orig_depth = kqd->domain_tokens[sched_domain].sb.depth; 348 depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT; 349 kyber_resize_domain(kqd, sched_domain, depth); 350 } 351 } 352 } 353 354 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q) 355 { 356 struct kyber_queue_data *kqd; 357 int ret = -ENOMEM; 358 int i; 359 360 kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node); 361 if (!kqd) 362 goto err; 363 364 kqd->q = q; 365 kqd->dev = disk_devt(q->disk); 366 367 kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency, 368 GFP_KERNEL | __GFP_ZERO); 369 if (!kqd->cpu_latency) 370 goto err_kqd; 371 372 timer_setup(&kqd->timer, kyber_timer_fn, 0); 373 374 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 375 WARN_ON(!kyber_depth[i]); 376 WARN_ON(!kyber_batch_size[i]); 377 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i], 378 kyber_depth[i], -1, false, 379 GFP_KERNEL, q->node); 380 if (ret) { 381 while (--i >= 0) 382 sbitmap_queue_free(&kqd->domain_tokens[i]); 383 goto err_buckets; 384 } 385 } 386 387 for (i = 0; i < KYBER_OTHER; i++) { 388 kqd->domain_p99[i] = -1; 389 kqd->latency_targets[i] = kyber_latency_targets[i]; 390 } 391 392 return kqd; 393 394 err_buckets: 395 free_percpu(kqd->cpu_latency); 396 err_kqd: 397 kfree(kqd); 398 err: 399 return ERR_PTR(ret); 400 } 401 402 static int kyber_init_sched(struct request_queue *q, struct elevator_queue *eq) 403 { 404 struct kyber_queue_data *kqd; 405 406 kqd = kyber_queue_data_alloc(q); 407 if (IS_ERR(kqd)) 408 return PTR_ERR(kqd); 409 410 blk_stat_enable_accounting(q); 411 412 blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q); 413 414 eq->elevator_data = kqd; 415 q->elevator = eq; 416 417 return 0; 418 } 419 420 static void kyber_exit_sched(struct elevator_queue *e) 421 { 422 struct kyber_queue_data *kqd = e->elevator_data; 423 int i; 424 425 timer_shutdown_sync(&kqd->timer); 426 blk_stat_disable_accounting(kqd->q); 427 428 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 429 sbitmap_queue_free(&kqd->domain_tokens[i]); 430 free_percpu(kqd->cpu_latency); 431 kfree(kqd); 432 } 433 434 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq) 435 { 436 unsigned int i; 437 438 spin_lock_init(&kcq->lock); 439 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 440 INIT_LIST_HEAD(&kcq->rq_list[i]); 441 } 442 443 static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx) 444 { 445 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data; 446 struct blk_mq_tags *tags = hctx->sched_tags; 447 448 kqd->async_depth = hctx->queue->nr_requests * KYBER_ASYNC_PERCENT / 100U; 449 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth); 450 } 451 452 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 453 { 454 struct kyber_hctx_data *khd; 455 int i; 456 457 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node); 458 if (!khd) 459 return -ENOMEM; 460 461 khd->kcqs = kmalloc_array_node(hctx->nr_ctx, 462 sizeof(struct kyber_ctx_queue), 463 GFP_KERNEL, hctx->numa_node); 464 if (!khd->kcqs) 465 goto err_khd; 466 467 for (i = 0; i < hctx->nr_ctx; i++) 468 kyber_ctx_queue_init(&khd->kcqs[i]); 469 470 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 471 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx, 472 ilog2(8), GFP_KERNEL, hctx->numa_node, 473 false, false)) { 474 while (--i >= 0) 475 sbitmap_free(&khd->kcq_map[i]); 476 goto err_kcqs; 477 } 478 } 479 480 spin_lock_init(&khd->lock); 481 482 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 483 INIT_LIST_HEAD(&khd->rqs[i]); 484 khd->domain_wait[i].sbq = NULL; 485 init_waitqueue_func_entry(&khd->domain_wait[i].wait, 486 kyber_domain_wake); 487 khd->domain_wait[i].wait.private = hctx; 488 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry); 489 atomic_set(&khd->wait_index[i], 0); 490 } 491 492 khd->cur_domain = 0; 493 khd->batching = 0; 494 495 hctx->sched_data = khd; 496 kyber_depth_updated(hctx); 497 498 return 0; 499 500 err_kcqs: 501 kfree(khd->kcqs); 502 err_khd: 503 kfree(khd); 504 return -ENOMEM; 505 } 506 507 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 508 { 509 struct kyber_hctx_data *khd = hctx->sched_data; 510 int i; 511 512 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 513 sbitmap_free(&khd->kcq_map[i]); 514 kfree(khd->kcqs); 515 kfree(hctx->sched_data); 516 } 517 518 static int rq_get_domain_token(struct request *rq) 519 { 520 return (long)rq->elv.priv[0]; 521 } 522 523 static void rq_set_domain_token(struct request *rq, int token) 524 { 525 rq->elv.priv[0] = (void *)(long)token; 526 } 527 528 static void rq_clear_domain_token(struct kyber_queue_data *kqd, 529 struct request *rq) 530 { 531 unsigned int sched_domain; 532 int nr; 533 534 nr = rq_get_domain_token(rq); 535 if (nr != -1) { 536 sched_domain = kyber_sched_domain(rq->cmd_flags); 537 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr, 538 rq->mq_ctx->cpu); 539 } 540 } 541 542 static void kyber_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data) 543 { 544 /* 545 * We use the scheduler tags as per-hardware queue queueing tokens. 546 * Async requests can be limited at this stage. 547 */ 548 if (!op_is_sync(opf)) { 549 struct kyber_queue_data *kqd = data->q->elevator->elevator_data; 550 551 data->shallow_depth = kqd->async_depth; 552 } 553 } 554 555 static bool kyber_bio_merge(struct request_queue *q, struct bio *bio, 556 unsigned int nr_segs) 557 { 558 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 559 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(bio->bi_opf, ctx); 560 struct kyber_hctx_data *khd = hctx->sched_data; 561 struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]]; 562 unsigned int sched_domain = kyber_sched_domain(bio->bi_opf); 563 struct list_head *rq_list = &kcq->rq_list[sched_domain]; 564 bool merged; 565 566 spin_lock(&kcq->lock); 567 merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs); 568 spin_unlock(&kcq->lock); 569 570 return merged; 571 } 572 573 static void kyber_prepare_request(struct request *rq) 574 { 575 rq_set_domain_token(rq, -1); 576 } 577 578 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx, 579 struct list_head *rq_list, 580 blk_insert_t flags) 581 { 582 struct kyber_hctx_data *khd = hctx->sched_data; 583 struct request *rq, *next; 584 585 list_for_each_entry_safe(rq, next, rq_list, queuelist) { 586 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags); 587 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]]; 588 struct list_head *head = &kcq->rq_list[sched_domain]; 589 590 spin_lock(&kcq->lock); 591 trace_block_rq_insert(rq); 592 if (flags & BLK_MQ_INSERT_AT_HEAD) 593 list_move(&rq->queuelist, head); 594 else 595 list_move_tail(&rq->queuelist, head); 596 sbitmap_set_bit(&khd->kcq_map[sched_domain], 597 rq->mq_ctx->index_hw[hctx->type]); 598 spin_unlock(&kcq->lock); 599 } 600 } 601 602 static void kyber_finish_request(struct request *rq) 603 { 604 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data; 605 606 rq_clear_domain_token(kqd, rq); 607 } 608 609 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency, 610 unsigned int sched_domain, unsigned int type, 611 u64 target, u64 latency) 612 { 613 unsigned int bucket; 614 u64 divisor; 615 616 if (latency > 0) { 617 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1); 618 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor), 619 KYBER_LATENCY_BUCKETS - 1); 620 } else { 621 bucket = 0; 622 } 623 624 atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]); 625 } 626 627 static void kyber_completed_request(struct request *rq, u64 now) 628 { 629 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data; 630 struct kyber_cpu_latency *cpu_latency; 631 unsigned int sched_domain; 632 u64 target; 633 634 sched_domain = kyber_sched_domain(rq->cmd_flags); 635 if (sched_domain == KYBER_OTHER) 636 return; 637 638 cpu_latency = get_cpu_ptr(kqd->cpu_latency); 639 target = kqd->latency_targets[sched_domain]; 640 add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY, 641 target, now - rq->start_time_ns); 642 add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target, 643 now - rq->io_start_time_ns); 644 put_cpu_ptr(kqd->cpu_latency); 645 646 timer_reduce(&kqd->timer, jiffies + HZ / 10); 647 } 648 649 struct flush_kcq_data { 650 struct kyber_hctx_data *khd; 651 unsigned int sched_domain; 652 struct list_head *list; 653 }; 654 655 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data) 656 { 657 struct flush_kcq_data *flush_data = data; 658 struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr]; 659 660 spin_lock(&kcq->lock); 661 list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain], 662 flush_data->list); 663 sbitmap_clear_bit(sb, bitnr); 664 spin_unlock(&kcq->lock); 665 666 return true; 667 } 668 669 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd, 670 unsigned int sched_domain, 671 struct list_head *list) 672 { 673 struct flush_kcq_data data = { 674 .khd = khd, 675 .sched_domain = sched_domain, 676 .list = list, 677 }; 678 679 sbitmap_for_each_set(&khd->kcq_map[sched_domain], 680 flush_busy_kcq, &data); 681 } 682 683 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags, 684 void *key) 685 { 686 struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private); 687 struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait); 688 689 sbitmap_del_wait_queue(wait); 690 blk_mq_run_hw_queue(hctx, true); 691 return 1; 692 } 693 694 static int kyber_get_domain_token(struct kyber_queue_data *kqd, 695 struct kyber_hctx_data *khd, 696 struct blk_mq_hw_ctx *hctx) 697 { 698 unsigned int sched_domain = khd->cur_domain; 699 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain]; 700 struct sbq_wait *wait = &khd->domain_wait[sched_domain]; 701 struct sbq_wait_state *ws; 702 int nr; 703 704 nr = __sbitmap_queue_get(domain_tokens); 705 706 /* 707 * If we failed to get a domain token, make sure the hardware queue is 708 * run when one becomes available. Note that this is serialized on 709 * khd->lock, but we still need to be careful about the waker. 710 */ 711 if (nr < 0 && list_empty_careful(&wait->wait.entry)) { 712 ws = sbq_wait_ptr(domain_tokens, 713 &khd->wait_index[sched_domain]); 714 khd->domain_ws[sched_domain] = ws; 715 sbitmap_add_wait_queue(domain_tokens, ws, wait); 716 717 /* 718 * Try again in case a token was freed before we got on the wait 719 * queue. 720 */ 721 nr = __sbitmap_queue_get(domain_tokens); 722 } 723 724 /* 725 * If we got a token while we were on the wait queue, remove ourselves 726 * from the wait queue to ensure that all wake ups make forward 727 * progress. It's possible that the waker already deleted the entry 728 * between the !list_empty_careful() check and us grabbing the lock, but 729 * list_del_init() is okay with that. 730 */ 731 if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) { 732 ws = khd->domain_ws[sched_domain]; 733 spin_lock_irq(&ws->wait.lock); 734 sbitmap_del_wait_queue(wait); 735 spin_unlock_irq(&ws->wait.lock); 736 } 737 738 return nr; 739 } 740 741 static struct request * 742 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd, 743 struct kyber_hctx_data *khd, 744 struct blk_mq_hw_ctx *hctx) 745 { 746 struct list_head *rqs; 747 struct request *rq; 748 int nr; 749 750 rqs = &khd->rqs[khd->cur_domain]; 751 752 /* 753 * If we already have a flushed request, then we just need to get a 754 * token for it. Otherwise, if there are pending requests in the kcqs, 755 * flush the kcqs, but only if we can get a token. If not, we should 756 * leave the requests in the kcqs so that they can be merged. Note that 757 * khd->lock serializes the flushes, so if we observed any bit set in 758 * the kcq_map, we will always get a request. 759 */ 760 rq = list_first_entry_or_null(rqs, struct request, queuelist); 761 if (rq) { 762 nr = kyber_get_domain_token(kqd, khd, hctx); 763 if (nr >= 0) { 764 khd->batching++; 765 rq_set_domain_token(rq, nr); 766 list_del_init(&rq->queuelist); 767 return rq; 768 } else { 769 trace_kyber_throttled(kqd->dev, 770 kyber_domain_names[khd->cur_domain]); 771 } 772 } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) { 773 nr = kyber_get_domain_token(kqd, khd, hctx); 774 if (nr >= 0) { 775 kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs); 776 rq = list_first_entry(rqs, struct request, queuelist); 777 khd->batching++; 778 rq_set_domain_token(rq, nr); 779 list_del_init(&rq->queuelist); 780 return rq; 781 } else { 782 trace_kyber_throttled(kqd->dev, 783 kyber_domain_names[khd->cur_domain]); 784 } 785 } 786 787 /* There were either no pending requests or no tokens. */ 788 return NULL; 789 } 790 791 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx) 792 { 793 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data; 794 struct kyber_hctx_data *khd = hctx->sched_data; 795 struct request *rq; 796 int i; 797 798 spin_lock(&khd->lock); 799 800 /* 801 * First, if we are still entitled to batch, try to dispatch a request 802 * from the batch. 803 */ 804 if (khd->batching < kyber_batch_size[khd->cur_domain]) { 805 rq = kyber_dispatch_cur_domain(kqd, khd, hctx); 806 if (rq) 807 goto out; 808 } 809 810 /* 811 * Either, 812 * 1. We were no longer entitled to a batch. 813 * 2. The domain we were batching didn't have any requests. 814 * 3. The domain we were batching was out of tokens. 815 * 816 * Start another batch. Note that this wraps back around to the original 817 * domain if no other domains have requests or tokens. 818 */ 819 khd->batching = 0; 820 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 821 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1) 822 khd->cur_domain = 0; 823 else 824 khd->cur_domain++; 825 826 rq = kyber_dispatch_cur_domain(kqd, khd, hctx); 827 if (rq) 828 goto out; 829 } 830 831 rq = NULL; 832 out: 833 spin_unlock(&khd->lock); 834 return rq; 835 } 836 837 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx) 838 { 839 struct kyber_hctx_data *khd = hctx->sched_data; 840 int i; 841 842 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 843 if (!list_empty_careful(&khd->rqs[i]) || 844 sbitmap_any_bit_set(&khd->kcq_map[i])) 845 return true; 846 } 847 848 return false; 849 } 850 851 #define KYBER_LAT_SHOW_STORE(domain, name) \ 852 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \ 853 char *page) \ 854 { \ 855 struct kyber_queue_data *kqd = e->elevator_data; \ 856 \ 857 return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \ 858 } \ 859 \ 860 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \ 861 const char *page, size_t count) \ 862 { \ 863 struct kyber_queue_data *kqd = e->elevator_data; \ 864 unsigned long long nsec; \ 865 int ret; \ 866 \ 867 ret = kstrtoull(page, 10, &nsec); \ 868 if (ret) \ 869 return ret; \ 870 \ 871 kqd->latency_targets[domain] = nsec; \ 872 \ 873 return count; \ 874 } 875 KYBER_LAT_SHOW_STORE(KYBER_READ, read); 876 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write); 877 #undef KYBER_LAT_SHOW_STORE 878 879 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store) 880 static const struct elv_fs_entry kyber_sched_attrs[] = { 881 KYBER_LAT_ATTR(read), 882 KYBER_LAT_ATTR(write), 883 __ATTR_NULL 884 }; 885 #undef KYBER_LAT_ATTR 886 887 #ifdef CONFIG_BLK_DEBUG_FS 888 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \ 889 static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \ 890 { \ 891 struct request_queue *q = data; \ 892 struct kyber_queue_data *kqd = q->elevator->elevator_data; \ 893 \ 894 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \ 895 return 0; \ 896 } \ 897 \ 898 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \ 899 __acquires(&khd->lock) \ 900 { \ 901 struct blk_mq_hw_ctx *hctx = m->private; \ 902 struct kyber_hctx_data *khd = hctx->sched_data; \ 903 \ 904 spin_lock(&khd->lock); \ 905 return seq_list_start(&khd->rqs[domain], *pos); \ 906 } \ 907 \ 908 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \ 909 loff_t *pos) \ 910 { \ 911 struct blk_mq_hw_ctx *hctx = m->private; \ 912 struct kyber_hctx_data *khd = hctx->sched_data; \ 913 \ 914 return seq_list_next(v, &khd->rqs[domain], pos); \ 915 } \ 916 \ 917 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \ 918 __releases(&khd->lock) \ 919 { \ 920 struct blk_mq_hw_ctx *hctx = m->private; \ 921 struct kyber_hctx_data *khd = hctx->sched_data; \ 922 \ 923 spin_unlock(&khd->lock); \ 924 } \ 925 \ 926 static const struct seq_operations kyber_##name##_rqs_seq_ops = { \ 927 .start = kyber_##name##_rqs_start, \ 928 .next = kyber_##name##_rqs_next, \ 929 .stop = kyber_##name##_rqs_stop, \ 930 .show = blk_mq_debugfs_rq_show, \ 931 }; \ 932 \ 933 static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \ 934 { \ 935 struct blk_mq_hw_ctx *hctx = data; \ 936 struct kyber_hctx_data *khd = hctx->sched_data; \ 937 wait_queue_entry_t *wait = &khd->domain_wait[domain].wait; \ 938 \ 939 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \ 940 return 0; \ 941 } 942 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read) 943 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write) 944 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard) 945 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other) 946 #undef KYBER_DEBUGFS_DOMAIN_ATTRS 947 948 static int kyber_async_depth_show(void *data, struct seq_file *m) 949 { 950 struct request_queue *q = data; 951 struct kyber_queue_data *kqd = q->elevator->elevator_data; 952 953 seq_printf(m, "%u\n", kqd->async_depth); 954 return 0; 955 } 956 957 static int kyber_cur_domain_show(void *data, struct seq_file *m) 958 { 959 struct blk_mq_hw_ctx *hctx = data; 960 struct kyber_hctx_data *khd = hctx->sched_data; 961 962 seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]); 963 return 0; 964 } 965 966 static int kyber_batching_show(void *data, struct seq_file *m) 967 { 968 struct blk_mq_hw_ctx *hctx = data; 969 struct kyber_hctx_data *khd = hctx->sched_data; 970 971 seq_printf(m, "%u\n", khd->batching); 972 return 0; 973 } 974 975 #define KYBER_QUEUE_DOMAIN_ATTRS(name) \ 976 {#name "_tokens", 0400, kyber_##name##_tokens_show} 977 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = { 978 KYBER_QUEUE_DOMAIN_ATTRS(read), 979 KYBER_QUEUE_DOMAIN_ATTRS(write), 980 KYBER_QUEUE_DOMAIN_ATTRS(discard), 981 KYBER_QUEUE_DOMAIN_ATTRS(other), 982 {"async_depth", 0400, kyber_async_depth_show}, 983 {}, 984 }; 985 #undef KYBER_QUEUE_DOMAIN_ATTRS 986 987 #define KYBER_HCTX_DOMAIN_ATTRS(name) \ 988 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \ 989 {#name "_waiting", 0400, kyber_##name##_waiting_show} 990 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = { 991 KYBER_HCTX_DOMAIN_ATTRS(read), 992 KYBER_HCTX_DOMAIN_ATTRS(write), 993 KYBER_HCTX_DOMAIN_ATTRS(discard), 994 KYBER_HCTX_DOMAIN_ATTRS(other), 995 {"cur_domain", 0400, kyber_cur_domain_show}, 996 {"batching", 0400, kyber_batching_show}, 997 {}, 998 }; 999 #undef KYBER_HCTX_DOMAIN_ATTRS 1000 #endif 1001 1002 static struct elevator_type kyber_sched = { 1003 .ops = { 1004 .init_sched = kyber_init_sched, 1005 .exit_sched = kyber_exit_sched, 1006 .init_hctx = kyber_init_hctx, 1007 .exit_hctx = kyber_exit_hctx, 1008 .limit_depth = kyber_limit_depth, 1009 .bio_merge = kyber_bio_merge, 1010 .prepare_request = kyber_prepare_request, 1011 .insert_requests = kyber_insert_requests, 1012 .finish_request = kyber_finish_request, 1013 .requeue_request = kyber_finish_request, 1014 .completed_request = kyber_completed_request, 1015 .dispatch_request = kyber_dispatch_request, 1016 .has_work = kyber_has_work, 1017 .depth_updated = kyber_depth_updated, 1018 }, 1019 #ifdef CONFIG_BLK_DEBUG_FS 1020 .queue_debugfs_attrs = kyber_queue_debugfs_attrs, 1021 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs, 1022 #endif 1023 .elevator_attrs = kyber_sched_attrs, 1024 .elevator_name = "kyber", 1025 .elevator_owner = THIS_MODULE, 1026 }; 1027 1028 static int __init kyber_init(void) 1029 { 1030 return elv_register(&kyber_sched); 1031 } 1032 1033 static void __exit kyber_exit(void) 1034 { 1035 elv_unregister(&kyber_sched); 1036 } 1037 1038 module_init(kyber_init); 1039 module_exit(kyber_exit); 1040 1041 MODULE_AUTHOR("Omar Sandoval"); 1042 MODULE_LICENSE("GPL"); 1043 MODULE_DESCRIPTION("Kyber I/O scheduler"); 1044