1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using 4 * scalable techniques. 5 * 6 * Copyright (C) 2017 Facebook 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/module.h> 13 #include <linux/sbitmap.h> 14 15 #include <trace/events/block.h> 16 17 #include "elevator.h" 18 #include "blk.h" 19 #include "blk-mq.h" 20 #include "blk-mq-debugfs.h" 21 #include "blk-mq-sched.h" 22 #include "blk-mq-tag.h" 23 24 #define CREATE_TRACE_POINTS 25 #include <trace/events/kyber.h> 26 27 /* 28 * Scheduling domains: the device is divided into multiple domains based on the 29 * request type. 30 */ 31 enum { 32 KYBER_READ, 33 KYBER_WRITE, 34 KYBER_DISCARD, 35 KYBER_OTHER, 36 KYBER_NUM_DOMAINS, 37 }; 38 39 static const char *kyber_domain_names[] = { 40 [KYBER_READ] = "READ", 41 [KYBER_WRITE] = "WRITE", 42 [KYBER_DISCARD] = "DISCARD", 43 [KYBER_OTHER] = "OTHER", 44 }; 45 46 enum { 47 /* 48 * In order to prevent starvation of synchronous requests by a flood of 49 * asynchronous requests, we reserve 25% of requests for synchronous 50 * operations. 51 */ 52 KYBER_ASYNC_PERCENT = 75, 53 }; 54 55 /* 56 * Maximum device-wide depth for each scheduling domain. 57 * 58 * Even for fast devices with lots of tags like NVMe, you can saturate the 59 * device with only a fraction of the maximum possible queue depth. So, we cap 60 * these to a reasonable value. 61 */ 62 static const unsigned int kyber_depth[] = { 63 [KYBER_READ] = 256, 64 [KYBER_WRITE] = 128, 65 [KYBER_DISCARD] = 64, 66 [KYBER_OTHER] = 16, 67 }; 68 69 /* 70 * Default latency targets for each scheduling domain. 71 */ 72 static const u64 kyber_latency_targets[] = { 73 [KYBER_READ] = 2ULL * NSEC_PER_MSEC, 74 [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC, 75 [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC, 76 }; 77 78 /* 79 * Batch size (number of requests we'll dispatch in a row) for each scheduling 80 * domain. 81 */ 82 static const unsigned int kyber_batch_size[] = { 83 [KYBER_READ] = 16, 84 [KYBER_WRITE] = 8, 85 [KYBER_DISCARD] = 1, 86 [KYBER_OTHER] = 1, 87 }; 88 89 /* 90 * Requests latencies are recorded in a histogram with buckets defined relative 91 * to the target latency: 92 * 93 * <= 1/4 * target latency 94 * <= 1/2 * target latency 95 * <= 3/4 * target latency 96 * <= target latency 97 * <= 1 1/4 * target latency 98 * <= 1 1/2 * target latency 99 * <= 1 3/4 * target latency 100 * > 1 3/4 * target latency 101 */ 102 enum { 103 /* 104 * The width of the latency histogram buckets is 105 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency. 106 */ 107 KYBER_LATENCY_SHIFT = 2, 108 /* 109 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency, 110 * thus, "good". 111 */ 112 KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT, 113 /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */ 114 KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT, 115 }; 116 117 /* 118 * We measure both the total latency and the I/O latency (i.e., latency after 119 * submitting to the device). 120 */ 121 enum { 122 KYBER_TOTAL_LATENCY, 123 KYBER_IO_LATENCY, 124 }; 125 126 static const char *kyber_latency_type_names[] = { 127 [KYBER_TOTAL_LATENCY] = "total", 128 [KYBER_IO_LATENCY] = "I/O", 129 }; 130 131 /* 132 * Per-cpu latency histograms: total latency and I/O latency for each scheduling 133 * domain except for KYBER_OTHER. 134 */ 135 struct kyber_cpu_latency { 136 atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS]; 137 }; 138 139 /* 140 * There is a same mapping between ctx & hctx and kcq & khd, 141 * we use request->mq_ctx->index_hw to index the kcq in khd. 142 */ 143 struct kyber_ctx_queue { 144 /* 145 * Used to ensure operations on rq_list and kcq_map to be an atmoic one. 146 * Also protect the rqs on rq_list when merge. 147 */ 148 spinlock_t lock; 149 struct list_head rq_list[KYBER_NUM_DOMAINS]; 150 } ____cacheline_aligned_in_smp; 151 152 struct kyber_queue_data { 153 struct request_queue *q; 154 dev_t dev; 155 156 /* 157 * Each scheduling domain has a limited number of in-flight requests 158 * device-wide, limited by these tokens. 159 */ 160 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS]; 161 162 /* 163 * Async request percentage, converted to per-word depth for 164 * sbitmap_get_shallow(). 165 */ 166 unsigned int async_depth; 167 168 struct kyber_cpu_latency __percpu *cpu_latency; 169 170 /* Timer for stats aggregation and adjusting domain tokens. */ 171 struct timer_list timer; 172 173 unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS]; 174 175 unsigned long latency_timeout[KYBER_OTHER]; 176 177 int domain_p99[KYBER_OTHER]; 178 179 /* Target latencies in nanoseconds. */ 180 u64 latency_targets[KYBER_OTHER]; 181 }; 182 183 struct kyber_hctx_data { 184 spinlock_t lock; 185 struct list_head rqs[KYBER_NUM_DOMAINS]; 186 unsigned int cur_domain; 187 unsigned int batching; 188 struct kyber_ctx_queue *kcqs; 189 struct sbitmap kcq_map[KYBER_NUM_DOMAINS]; 190 struct sbq_wait domain_wait[KYBER_NUM_DOMAINS]; 191 struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS]; 192 atomic_t wait_index[KYBER_NUM_DOMAINS]; 193 }; 194 195 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags, 196 void *key); 197 198 static unsigned int kyber_sched_domain(unsigned int op) 199 { 200 switch (op & REQ_OP_MASK) { 201 case REQ_OP_READ: 202 return KYBER_READ; 203 case REQ_OP_WRITE: 204 return KYBER_WRITE; 205 case REQ_OP_DISCARD: 206 return KYBER_DISCARD; 207 default: 208 return KYBER_OTHER; 209 } 210 } 211 212 static void flush_latency_buckets(struct kyber_queue_data *kqd, 213 struct kyber_cpu_latency *cpu_latency, 214 unsigned int sched_domain, unsigned int type) 215 { 216 unsigned int *buckets = kqd->latency_buckets[sched_domain][type]; 217 atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type]; 218 unsigned int bucket; 219 220 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++) 221 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0); 222 } 223 224 /* 225 * Calculate the histogram bucket with the given percentile rank, or -1 if there 226 * aren't enough samples yet. 227 */ 228 static int calculate_percentile(struct kyber_queue_data *kqd, 229 unsigned int sched_domain, unsigned int type, 230 unsigned int percentile) 231 { 232 unsigned int *buckets = kqd->latency_buckets[sched_domain][type]; 233 unsigned int bucket, samples = 0, percentile_samples; 234 235 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++) 236 samples += buckets[bucket]; 237 238 if (!samples) 239 return -1; 240 241 /* 242 * We do the calculation once we have 500 samples or one second passes 243 * since the first sample was recorded, whichever comes first. 244 */ 245 if (!kqd->latency_timeout[sched_domain]) 246 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL); 247 if (samples < 500 && 248 time_is_after_jiffies(kqd->latency_timeout[sched_domain])) { 249 return -1; 250 } 251 kqd->latency_timeout[sched_domain] = 0; 252 253 percentile_samples = DIV_ROUND_UP(samples * percentile, 100); 254 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) { 255 if (buckets[bucket] >= percentile_samples) 256 break; 257 percentile_samples -= buckets[bucket]; 258 } 259 memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type])); 260 261 trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain], 262 kyber_latency_type_names[type], percentile, 263 bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples); 264 265 return bucket; 266 } 267 268 static void kyber_resize_domain(struct kyber_queue_data *kqd, 269 unsigned int sched_domain, unsigned int depth) 270 { 271 depth = clamp(depth, 1U, kyber_depth[sched_domain]); 272 if (depth != kqd->domain_tokens[sched_domain].sb.depth) { 273 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth); 274 trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain], 275 depth); 276 } 277 } 278 279 static void kyber_timer_fn(struct timer_list *t) 280 { 281 struct kyber_queue_data *kqd = from_timer(kqd, t, timer); 282 unsigned int sched_domain; 283 int cpu; 284 bool bad = false; 285 286 /* Sum all of the per-cpu latency histograms. */ 287 for_each_online_cpu(cpu) { 288 struct kyber_cpu_latency *cpu_latency; 289 290 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu); 291 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { 292 flush_latency_buckets(kqd, cpu_latency, sched_domain, 293 KYBER_TOTAL_LATENCY); 294 flush_latency_buckets(kqd, cpu_latency, sched_domain, 295 KYBER_IO_LATENCY); 296 } 297 } 298 299 /* 300 * Check if any domains have a high I/O latency, which might indicate 301 * congestion in the device. Note that we use the p90; we don't want to 302 * be too sensitive to outliers here. 303 */ 304 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { 305 int p90; 306 307 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY, 308 90); 309 if (p90 >= KYBER_GOOD_BUCKETS) 310 bad = true; 311 } 312 313 /* 314 * Adjust the scheduling domain depths. If we determined that there was 315 * congestion, we throttle all domains with good latencies. Either way, 316 * we ease up on throttling domains with bad latencies. 317 */ 318 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { 319 unsigned int orig_depth, depth; 320 int p99; 321 322 p99 = calculate_percentile(kqd, sched_domain, 323 KYBER_TOTAL_LATENCY, 99); 324 /* 325 * This is kind of subtle: different domains will not 326 * necessarily have enough samples to calculate the latency 327 * percentiles during the same window, so we have to remember 328 * the p99 for the next time we observe congestion; once we do, 329 * we don't want to throttle again until we get more data, so we 330 * reset it to -1. 331 */ 332 if (bad) { 333 if (p99 < 0) 334 p99 = kqd->domain_p99[sched_domain]; 335 kqd->domain_p99[sched_domain] = -1; 336 } else if (p99 >= 0) { 337 kqd->domain_p99[sched_domain] = p99; 338 } 339 if (p99 < 0) 340 continue; 341 342 /* 343 * If this domain has bad latency, throttle less. Otherwise, 344 * throttle more iff we determined that there is congestion. 345 * 346 * The new depth is scaled linearly with the p99 latency vs the 347 * latency target. E.g., if the p99 is 3/4 of the target, then 348 * we throttle down to 3/4 of the current depth, and if the p99 349 * is 2x the target, then we double the depth. 350 */ 351 if (bad || p99 >= KYBER_GOOD_BUCKETS) { 352 orig_depth = kqd->domain_tokens[sched_domain].sb.depth; 353 depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT; 354 kyber_resize_domain(kqd, sched_domain, depth); 355 } 356 } 357 } 358 359 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q) 360 { 361 struct kyber_queue_data *kqd; 362 int ret = -ENOMEM; 363 int i; 364 365 kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node); 366 if (!kqd) 367 goto err; 368 369 kqd->q = q; 370 kqd->dev = disk_devt(q->disk); 371 372 kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency, 373 GFP_KERNEL | __GFP_ZERO); 374 if (!kqd->cpu_latency) 375 goto err_kqd; 376 377 timer_setup(&kqd->timer, kyber_timer_fn, 0); 378 379 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 380 WARN_ON(!kyber_depth[i]); 381 WARN_ON(!kyber_batch_size[i]); 382 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i], 383 kyber_depth[i], -1, false, 384 GFP_KERNEL, q->node); 385 if (ret) { 386 while (--i >= 0) 387 sbitmap_queue_free(&kqd->domain_tokens[i]); 388 goto err_buckets; 389 } 390 } 391 392 for (i = 0; i < KYBER_OTHER; i++) { 393 kqd->domain_p99[i] = -1; 394 kqd->latency_targets[i] = kyber_latency_targets[i]; 395 } 396 397 return kqd; 398 399 err_buckets: 400 free_percpu(kqd->cpu_latency); 401 err_kqd: 402 kfree(kqd); 403 err: 404 return ERR_PTR(ret); 405 } 406 407 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e) 408 { 409 struct kyber_queue_data *kqd; 410 struct elevator_queue *eq; 411 412 eq = elevator_alloc(q, e); 413 if (!eq) 414 return -ENOMEM; 415 416 kqd = kyber_queue_data_alloc(q); 417 if (IS_ERR(kqd)) { 418 kobject_put(&eq->kobj); 419 return PTR_ERR(kqd); 420 } 421 422 blk_stat_enable_accounting(q); 423 424 eq->elevator_data = kqd; 425 q->elevator = eq; 426 427 return 0; 428 } 429 430 static void kyber_exit_sched(struct elevator_queue *e) 431 { 432 struct kyber_queue_data *kqd = e->elevator_data; 433 int i; 434 435 del_timer_sync(&kqd->timer); 436 blk_stat_disable_accounting(kqd->q); 437 438 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 439 sbitmap_queue_free(&kqd->domain_tokens[i]); 440 free_percpu(kqd->cpu_latency); 441 kfree(kqd); 442 } 443 444 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq) 445 { 446 unsigned int i; 447 448 spin_lock_init(&kcq->lock); 449 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 450 INIT_LIST_HEAD(&kcq->rq_list[i]); 451 } 452 453 static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx) 454 { 455 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data; 456 struct blk_mq_tags *tags = hctx->sched_tags; 457 unsigned int shift = tags->bitmap_tags.sb.shift; 458 459 kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U; 460 461 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth); 462 } 463 464 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 465 { 466 struct kyber_hctx_data *khd; 467 int i; 468 469 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node); 470 if (!khd) 471 return -ENOMEM; 472 473 khd->kcqs = kmalloc_array_node(hctx->nr_ctx, 474 sizeof(struct kyber_ctx_queue), 475 GFP_KERNEL, hctx->numa_node); 476 if (!khd->kcqs) 477 goto err_khd; 478 479 for (i = 0; i < hctx->nr_ctx; i++) 480 kyber_ctx_queue_init(&khd->kcqs[i]); 481 482 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 483 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx, 484 ilog2(8), GFP_KERNEL, hctx->numa_node, 485 false, false)) { 486 while (--i >= 0) 487 sbitmap_free(&khd->kcq_map[i]); 488 goto err_kcqs; 489 } 490 } 491 492 spin_lock_init(&khd->lock); 493 494 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 495 INIT_LIST_HEAD(&khd->rqs[i]); 496 khd->domain_wait[i].sbq = NULL; 497 init_waitqueue_func_entry(&khd->domain_wait[i].wait, 498 kyber_domain_wake); 499 khd->domain_wait[i].wait.private = hctx; 500 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry); 501 atomic_set(&khd->wait_index[i], 0); 502 } 503 504 khd->cur_domain = 0; 505 khd->batching = 0; 506 507 hctx->sched_data = khd; 508 kyber_depth_updated(hctx); 509 510 return 0; 511 512 err_kcqs: 513 kfree(khd->kcqs); 514 err_khd: 515 kfree(khd); 516 return -ENOMEM; 517 } 518 519 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 520 { 521 struct kyber_hctx_data *khd = hctx->sched_data; 522 int i; 523 524 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 525 sbitmap_free(&khd->kcq_map[i]); 526 kfree(khd->kcqs); 527 kfree(hctx->sched_data); 528 } 529 530 static int rq_get_domain_token(struct request *rq) 531 { 532 return (long)rq->elv.priv[0]; 533 } 534 535 static void rq_set_domain_token(struct request *rq, int token) 536 { 537 rq->elv.priv[0] = (void *)(long)token; 538 } 539 540 static void rq_clear_domain_token(struct kyber_queue_data *kqd, 541 struct request *rq) 542 { 543 unsigned int sched_domain; 544 int nr; 545 546 nr = rq_get_domain_token(rq); 547 if (nr != -1) { 548 sched_domain = kyber_sched_domain(rq->cmd_flags); 549 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr, 550 rq->mq_ctx->cpu); 551 } 552 } 553 554 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data) 555 { 556 /* 557 * We use the scheduler tags as per-hardware queue queueing tokens. 558 * Async requests can be limited at this stage. 559 */ 560 if (!op_is_sync(op)) { 561 struct kyber_queue_data *kqd = data->q->elevator->elevator_data; 562 563 data->shallow_depth = kqd->async_depth; 564 } 565 } 566 567 static bool kyber_bio_merge(struct request_queue *q, struct bio *bio, 568 unsigned int nr_segs) 569 { 570 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 571 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 572 struct kyber_hctx_data *khd = hctx->sched_data; 573 struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]]; 574 unsigned int sched_domain = kyber_sched_domain(bio->bi_opf); 575 struct list_head *rq_list = &kcq->rq_list[sched_domain]; 576 bool merged; 577 578 spin_lock(&kcq->lock); 579 merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs); 580 spin_unlock(&kcq->lock); 581 582 return merged; 583 } 584 585 static void kyber_prepare_request(struct request *rq) 586 { 587 rq_set_domain_token(rq, -1); 588 } 589 590 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx, 591 struct list_head *rq_list, bool at_head) 592 { 593 struct kyber_hctx_data *khd = hctx->sched_data; 594 struct request *rq, *next; 595 596 list_for_each_entry_safe(rq, next, rq_list, queuelist) { 597 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags); 598 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]]; 599 struct list_head *head = &kcq->rq_list[sched_domain]; 600 601 spin_lock(&kcq->lock); 602 trace_block_rq_insert(rq); 603 if (at_head) 604 list_move(&rq->queuelist, head); 605 else 606 list_move_tail(&rq->queuelist, head); 607 sbitmap_set_bit(&khd->kcq_map[sched_domain], 608 rq->mq_ctx->index_hw[hctx->type]); 609 spin_unlock(&kcq->lock); 610 } 611 } 612 613 static void kyber_finish_request(struct request *rq) 614 { 615 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data; 616 617 rq_clear_domain_token(kqd, rq); 618 } 619 620 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency, 621 unsigned int sched_domain, unsigned int type, 622 u64 target, u64 latency) 623 { 624 unsigned int bucket; 625 u64 divisor; 626 627 if (latency > 0) { 628 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1); 629 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor), 630 KYBER_LATENCY_BUCKETS - 1); 631 } else { 632 bucket = 0; 633 } 634 635 atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]); 636 } 637 638 static void kyber_completed_request(struct request *rq, u64 now) 639 { 640 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data; 641 struct kyber_cpu_latency *cpu_latency; 642 unsigned int sched_domain; 643 u64 target; 644 645 sched_domain = kyber_sched_domain(rq->cmd_flags); 646 if (sched_domain == KYBER_OTHER) 647 return; 648 649 cpu_latency = get_cpu_ptr(kqd->cpu_latency); 650 target = kqd->latency_targets[sched_domain]; 651 add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY, 652 target, now - rq->start_time_ns); 653 add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target, 654 now - rq->io_start_time_ns); 655 put_cpu_ptr(kqd->cpu_latency); 656 657 timer_reduce(&kqd->timer, jiffies + HZ / 10); 658 } 659 660 struct flush_kcq_data { 661 struct kyber_hctx_data *khd; 662 unsigned int sched_domain; 663 struct list_head *list; 664 }; 665 666 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data) 667 { 668 struct flush_kcq_data *flush_data = data; 669 struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr]; 670 671 spin_lock(&kcq->lock); 672 list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain], 673 flush_data->list); 674 sbitmap_clear_bit(sb, bitnr); 675 spin_unlock(&kcq->lock); 676 677 return true; 678 } 679 680 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd, 681 unsigned int sched_domain, 682 struct list_head *list) 683 { 684 struct flush_kcq_data data = { 685 .khd = khd, 686 .sched_domain = sched_domain, 687 .list = list, 688 }; 689 690 sbitmap_for_each_set(&khd->kcq_map[sched_domain], 691 flush_busy_kcq, &data); 692 } 693 694 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags, 695 void *key) 696 { 697 struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private); 698 struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait); 699 700 sbitmap_del_wait_queue(wait); 701 blk_mq_run_hw_queue(hctx, true); 702 return 1; 703 } 704 705 static int kyber_get_domain_token(struct kyber_queue_data *kqd, 706 struct kyber_hctx_data *khd, 707 struct blk_mq_hw_ctx *hctx) 708 { 709 unsigned int sched_domain = khd->cur_domain; 710 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain]; 711 struct sbq_wait *wait = &khd->domain_wait[sched_domain]; 712 struct sbq_wait_state *ws; 713 int nr; 714 715 nr = __sbitmap_queue_get(domain_tokens); 716 717 /* 718 * If we failed to get a domain token, make sure the hardware queue is 719 * run when one becomes available. Note that this is serialized on 720 * khd->lock, but we still need to be careful about the waker. 721 */ 722 if (nr < 0 && list_empty_careful(&wait->wait.entry)) { 723 ws = sbq_wait_ptr(domain_tokens, 724 &khd->wait_index[sched_domain]); 725 khd->domain_ws[sched_domain] = ws; 726 sbitmap_add_wait_queue(domain_tokens, ws, wait); 727 728 /* 729 * Try again in case a token was freed before we got on the wait 730 * queue. 731 */ 732 nr = __sbitmap_queue_get(domain_tokens); 733 } 734 735 /* 736 * If we got a token while we were on the wait queue, remove ourselves 737 * from the wait queue to ensure that all wake ups make forward 738 * progress. It's possible that the waker already deleted the entry 739 * between the !list_empty_careful() check and us grabbing the lock, but 740 * list_del_init() is okay with that. 741 */ 742 if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) { 743 ws = khd->domain_ws[sched_domain]; 744 spin_lock_irq(&ws->wait.lock); 745 sbitmap_del_wait_queue(wait); 746 spin_unlock_irq(&ws->wait.lock); 747 } 748 749 return nr; 750 } 751 752 static struct request * 753 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd, 754 struct kyber_hctx_data *khd, 755 struct blk_mq_hw_ctx *hctx) 756 { 757 struct list_head *rqs; 758 struct request *rq; 759 int nr; 760 761 rqs = &khd->rqs[khd->cur_domain]; 762 763 /* 764 * If we already have a flushed request, then we just need to get a 765 * token for it. Otherwise, if there are pending requests in the kcqs, 766 * flush the kcqs, but only if we can get a token. If not, we should 767 * leave the requests in the kcqs so that they can be merged. Note that 768 * khd->lock serializes the flushes, so if we observed any bit set in 769 * the kcq_map, we will always get a request. 770 */ 771 rq = list_first_entry_or_null(rqs, struct request, queuelist); 772 if (rq) { 773 nr = kyber_get_domain_token(kqd, khd, hctx); 774 if (nr >= 0) { 775 khd->batching++; 776 rq_set_domain_token(rq, nr); 777 list_del_init(&rq->queuelist); 778 return rq; 779 } else { 780 trace_kyber_throttled(kqd->dev, 781 kyber_domain_names[khd->cur_domain]); 782 } 783 } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) { 784 nr = kyber_get_domain_token(kqd, khd, hctx); 785 if (nr >= 0) { 786 kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs); 787 rq = list_first_entry(rqs, struct request, queuelist); 788 khd->batching++; 789 rq_set_domain_token(rq, nr); 790 list_del_init(&rq->queuelist); 791 return rq; 792 } else { 793 trace_kyber_throttled(kqd->dev, 794 kyber_domain_names[khd->cur_domain]); 795 } 796 } 797 798 /* There were either no pending requests or no tokens. */ 799 return NULL; 800 } 801 802 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx) 803 { 804 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data; 805 struct kyber_hctx_data *khd = hctx->sched_data; 806 struct request *rq; 807 int i; 808 809 spin_lock(&khd->lock); 810 811 /* 812 * First, if we are still entitled to batch, try to dispatch a request 813 * from the batch. 814 */ 815 if (khd->batching < kyber_batch_size[khd->cur_domain]) { 816 rq = kyber_dispatch_cur_domain(kqd, khd, hctx); 817 if (rq) 818 goto out; 819 } 820 821 /* 822 * Either, 823 * 1. We were no longer entitled to a batch. 824 * 2. The domain we were batching didn't have any requests. 825 * 3. The domain we were batching was out of tokens. 826 * 827 * Start another batch. Note that this wraps back around to the original 828 * domain if no other domains have requests or tokens. 829 */ 830 khd->batching = 0; 831 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 832 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1) 833 khd->cur_domain = 0; 834 else 835 khd->cur_domain++; 836 837 rq = kyber_dispatch_cur_domain(kqd, khd, hctx); 838 if (rq) 839 goto out; 840 } 841 842 rq = NULL; 843 out: 844 spin_unlock(&khd->lock); 845 return rq; 846 } 847 848 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx) 849 { 850 struct kyber_hctx_data *khd = hctx->sched_data; 851 int i; 852 853 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 854 if (!list_empty_careful(&khd->rqs[i]) || 855 sbitmap_any_bit_set(&khd->kcq_map[i])) 856 return true; 857 } 858 859 return false; 860 } 861 862 #define KYBER_LAT_SHOW_STORE(domain, name) \ 863 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \ 864 char *page) \ 865 { \ 866 struct kyber_queue_data *kqd = e->elevator_data; \ 867 \ 868 return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \ 869 } \ 870 \ 871 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \ 872 const char *page, size_t count) \ 873 { \ 874 struct kyber_queue_data *kqd = e->elevator_data; \ 875 unsigned long long nsec; \ 876 int ret; \ 877 \ 878 ret = kstrtoull(page, 10, &nsec); \ 879 if (ret) \ 880 return ret; \ 881 \ 882 kqd->latency_targets[domain] = nsec; \ 883 \ 884 return count; \ 885 } 886 KYBER_LAT_SHOW_STORE(KYBER_READ, read); 887 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write); 888 #undef KYBER_LAT_SHOW_STORE 889 890 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store) 891 static struct elv_fs_entry kyber_sched_attrs[] = { 892 KYBER_LAT_ATTR(read), 893 KYBER_LAT_ATTR(write), 894 __ATTR_NULL 895 }; 896 #undef KYBER_LAT_ATTR 897 898 #ifdef CONFIG_BLK_DEBUG_FS 899 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \ 900 static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \ 901 { \ 902 struct request_queue *q = data; \ 903 struct kyber_queue_data *kqd = q->elevator->elevator_data; \ 904 \ 905 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \ 906 return 0; \ 907 } \ 908 \ 909 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \ 910 __acquires(&khd->lock) \ 911 { \ 912 struct blk_mq_hw_ctx *hctx = m->private; \ 913 struct kyber_hctx_data *khd = hctx->sched_data; \ 914 \ 915 spin_lock(&khd->lock); \ 916 return seq_list_start(&khd->rqs[domain], *pos); \ 917 } \ 918 \ 919 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \ 920 loff_t *pos) \ 921 { \ 922 struct blk_mq_hw_ctx *hctx = m->private; \ 923 struct kyber_hctx_data *khd = hctx->sched_data; \ 924 \ 925 return seq_list_next(v, &khd->rqs[domain], pos); \ 926 } \ 927 \ 928 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \ 929 __releases(&khd->lock) \ 930 { \ 931 struct blk_mq_hw_ctx *hctx = m->private; \ 932 struct kyber_hctx_data *khd = hctx->sched_data; \ 933 \ 934 spin_unlock(&khd->lock); \ 935 } \ 936 \ 937 static const struct seq_operations kyber_##name##_rqs_seq_ops = { \ 938 .start = kyber_##name##_rqs_start, \ 939 .next = kyber_##name##_rqs_next, \ 940 .stop = kyber_##name##_rqs_stop, \ 941 .show = blk_mq_debugfs_rq_show, \ 942 }; \ 943 \ 944 static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \ 945 { \ 946 struct blk_mq_hw_ctx *hctx = data; \ 947 struct kyber_hctx_data *khd = hctx->sched_data; \ 948 wait_queue_entry_t *wait = &khd->domain_wait[domain].wait; \ 949 \ 950 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \ 951 return 0; \ 952 } 953 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read) 954 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write) 955 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard) 956 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other) 957 #undef KYBER_DEBUGFS_DOMAIN_ATTRS 958 959 static int kyber_async_depth_show(void *data, struct seq_file *m) 960 { 961 struct request_queue *q = data; 962 struct kyber_queue_data *kqd = q->elevator->elevator_data; 963 964 seq_printf(m, "%u\n", kqd->async_depth); 965 return 0; 966 } 967 968 static int kyber_cur_domain_show(void *data, struct seq_file *m) 969 { 970 struct blk_mq_hw_ctx *hctx = data; 971 struct kyber_hctx_data *khd = hctx->sched_data; 972 973 seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]); 974 return 0; 975 } 976 977 static int kyber_batching_show(void *data, struct seq_file *m) 978 { 979 struct blk_mq_hw_ctx *hctx = data; 980 struct kyber_hctx_data *khd = hctx->sched_data; 981 982 seq_printf(m, "%u\n", khd->batching); 983 return 0; 984 } 985 986 #define KYBER_QUEUE_DOMAIN_ATTRS(name) \ 987 {#name "_tokens", 0400, kyber_##name##_tokens_show} 988 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = { 989 KYBER_QUEUE_DOMAIN_ATTRS(read), 990 KYBER_QUEUE_DOMAIN_ATTRS(write), 991 KYBER_QUEUE_DOMAIN_ATTRS(discard), 992 KYBER_QUEUE_DOMAIN_ATTRS(other), 993 {"async_depth", 0400, kyber_async_depth_show}, 994 {}, 995 }; 996 #undef KYBER_QUEUE_DOMAIN_ATTRS 997 998 #define KYBER_HCTX_DOMAIN_ATTRS(name) \ 999 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \ 1000 {#name "_waiting", 0400, kyber_##name##_waiting_show} 1001 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = { 1002 KYBER_HCTX_DOMAIN_ATTRS(read), 1003 KYBER_HCTX_DOMAIN_ATTRS(write), 1004 KYBER_HCTX_DOMAIN_ATTRS(discard), 1005 KYBER_HCTX_DOMAIN_ATTRS(other), 1006 {"cur_domain", 0400, kyber_cur_domain_show}, 1007 {"batching", 0400, kyber_batching_show}, 1008 {}, 1009 }; 1010 #undef KYBER_HCTX_DOMAIN_ATTRS 1011 #endif 1012 1013 static struct elevator_type kyber_sched = { 1014 .ops = { 1015 .init_sched = kyber_init_sched, 1016 .exit_sched = kyber_exit_sched, 1017 .init_hctx = kyber_init_hctx, 1018 .exit_hctx = kyber_exit_hctx, 1019 .limit_depth = kyber_limit_depth, 1020 .bio_merge = kyber_bio_merge, 1021 .prepare_request = kyber_prepare_request, 1022 .insert_requests = kyber_insert_requests, 1023 .finish_request = kyber_finish_request, 1024 .requeue_request = kyber_finish_request, 1025 .completed_request = kyber_completed_request, 1026 .dispatch_request = kyber_dispatch_request, 1027 .has_work = kyber_has_work, 1028 .depth_updated = kyber_depth_updated, 1029 }, 1030 #ifdef CONFIG_BLK_DEBUG_FS 1031 .queue_debugfs_attrs = kyber_queue_debugfs_attrs, 1032 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs, 1033 #endif 1034 .elevator_attrs = kyber_sched_attrs, 1035 .elevator_name = "kyber", 1036 .elevator_features = ELEVATOR_F_MQ_AWARE, 1037 .elevator_owner = THIS_MODULE, 1038 }; 1039 1040 static int __init kyber_init(void) 1041 { 1042 return elv_register(&kyber_sched); 1043 } 1044 1045 static void __exit kyber_exit(void) 1046 { 1047 elv_unregister(&kyber_sched); 1048 } 1049 1050 module_init(kyber_init); 1051 module_exit(kyber_exit); 1052 1053 MODULE_AUTHOR("Omar Sandoval"); 1054 MODULE_LICENSE("GPL"); 1055 MODULE_DESCRIPTION("Kyber I/O scheduler"); 1056