xref: /linux/block/kyber-iosched.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4  * scalable techniques.
5  *
6  * Copyright (C) 2017 Facebook
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/elevator.h>
13 #include <linux/module.h>
14 #include <linux/sbitmap.h>
15 
16 #include <trace/events/block.h>
17 
18 #include "blk.h"
19 #include "blk-mq.h"
20 #include "blk-mq-debugfs.h"
21 #include "blk-mq-sched.h"
22 #include "blk-mq-tag.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/kyber.h>
26 
27 /*
28  * Scheduling domains: the device is divided into multiple domains based on the
29  * request type.
30  */
31 enum {
32 	KYBER_READ,
33 	KYBER_WRITE,
34 	KYBER_DISCARD,
35 	KYBER_OTHER,
36 	KYBER_NUM_DOMAINS,
37 };
38 
39 static const char *kyber_domain_names[] = {
40 	[KYBER_READ] = "READ",
41 	[KYBER_WRITE] = "WRITE",
42 	[KYBER_DISCARD] = "DISCARD",
43 	[KYBER_OTHER] = "OTHER",
44 };
45 
46 enum {
47 	/*
48 	 * In order to prevent starvation of synchronous requests by a flood of
49 	 * asynchronous requests, we reserve 25% of requests for synchronous
50 	 * operations.
51 	 */
52 	KYBER_ASYNC_PERCENT = 75,
53 };
54 
55 /*
56  * Maximum device-wide depth for each scheduling domain.
57  *
58  * Even for fast devices with lots of tags like NVMe, you can saturate the
59  * device with only a fraction of the maximum possible queue depth. So, we cap
60  * these to a reasonable value.
61  */
62 static const unsigned int kyber_depth[] = {
63 	[KYBER_READ] = 256,
64 	[KYBER_WRITE] = 128,
65 	[KYBER_DISCARD] = 64,
66 	[KYBER_OTHER] = 16,
67 };
68 
69 /*
70  * Default latency targets for each scheduling domain.
71  */
72 static const u64 kyber_latency_targets[] = {
73 	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
74 	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
75 	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
76 };
77 
78 /*
79  * Batch size (number of requests we'll dispatch in a row) for each scheduling
80  * domain.
81  */
82 static const unsigned int kyber_batch_size[] = {
83 	[KYBER_READ] = 16,
84 	[KYBER_WRITE] = 8,
85 	[KYBER_DISCARD] = 1,
86 	[KYBER_OTHER] = 1,
87 };
88 
89 /*
90  * Requests latencies are recorded in a histogram with buckets defined relative
91  * to the target latency:
92  *
93  * <= 1/4 * target latency
94  * <= 1/2 * target latency
95  * <= 3/4 * target latency
96  * <= target latency
97  * <= 1 1/4 * target latency
98  * <= 1 1/2 * target latency
99  * <= 1 3/4 * target latency
100  * > 1 3/4 * target latency
101  */
102 enum {
103 	/*
104 	 * The width of the latency histogram buckets is
105 	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
106 	 */
107 	KYBER_LATENCY_SHIFT = 2,
108 	/*
109 	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
110 	 * thus, "good".
111 	 */
112 	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
113 	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
114 	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
115 };
116 
117 /*
118  * We measure both the total latency and the I/O latency (i.e., latency after
119  * submitting to the device).
120  */
121 enum {
122 	KYBER_TOTAL_LATENCY,
123 	KYBER_IO_LATENCY,
124 };
125 
126 static const char *kyber_latency_type_names[] = {
127 	[KYBER_TOTAL_LATENCY] = "total",
128 	[KYBER_IO_LATENCY] = "I/O",
129 };
130 
131 /*
132  * Per-cpu latency histograms: total latency and I/O latency for each scheduling
133  * domain except for KYBER_OTHER.
134  */
135 struct kyber_cpu_latency {
136 	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
137 };
138 
139 /*
140  * There is a same mapping between ctx & hctx and kcq & khd,
141  * we use request->mq_ctx->index_hw to index the kcq in khd.
142  */
143 struct kyber_ctx_queue {
144 	/*
145 	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
146 	 * Also protect the rqs on rq_list when merge.
147 	 */
148 	spinlock_t lock;
149 	struct list_head rq_list[KYBER_NUM_DOMAINS];
150 } ____cacheline_aligned_in_smp;
151 
152 struct kyber_queue_data {
153 	struct request_queue *q;
154 
155 	/*
156 	 * Each scheduling domain has a limited number of in-flight requests
157 	 * device-wide, limited by these tokens.
158 	 */
159 	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
160 
161 	/*
162 	 * Async request percentage, converted to per-word depth for
163 	 * sbitmap_get_shallow().
164 	 */
165 	unsigned int async_depth;
166 
167 	struct kyber_cpu_latency __percpu *cpu_latency;
168 
169 	/* Timer for stats aggregation and adjusting domain tokens. */
170 	struct timer_list timer;
171 
172 	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
173 
174 	unsigned long latency_timeout[KYBER_OTHER];
175 
176 	int domain_p99[KYBER_OTHER];
177 
178 	/* Target latencies in nanoseconds. */
179 	u64 latency_targets[KYBER_OTHER];
180 };
181 
182 struct kyber_hctx_data {
183 	spinlock_t lock;
184 	struct list_head rqs[KYBER_NUM_DOMAINS];
185 	unsigned int cur_domain;
186 	unsigned int batching;
187 	struct kyber_ctx_queue *kcqs;
188 	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
189 	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
190 	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
191 	atomic_t wait_index[KYBER_NUM_DOMAINS];
192 };
193 
194 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
195 			     void *key);
196 
197 static unsigned int kyber_sched_domain(unsigned int op)
198 {
199 	switch (op & REQ_OP_MASK) {
200 	case REQ_OP_READ:
201 		return KYBER_READ;
202 	case REQ_OP_WRITE:
203 		return KYBER_WRITE;
204 	case REQ_OP_DISCARD:
205 		return KYBER_DISCARD;
206 	default:
207 		return KYBER_OTHER;
208 	}
209 }
210 
211 static void flush_latency_buckets(struct kyber_queue_data *kqd,
212 				  struct kyber_cpu_latency *cpu_latency,
213 				  unsigned int sched_domain, unsigned int type)
214 {
215 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
216 	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
217 	unsigned int bucket;
218 
219 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
220 		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
221 }
222 
223 /*
224  * Calculate the histogram bucket with the given percentile rank, or -1 if there
225  * aren't enough samples yet.
226  */
227 static int calculate_percentile(struct kyber_queue_data *kqd,
228 				unsigned int sched_domain, unsigned int type,
229 				unsigned int percentile)
230 {
231 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
232 	unsigned int bucket, samples = 0, percentile_samples;
233 
234 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
235 		samples += buckets[bucket];
236 
237 	if (!samples)
238 		return -1;
239 
240 	/*
241 	 * We do the calculation once we have 500 samples or one second passes
242 	 * since the first sample was recorded, whichever comes first.
243 	 */
244 	if (!kqd->latency_timeout[sched_domain])
245 		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
246 	if (samples < 500 &&
247 	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
248 		return -1;
249 	}
250 	kqd->latency_timeout[sched_domain] = 0;
251 
252 	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
253 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
254 		if (buckets[bucket] >= percentile_samples)
255 			break;
256 		percentile_samples -= buckets[bucket];
257 	}
258 	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
259 
260 	trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
261 			    kyber_latency_type_names[type], percentile,
262 			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
263 
264 	return bucket;
265 }
266 
267 static void kyber_resize_domain(struct kyber_queue_data *kqd,
268 				unsigned int sched_domain, unsigned int depth)
269 {
270 	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
271 	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
272 		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
273 		trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
274 				   depth);
275 	}
276 }
277 
278 static void kyber_timer_fn(struct timer_list *t)
279 {
280 	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
281 	unsigned int sched_domain;
282 	int cpu;
283 	bool bad = false;
284 
285 	/* Sum all of the per-cpu latency histograms. */
286 	for_each_online_cpu(cpu) {
287 		struct kyber_cpu_latency *cpu_latency;
288 
289 		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
290 		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
291 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
292 					      KYBER_TOTAL_LATENCY);
293 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
294 					      KYBER_IO_LATENCY);
295 		}
296 	}
297 
298 	/*
299 	 * Check if any domains have a high I/O latency, which might indicate
300 	 * congestion in the device. Note that we use the p90; we don't want to
301 	 * be too sensitive to outliers here.
302 	 */
303 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
304 		int p90;
305 
306 		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
307 					   90);
308 		if (p90 >= KYBER_GOOD_BUCKETS)
309 			bad = true;
310 	}
311 
312 	/*
313 	 * Adjust the scheduling domain depths. If we determined that there was
314 	 * congestion, we throttle all domains with good latencies. Either way,
315 	 * we ease up on throttling domains with bad latencies.
316 	 */
317 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
318 		unsigned int orig_depth, depth;
319 		int p99;
320 
321 		p99 = calculate_percentile(kqd, sched_domain,
322 					   KYBER_TOTAL_LATENCY, 99);
323 		/*
324 		 * This is kind of subtle: different domains will not
325 		 * necessarily have enough samples to calculate the latency
326 		 * percentiles during the same window, so we have to remember
327 		 * the p99 for the next time we observe congestion; once we do,
328 		 * we don't want to throttle again until we get more data, so we
329 		 * reset it to -1.
330 		 */
331 		if (bad) {
332 			if (p99 < 0)
333 				p99 = kqd->domain_p99[sched_domain];
334 			kqd->domain_p99[sched_domain] = -1;
335 		} else if (p99 >= 0) {
336 			kqd->domain_p99[sched_domain] = p99;
337 		}
338 		if (p99 < 0)
339 			continue;
340 
341 		/*
342 		 * If this domain has bad latency, throttle less. Otherwise,
343 		 * throttle more iff we determined that there is congestion.
344 		 *
345 		 * The new depth is scaled linearly with the p99 latency vs the
346 		 * latency target. E.g., if the p99 is 3/4 of the target, then
347 		 * we throttle down to 3/4 of the current depth, and if the p99
348 		 * is 2x the target, then we double the depth.
349 		 */
350 		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
351 			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
352 			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
353 			kyber_resize_domain(kqd, sched_domain, depth);
354 		}
355 	}
356 }
357 
358 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
359 {
360 	struct kyber_queue_data *kqd;
361 	int ret = -ENOMEM;
362 	int i;
363 
364 	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
365 	if (!kqd)
366 		goto err;
367 
368 	kqd->q = q;
369 
370 	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
371 					    GFP_KERNEL | __GFP_ZERO);
372 	if (!kqd->cpu_latency)
373 		goto err_kqd;
374 
375 	timer_setup(&kqd->timer, kyber_timer_fn, 0);
376 
377 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
378 		WARN_ON(!kyber_depth[i]);
379 		WARN_ON(!kyber_batch_size[i]);
380 		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
381 					      kyber_depth[i], -1, false,
382 					      GFP_KERNEL, q->node);
383 		if (ret) {
384 			while (--i >= 0)
385 				sbitmap_queue_free(&kqd->domain_tokens[i]);
386 			goto err_buckets;
387 		}
388 	}
389 
390 	for (i = 0; i < KYBER_OTHER; i++) {
391 		kqd->domain_p99[i] = -1;
392 		kqd->latency_targets[i] = kyber_latency_targets[i];
393 	}
394 
395 	return kqd;
396 
397 err_buckets:
398 	free_percpu(kqd->cpu_latency);
399 err_kqd:
400 	kfree(kqd);
401 err:
402 	return ERR_PTR(ret);
403 }
404 
405 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
406 {
407 	struct kyber_queue_data *kqd;
408 	struct elevator_queue *eq;
409 
410 	eq = elevator_alloc(q, e);
411 	if (!eq)
412 		return -ENOMEM;
413 
414 	kqd = kyber_queue_data_alloc(q);
415 	if (IS_ERR(kqd)) {
416 		kobject_put(&eq->kobj);
417 		return PTR_ERR(kqd);
418 	}
419 
420 	blk_stat_enable_accounting(q);
421 
422 	eq->elevator_data = kqd;
423 	q->elevator = eq;
424 
425 	return 0;
426 }
427 
428 static void kyber_exit_sched(struct elevator_queue *e)
429 {
430 	struct kyber_queue_data *kqd = e->elevator_data;
431 	int i;
432 
433 	del_timer_sync(&kqd->timer);
434 
435 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
436 		sbitmap_queue_free(&kqd->domain_tokens[i]);
437 	free_percpu(kqd->cpu_latency);
438 	kfree(kqd);
439 }
440 
441 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
442 {
443 	unsigned int i;
444 
445 	spin_lock_init(&kcq->lock);
446 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
447 		INIT_LIST_HEAD(&kcq->rq_list[i]);
448 }
449 
450 static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
451 {
452 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
453 	struct blk_mq_tags *tags = hctx->sched_tags;
454 	unsigned int shift = tags->bitmap_tags->sb.shift;
455 
456 	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
457 
458 	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, kqd->async_depth);
459 }
460 
461 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
462 {
463 	struct kyber_hctx_data *khd;
464 	int i;
465 
466 	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
467 	if (!khd)
468 		return -ENOMEM;
469 
470 	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
471 				       sizeof(struct kyber_ctx_queue),
472 				       GFP_KERNEL, hctx->numa_node);
473 	if (!khd->kcqs)
474 		goto err_khd;
475 
476 	for (i = 0; i < hctx->nr_ctx; i++)
477 		kyber_ctx_queue_init(&khd->kcqs[i]);
478 
479 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
480 		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
481 				      ilog2(8), GFP_KERNEL, hctx->numa_node)) {
482 			while (--i >= 0)
483 				sbitmap_free(&khd->kcq_map[i]);
484 			goto err_kcqs;
485 		}
486 	}
487 
488 	spin_lock_init(&khd->lock);
489 
490 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
491 		INIT_LIST_HEAD(&khd->rqs[i]);
492 		khd->domain_wait[i].sbq = NULL;
493 		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
494 					  kyber_domain_wake);
495 		khd->domain_wait[i].wait.private = hctx;
496 		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
497 		atomic_set(&khd->wait_index[i], 0);
498 	}
499 
500 	khd->cur_domain = 0;
501 	khd->batching = 0;
502 
503 	hctx->sched_data = khd;
504 	kyber_depth_updated(hctx);
505 
506 	return 0;
507 
508 err_kcqs:
509 	kfree(khd->kcqs);
510 err_khd:
511 	kfree(khd);
512 	return -ENOMEM;
513 }
514 
515 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
516 {
517 	struct kyber_hctx_data *khd = hctx->sched_data;
518 	int i;
519 
520 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
521 		sbitmap_free(&khd->kcq_map[i]);
522 	kfree(khd->kcqs);
523 	kfree(hctx->sched_data);
524 }
525 
526 static int rq_get_domain_token(struct request *rq)
527 {
528 	return (long)rq->elv.priv[0];
529 }
530 
531 static void rq_set_domain_token(struct request *rq, int token)
532 {
533 	rq->elv.priv[0] = (void *)(long)token;
534 }
535 
536 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
537 				  struct request *rq)
538 {
539 	unsigned int sched_domain;
540 	int nr;
541 
542 	nr = rq_get_domain_token(rq);
543 	if (nr != -1) {
544 		sched_domain = kyber_sched_domain(rq->cmd_flags);
545 		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
546 				    rq->mq_ctx->cpu);
547 	}
548 }
549 
550 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
551 {
552 	/*
553 	 * We use the scheduler tags as per-hardware queue queueing tokens.
554 	 * Async requests can be limited at this stage.
555 	 */
556 	if (!op_is_sync(op)) {
557 		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
558 
559 		data->shallow_depth = kqd->async_depth;
560 	}
561 }
562 
563 static bool kyber_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
564 		unsigned int nr_segs)
565 {
566 	struct kyber_hctx_data *khd = hctx->sched_data;
567 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(hctx->queue);
568 	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
569 	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
570 	struct list_head *rq_list = &kcq->rq_list[sched_domain];
571 	bool merged;
572 
573 	spin_lock(&kcq->lock);
574 	merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
575 	spin_unlock(&kcq->lock);
576 
577 	return merged;
578 }
579 
580 static void kyber_prepare_request(struct request *rq)
581 {
582 	rq_set_domain_token(rq, -1);
583 }
584 
585 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
586 				  struct list_head *rq_list, bool at_head)
587 {
588 	struct kyber_hctx_data *khd = hctx->sched_data;
589 	struct request *rq, *next;
590 
591 	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
592 		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
593 		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
594 		struct list_head *head = &kcq->rq_list[sched_domain];
595 
596 		spin_lock(&kcq->lock);
597 		if (at_head)
598 			list_move(&rq->queuelist, head);
599 		else
600 			list_move_tail(&rq->queuelist, head);
601 		sbitmap_set_bit(&khd->kcq_map[sched_domain],
602 				rq->mq_ctx->index_hw[hctx->type]);
603 		trace_block_rq_insert(rq);
604 		spin_unlock(&kcq->lock);
605 	}
606 }
607 
608 static void kyber_finish_request(struct request *rq)
609 {
610 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
611 
612 	rq_clear_domain_token(kqd, rq);
613 }
614 
615 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
616 			       unsigned int sched_domain, unsigned int type,
617 			       u64 target, u64 latency)
618 {
619 	unsigned int bucket;
620 	u64 divisor;
621 
622 	if (latency > 0) {
623 		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
624 		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
625 			       KYBER_LATENCY_BUCKETS - 1);
626 	} else {
627 		bucket = 0;
628 	}
629 
630 	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
631 }
632 
633 static void kyber_completed_request(struct request *rq, u64 now)
634 {
635 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
636 	struct kyber_cpu_latency *cpu_latency;
637 	unsigned int sched_domain;
638 	u64 target;
639 
640 	sched_domain = kyber_sched_domain(rq->cmd_flags);
641 	if (sched_domain == KYBER_OTHER)
642 		return;
643 
644 	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
645 	target = kqd->latency_targets[sched_domain];
646 	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
647 			   target, now - rq->start_time_ns);
648 	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
649 			   now - rq->io_start_time_ns);
650 	put_cpu_ptr(kqd->cpu_latency);
651 
652 	timer_reduce(&kqd->timer, jiffies + HZ / 10);
653 }
654 
655 struct flush_kcq_data {
656 	struct kyber_hctx_data *khd;
657 	unsigned int sched_domain;
658 	struct list_head *list;
659 };
660 
661 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
662 {
663 	struct flush_kcq_data *flush_data = data;
664 	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
665 
666 	spin_lock(&kcq->lock);
667 	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
668 			      flush_data->list);
669 	sbitmap_clear_bit(sb, bitnr);
670 	spin_unlock(&kcq->lock);
671 
672 	return true;
673 }
674 
675 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
676 				  unsigned int sched_domain,
677 				  struct list_head *list)
678 {
679 	struct flush_kcq_data data = {
680 		.khd = khd,
681 		.sched_domain = sched_domain,
682 		.list = list,
683 	};
684 
685 	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
686 			     flush_busy_kcq, &data);
687 }
688 
689 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
690 			     void *key)
691 {
692 	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
693 	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
694 
695 	sbitmap_del_wait_queue(wait);
696 	blk_mq_run_hw_queue(hctx, true);
697 	return 1;
698 }
699 
700 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
701 				  struct kyber_hctx_data *khd,
702 				  struct blk_mq_hw_ctx *hctx)
703 {
704 	unsigned int sched_domain = khd->cur_domain;
705 	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
706 	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
707 	struct sbq_wait_state *ws;
708 	int nr;
709 
710 	nr = __sbitmap_queue_get(domain_tokens);
711 
712 	/*
713 	 * If we failed to get a domain token, make sure the hardware queue is
714 	 * run when one becomes available. Note that this is serialized on
715 	 * khd->lock, but we still need to be careful about the waker.
716 	 */
717 	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
718 		ws = sbq_wait_ptr(domain_tokens,
719 				  &khd->wait_index[sched_domain]);
720 		khd->domain_ws[sched_domain] = ws;
721 		sbitmap_add_wait_queue(domain_tokens, ws, wait);
722 
723 		/*
724 		 * Try again in case a token was freed before we got on the wait
725 		 * queue.
726 		 */
727 		nr = __sbitmap_queue_get(domain_tokens);
728 	}
729 
730 	/*
731 	 * If we got a token while we were on the wait queue, remove ourselves
732 	 * from the wait queue to ensure that all wake ups make forward
733 	 * progress. It's possible that the waker already deleted the entry
734 	 * between the !list_empty_careful() check and us grabbing the lock, but
735 	 * list_del_init() is okay with that.
736 	 */
737 	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
738 		ws = khd->domain_ws[sched_domain];
739 		spin_lock_irq(&ws->wait.lock);
740 		sbitmap_del_wait_queue(wait);
741 		spin_unlock_irq(&ws->wait.lock);
742 	}
743 
744 	return nr;
745 }
746 
747 static struct request *
748 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
749 			  struct kyber_hctx_data *khd,
750 			  struct blk_mq_hw_ctx *hctx)
751 {
752 	struct list_head *rqs;
753 	struct request *rq;
754 	int nr;
755 
756 	rqs = &khd->rqs[khd->cur_domain];
757 
758 	/*
759 	 * If we already have a flushed request, then we just need to get a
760 	 * token for it. Otherwise, if there are pending requests in the kcqs,
761 	 * flush the kcqs, but only if we can get a token. If not, we should
762 	 * leave the requests in the kcqs so that they can be merged. Note that
763 	 * khd->lock serializes the flushes, so if we observed any bit set in
764 	 * the kcq_map, we will always get a request.
765 	 */
766 	rq = list_first_entry_or_null(rqs, struct request, queuelist);
767 	if (rq) {
768 		nr = kyber_get_domain_token(kqd, khd, hctx);
769 		if (nr >= 0) {
770 			khd->batching++;
771 			rq_set_domain_token(rq, nr);
772 			list_del_init(&rq->queuelist);
773 			return rq;
774 		} else {
775 			trace_kyber_throttled(kqd->q,
776 					      kyber_domain_names[khd->cur_domain]);
777 		}
778 	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
779 		nr = kyber_get_domain_token(kqd, khd, hctx);
780 		if (nr >= 0) {
781 			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
782 			rq = list_first_entry(rqs, struct request, queuelist);
783 			khd->batching++;
784 			rq_set_domain_token(rq, nr);
785 			list_del_init(&rq->queuelist);
786 			return rq;
787 		} else {
788 			trace_kyber_throttled(kqd->q,
789 					      kyber_domain_names[khd->cur_domain]);
790 		}
791 	}
792 
793 	/* There were either no pending requests or no tokens. */
794 	return NULL;
795 }
796 
797 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
798 {
799 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
800 	struct kyber_hctx_data *khd = hctx->sched_data;
801 	struct request *rq;
802 	int i;
803 
804 	spin_lock(&khd->lock);
805 
806 	/*
807 	 * First, if we are still entitled to batch, try to dispatch a request
808 	 * from the batch.
809 	 */
810 	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
811 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
812 		if (rq)
813 			goto out;
814 	}
815 
816 	/*
817 	 * Either,
818 	 * 1. We were no longer entitled to a batch.
819 	 * 2. The domain we were batching didn't have any requests.
820 	 * 3. The domain we were batching was out of tokens.
821 	 *
822 	 * Start another batch. Note that this wraps back around to the original
823 	 * domain if no other domains have requests or tokens.
824 	 */
825 	khd->batching = 0;
826 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
827 		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
828 			khd->cur_domain = 0;
829 		else
830 			khd->cur_domain++;
831 
832 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
833 		if (rq)
834 			goto out;
835 	}
836 
837 	rq = NULL;
838 out:
839 	spin_unlock(&khd->lock);
840 	return rq;
841 }
842 
843 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
844 {
845 	struct kyber_hctx_data *khd = hctx->sched_data;
846 	int i;
847 
848 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
849 		if (!list_empty_careful(&khd->rqs[i]) ||
850 		    sbitmap_any_bit_set(&khd->kcq_map[i]))
851 			return true;
852 	}
853 
854 	return false;
855 }
856 
857 #define KYBER_LAT_SHOW_STORE(domain, name)				\
858 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
859 				       char *page)			\
860 {									\
861 	struct kyber_queue_data *kqd = e->elevator_data;		\
862 									\
863 	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
864 }									\
865 									\
866 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
867 					const char *page, size_t count)	\
868 {									\
869 	struct kyber_queue_data *kqd = e->elevator_data;		\
870 	unsigned long long nsec;					\
871 	int ret;							\
872 									\
873 	ret = kstrtoull(page, 10, &nsec);				\
874 	if (ret)							\
875 		return ret;						\
876 									\
877 	kqd->latency_targets[domain] = nsec;				\
878 									\
879 	return count;							\
880 }
881 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
882 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
883 #undef KYBER_LAT_SHOW_STORE
884 
885 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
886 static struct elv_fs_entry kyber_sched_attrs[] = {
887 	KYBER_LAT_ATTR(read),
888 	KYBER_LAT_ATTR(write),
889 	__ATTR_NULL
890 };
891 #undef KYBER_LAT_ATTR
892 
893 #ifdef CONFIG_BLK_DEBUG_FS
894 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
895 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
896 {									\
897 	struct request_queue *q = data;					\
898 	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
899 									\
900 	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
901 	return 0;							\
902 }									\
903 									\
904 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
905 	__acquires(&khd->lock)						\
906 {									\
907 	struct blk_mq_hw_ctx *hctx = m->private;			\
908 	struct kyber_hctx_data *khd = hctx->sched_data;			\
909 									\
910 	spin_lock(&khd->lock);						\
911 	return seq_list_start(&khd->rqs[domain], *pos);			\
912 }									\
913 									\
914 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
915 				     loff_t *pos)			\
916 {									\
917 	struct blk_mq_hw_ctx *hctx = m->private;			\
918 	struct kyber_hctx_data *khd = hctx->sched_data;			\
919 									\
920 	return seq_list_next(v, &khd->rqs[domain], pos);		\
921 }									\
922 									\
923 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
924 	__releases(&khd->lock)						\
925 {									\
926 	struct blk_mq_hw_ctx *hctx = m->private;			\
927 	struct kyber_hctx_data *khd = hctx->sched_data;			\
928 									\
929 	spin_unlock(&khd->lock);					\
930 }									\
931 									\
932 static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
933 	.start	= kyber_##name##_rqs_start,				\
934 	.next	= kyber_##name##_rqs_next,				\
935 	.stop	= kyber_##name##_rqs_stop,				\
936 	.show	= blk_mq_debugfs_rq_show,				\
937 };									\
938 									\
939 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
940 {									\
941 	struct blk_mq_hw_ctx *hctx = data;				\
942 	struct kyber_hctx_data *khd = hctx->sched_data;			\
943 	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
944 									\
945 	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
946 	return 0;							\
947 }
948 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
949 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
950 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
951 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
952 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
953 
954 static int kyber_async_depth_show(void *data, struct seq_file *m)
955 {
956 	struct request_queue *q = data;
957 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
958 
959 	seq_printf(m, "%u\n", kqd->async_depth);
960 	return 0;
961 }
962 
963 static int kyber_cur_domain_show(void *data, struct seq_file *m)
964 {
965 	struct blk_mq_hw_ctx *hctx = data;
966 	struct kyber_hctx_data *khd = hctx->sched_data;
967 
968 	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
969 	return 0;
970 }
971 
972 static int kyber_batching_show(void *data, struct seq_file *m)
973 {
974 	struct blk_mq_hw_ctx *hctx = data;
975 	struct kyber_hctx_data *khd = hctx->sched_data;
976 
977 	seq_printf(m, "%u\n", khd->batching);
978 	return 0;
979 }
980 
981 #define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
982 	{#name "_tokens", 0400, kyber_##name##_tokens_show}
983 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
984 	KYBER_QUEUE_DOMAIN_ATTRS(read),
985 	KYBER_QUEUE_DOMAIN_ATTRS(write),
986 	KYBER_QUEUE_DOMAIN_ATTRS(discard),
987 	KYBER_QUEUE_DOMAIN_ATTRS(other),
988 	{"async_depth", 0400, kyber_async_depth_show},
989 	{},
990 };
991 #undef KYBER_QUEUE_DOMAIN_ATTRS
992 
993 #define KYBER_HCTX_DOMAIN_ATTRS(name)					\
994 	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
995 	{#name "_waiting", 0400, kyber_##name##_waiting_show}
996 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
997 	KYBER_HCTX_DOMAIN_ATTRS(read),
998 	KYBER_HCTX_DOMAIN_ATTRS(write),
999 	KYBER_HCTX_DOMAIN_ATTRS(discard),
1000 	KYBER_HCTX_DOMAIN_ATTRS(other),
1001 	{"cur_domain", 0400, kyber_cur_domain_show},
1002 	{"batching", 0400, kyber_batching_show},
1003 	{},
1004 };
1005 #undef KYBER_HCTX_DOMAIN_ATTRS
1006 #endif
1007 
1008 static struct elevator_type kyber_sched = {
1009 	.ops = {
1010 		.init_sched = kyber_init_sched,
1011 		.exit_sched = kyber_exit_sched,
1012 		.init_hctx = kyber_init_hctx,
1013 		.exit_hctx = kyber_exit_hctx,
1014 		.limit_depth = kyber_limit_depth,
1015 		.bio_merge = kyber_bio_merge,
1016 		.prepare_request = kyber_prepare_request,
1017 		.insert_requests = kyber_insert_requests,
1018 		.finish_request = kyber_finish_request,
1019 		.requeue_request = kyber_finish_request,
1020 		.completed_request = kyber_completed_request,
1021 		.dispatch_request = kyber_dispatch_request,
1022 		.has_work = kyber_has_work,
1023 		.depth_updated = kyber_depth_updated,
1024 	},
1025 #ifdef CONFIG_BLK_DEBUG_FS
1026 	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1027 	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1028 #endif
1029 	.elevator_attrs = kyber_sched_attrs,
1030 	.elevator_name = "kyber",
1031 	.elevator_features = ELEVATOR_F_MQ_AWARE,
1032 	.elevator_owner = THIS_MODULE,
1033 };
1034 
1035 static int __init kyber_init(void)
1036 {
1037 	return elv_register(&kyber_sched);
1038 }
1039 
1040 static void __exit kyber_exit(void)
1041 {
1042 	elv_unregister(&kyber_sched);
1043 }
1044 
1045 module_init(kyber_init);
1046 module_exit(kyber_exit);
1047 
1048 MODULE_AUTHOR("Omar Sandoval");
1049 MODULE_LICENSE("GPL");
1050 MODULE_DESCRIPTION("Kyber I/O scheduler");
1051