xref: /linux/block/kyber-iosched.c (revision 6331b8765cd0634a4e4cdcc1a6f1a74196616b94)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4  * scalable techniques.
5  *
6  * Copyright (C) 2017 Facebook
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/module.h>
13 #include <linux/sbitmap.h>
14 
15 #include <trace/events/block.h>
16 
17 #include "elevator.h"
18 #include "blk.h"
19 #include "blk-mq.h"
20 #include "blk-mq-debugfs.h"
21 #include "blk-mq-sched.h"
22 #include "blk-mq-tag.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/kyber.h>
26 
27 /*
28  * Scheduling domains: the device is divided into multiple domains based on the
29  * request type.
30  */
31 enum {
32 	KYBER_READ,
33 	KYBER_WRITE,
34 	KYBER_DISCARD,
35 	KYBER_OTHER,
36 	KYBER_NUM_DOMAINS,
37 };
38 
39 static const char *kyber_domain_names[] = {
40 	[KYBER_READ] = "READ",
41 	[KYBER_WRITE] = "WRITE",
42 	[KYBER_DISCARD] = "DISCARD",
43 	[KYBER_OTHER] = "OTHER",
44 };
45 
46 enum {
47 	/*
48 	 * In order to prevent starvation of synchronous requests by a flood of
49 	 * asynchronous requests, we reserve 25% of requests for synchronous
50 	 * operations.
51 	 */
52 	KYBER_ASYNC_PERCENT = 75,
53 };
54 
55 /*
56  * Maximum device-wide depth for each scheduling domain.
57  *
58  * Even for fast devices with lots of tags like NVMe, you can saturate the
59  * device with only a fraction of the maximum possible queue depth. So, we cap
60  * these to a reasonable value.
61  */
62 static const unsigned int kyber_depth[] = {
63 	[KYBER_READ] = 256,
64 	[KYBER_WRITE] = 128,
65 	[KYBER_DISCARD] = 64,
66 	[KYBER_OTHER] = 16,
67 };
68 
69 /*
70  * Default latency targets for each scheduling domain.
71  */
72 static const u64 kyber_latency_targets[] = {
73 	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
74 	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
75 	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
76 };
77 
78 /*
79  * Batch size (number of requests we'll dispatch in a row) for each scheduling
80  * domain.
81  */
82 static const unsigned int kyber_batch_size[] = {
83 	[KYBER_READ] = 16,
84 	[KYBER_WRITE] = 8,
85 	[KYBER_DISCARD] = 1,
86 	[KYBER_OTHER] = 1,
87 };
88 
89 /*
90  * Requests latencies are recorded in a histogram with buckets defined relative
91  * to the target latency:
92  *
93  * <= 1/4 * target latency
94  * <= 1/2 * target latency
95  * <= 3/4 * target latency
96  * <= target latency
97  * <= 1 1/4 * target latency
98  * <= 1 1/2 * target latency
99  * <= 1 3/4 * target latency
100  * > 1 3/4 * target latency
101  */
102 enum {
103 	/*
104 	 * The width of the latency histogram buckets is
105 	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
106 	 */
107 	KYBER_LATENCY_SHIFT = 2,
108 	/*
109 	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
110 	 * thus, "good".
111 	 */
112 	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
113 	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
114 	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
115 };
116 
117 /*
118  * We measure both the total latency and the I/O latency (i.e., latency after
119  * submitting to the device).
120  */
121 enum {
122 	KYBER_TOTAL_LATENCY,
123 	KYBER_IO_LATENCY,
124 };
125 
126 static const char *kyber_latency_type_names[] = {
127 	[KYBER_TOTAL_LATENCY] = "total",
128 	[KYBER_IO_LATENCY] = "I/O",
129 };
130 
131 /*
132  * Per-cpu latency histograms: total latency and I/O latency for each scheduling
133  * domain except for KYBER_OTHER.
134  */
135 struct kyber_cpu_latency {
136 	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
137 };
138 
139 /*
140  * There is a same mapping between ctx & hctx and kcq & khd,
141  * we use request->mq_ctx->index_hw to index the kcq in khd.
142  */
143 struct kyber_ctx_queue {
144 	/*
145 	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
146 	 * Also protect the rqs on rq_list when merge.
147 	 */
148 	spinlock_t lock;
149 	struct list_head rq_list[KYBER_NUM_DOMAINS];
150 } ____cacheline_aligned_in_smp;
151 
152 struct kyber_queue_data {
153 	struct request_queue *q;
154 	dev_t dev;
155 
156 	/*
157 	 * Each scheduling domain has a limited number of in-flight requests
158 	 * device-wide, limited by these tokens.
159 	 */
160 	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
161 
162 	/*
163 	 * Async request percentage, converted to per-word depth for
164 	 * sbitmap_get_shallow().
165 	 */
166 	unsigned int async_depth;
167 
168 	struct kyber_cpu_latency __percpu *cpu_latency;
169 
170 	/* Timer for stats aggregation and adjusting domain tokens. */
171 	struct timer_list timer;
172 
173 	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
174 
175 	unsigned long latency_timeout[KYBER_OTHER];
176 
177 	int domain_p99[KYBER_OTHER];
178 
179 	/* Target latencies in nanoseconds. */
180 	u64 latency_targets[KYBER_OTHER];
181 };
182 
183 struct kyber_hctx_data {
184 	spinlock_t lock;
185 	struct list_head rqs[KYBER_NUM_DOMAINS];
186 	unsigned int cur_domain;
187 	unsigned int batching;
188 	struct kyber_ctx_queue *kcqs;
189 	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
190 	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
191 	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
192 	atomic_t wait_index[KYBER_NUM_DOMAINS];
193 };
194 
195 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
196 			     void *key);
197 
198 static unsigned int kyber_sched_domain(unsigned int op)
199 {
200 	switch (op & REQ_OP_MASK) {
201 	case REQ_OP_READ:
202 		return KYBER_READ;
203 	case REQ_OP_WRITE:
204 		return KYBER_WRITE;
205 	case REQ_OP_DISCARD:
206 		return KYBER_DISCARD;
207 	default:
208 		return KYBER_OTHER;
209 	}
210 }
211 
212 static void flush_latency_buckets(struct kyber_queue_data *kqd,
213 				  struct kyber_cpu_latency *cpu_latency,
214 				  unsigned int sched_domain, unsigned int type)
215 {
216 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
217 	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
218 	unsigned int bucket;
219 
220 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
221 		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
222 }
223 
224 /*
225  * Calculate the histogram bucket with the given percentile rank, or -1 if there
226  * aren't enough samples yet.
227  */
228 static int calculate_percentile(struct kyber_queue_data *kqd,
229 				unsigned int sched_domain, unsigned int type,
230 				unsigned int percentile)
231 {
232 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
233 	unsigned int bucket, samples = 0, percentile_samples;
234 
235 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
236 		samples += buckets[bucket];
237 
238 	if (!samples)
239 		return -1;
240 
241 	/*
242 	 * We do the calculation once we have 500 samples or one second passes
243 	 * since the first sample was recorded, whichever comes first.
244 	 */
245 	if (!kqd->latency_timeout[sched_domain])
246 		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
247 	if (samples < 500 &&
248 	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
249 		return -1;
250 	}
251 	kqd->latency_timeout[sched_domain] = 0;
252 
253 	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
254 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
255 		if (buckets[bucket] >= percentile_samples)
256 			break;
257 		percentile_samples -= buckets[bucket];
258 	}
259 	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
260 
261 	trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain],
262 			    kyber_latency_type_names[type], percentile,
263 			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
264 
265 	return bucket;
266 }
267 
268 static void kyber_resize_domain(struct kyber_queue_data *kqd,
269 				unsigned int sched_domain, unsigned int depth)
270 {
271 	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
272 	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
273 		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
274 		trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain],
275 				   depth);
276 	}
277 }
278 
279 static void kyber_timer_fn(struct timer_list *t)
280 {
281 	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
282 	unsigned int sched_domain;
283 	int cpu;
284 	bool bad = false;
285 
286 	/* Sum all of the per-cpu latency histograms. */
287 	for_each_online_cpu(cpu) {
288 		struct kyber_cpu_latency *cpu_latency;
289 
290 		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
291 		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
292 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
293 					      KYBER_TOTAL_LATENCY);
294 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
295 					      KYBER_IO_LATENCY);
296 		}
297 	}
298 
299 	/*
300 	 * Check if any domains have a high I/O latency, which might indicate
301 	 * congestion in the device. Note that we use the p90; we don't want to
302 	 * be too sensitive to outliers here.
303 	 */
304 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
305 		int p90;
306 
307 		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
308 					   90);
309 		if (p90 >= KYBER_GOOD_BUCKETS)
310 			bad = true;
311 	}
312 
313 	/*
314 	 * Adjust the scheduling domain depths. If we determined that there was
315 	 * congestion, we throttle all domains with good latencies. Either way,
316 	 * we ease up on throttling domains with bad latencies.
317 	 */
318 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
319 		unsigned int orig_depth, depth;
320 		int p99;
321 
322 		p99 = calculate_percentile(kqd, sched_domain,
323 					   KYBER_TOTAL_LATENCY, 99);
324 		/*
325 		 * This is kind of subtle: different domains will not
326 		 * necessarily have enough samples to calculate the latency
327 		 * percentiles during the same window, so we have to remember
328 		 * the p99 for the next time we observe congestion; once we do,
329 		 * we don't want to throttle again until we get more data, so we
330 		 * reset it to -1.
331 		 */
332 		if (bad) {
333 			if (p99 < 0)
334 				p99 = kqd->domain_p99[sched_domain];
335 			kqd->domain_p99[sched_domain] = -1;
336 		} else if (p99 >= 0) {
337 			kqd->domain_p99[sched_domain] = p99;
338 		}
339 		if (p99 < 0)
340 			continue;
341 
342 		/*
343 		 * If this domain has bad latency, throttle less. Otherwise,
344 		 * throttle more iff we determined that there is congestion.
345 		 *
346 		 * The new depth is scaled linearly with the p99 latency vs the
347 		 * latency target. E.g., if the p99 is 3/4 of the target, then
348 		 * we throttle down to 3/4 of the current depth, and if the p99
349 		 * is 2x the target, then we double the depth.
350 		 */
351 		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
352 			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
353 			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
354 			kyber_resize_domain(kqd, sched_domain, depth);
355 		}
356 	}
357 }
358 
359 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
360 {
361 	struct kyber_queue_data *kqd;
362 	int ret = -ENOMEM;
363 	int i;
364 
365 	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
366 	if (!kqd)
367 		goto err;
368 
369 	kqd->q = q;
370 	kqd->dev = disk_devt(q->disk);
371 
372 	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
373 					    GFP_KERNEL | __GFP_ZERO);
374 	if (!kqd->cpu_latency)
375 		goto err_kqd;
376 
377 	timer_setup(&kqd->timer, kyber_timer_fn, 0);
378 
379 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
380 		WARN_ON(!kyber_depth[i]);
381 		WARN_ON(!kyber_batch_size[i]);
382 		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
383 					      kyber_depth[i], -1, false,
384 					      GFP_KERNEL, q->node);
385 		if (ret) {
386 			while (--i >= 0)
387 				sbitmap_queue_free(&kqd->domain_tokens[i]);
388 			goto err_buckets;
389 		}
390 	}
391 
392 	for (i = 0; i < KYBER_OTHER; i++) {
393 		kqd->domain_p99[i] = -1;
394 		kqd->latency_targets[i] = kyber_latency_targets[i];
395 	}
396 
397 	return kqd;
398 
399 err_buckets:
400 	free_percpu(kqd->cpu_latency);
401 err_kqd:
402 	kfree(kqd);
403 err:
404 	return ERR_PTR(ret);
405 }
406 
407 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
408 {
409 	struct kyber_queue_data *kqd;
410 	struct elevator_queue *eq;
411 
412 	eq = elevator_alloc(q, e);
413 	if (!eq)
414 		return -ENOMEM;
415 
416 	kqd = kyber_queue_data_alloc(q);
417 	if (IS_ERR(kqd)) {
418 		kobject_put(&eq->kobj);
419 		return PTR_ERR(kqd);
420 	}
421 
422 	blk_stat_enable_accounting(q);
423 
424 	eq->elevator_data = kqd;
425 	q->elevator = eq;
426 
427 	return 0;
428 }
429 
430 static void kyber_exit_sched(struct elevator_queue *e)
431 {
432 	struct kyber_queue_data *kqd = e->elevator_data;
433 	int i;
434 
435 	del_timer_sync(&kqd->timer);
436 
437 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
438 		sbitmap_queue_free(&kqd->domain_tokens[i]);
439 	free_percpu(kqd->cpu_latency);
440 	kfree(kqd);
441 }
442 
443 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
444 {
445 	unsigned int i;
446 
447 	spin_lock_init(&kcq->lock);
448 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
449 		INIT_LIST_HEAD(&kcq->rq_list[i]);
450 }
451 
452 static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
453 {
454 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
455 	struct blk_mq_tags *tags = hctx->sched_tags;
456 	unsigned int shift = tags->bitmap_tags.sb.shift;
457 
458 	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
459 
460 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth);
461 }
462 
463 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
464 {
465 	struct kyber_hctx_data *khd;
466 	int i;
467 
468 	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
469 	if (!khd)
470 		return -ENOMEM;
471 
472 	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
473 				       sizeof(struct kyber_ctx_queue),
474 				       GFP_KERNEL, hctx->numa_node);
475 	if (!khd->kcqs)
476 		goto err_khd;
477 
478 	for (i = 0; i < hctx->nr_ctx; i++)
479 		kyber_ctx_queue_init(&khd->kcqs[i]);
480 
481 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
482 		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
483 				      ilog2(8), GFP_KERNEL, hctx->numa_node,
484 				      false, false)) {
485 			while (--i >= 0)
486 				sbitmap_free(&khd->kcq_map[i]);
487 			goto err_kcqs;
488 		}
489 	}
490 
491 	spin_lock_init(&khd->lock);
492 
493 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
494 		INIT_LIST_HEAD(&khd->rqs[i]);
495 		khd->domain_wait[i].sbq = NULL;
496 		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
497 					  kyber_domain_wake);
498 		khd->domain_wait[i].wait.private = hctx;
499 		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
500 		atomic_set(&khd->wait_index[i], 0);
501 	}
502 
503 	khd->cur_domain = 0;
504 	khd->batching = 0;
505 
506 	hctx->sched_data = khd;
507 	kyber_depth_updated(hctx);
508 
509 	return 0;
510 
511 err_kcqs:
512 	kfree(khd->kcqs);
513 err_khd:
514 	kfree(khd);
515 	return -ENOMEM;
516 }
517 
518 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
519 {
520 	struct kyber_hctx_data *khd = hctx->sched_data;
521 	int i;
522 
523 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
524 		sbitmap_free(&khd->kcq_map[i]);
525 	kfree(khd->kcqs);
526 	kfree(hctx->sched_data);
527 }
528 
529 static int rq_get_domain_token(struct request *rq)
530 {
531 	return (long)rq->elv.priv[0];
532 }
533 
534 static void rq_set_domain_token(struct request *rq, int token)
535 {
536 	rq->elv.priv[0] = (void *)(long)token;
537 }
538 
539 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
540 				  struct request *rq)
541 {
542 	unsigned int sched_domain;
543 	int nr;
544 
545 	nr = rq_get_domain_token(rq);
546 	if (nr != -1) {
547 		sched_domain = kyber_sched_domain(rq->cmd_flags);
548 		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
549 				    rq->mq_ctx->cpu);
550 	}
551 }
552 
553 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
554 {
555 	/*
556 	 * We use the scheduler tags as per-hardware queue queueing tokens.
557 	 * Async requests can be limited at this stage.
558 	 */
559 	if (!op_is_sync(op)) {
560 		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
561 
562 		data->shallow_depth = kqd->async_depth;
563 	}
564 }
565 
566 static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
567 		unsigned int nr_segs)
568 {
569 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
570 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
571 	struct kyber_hctx_data *khd = hctx->sched_data;
572 	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
573 	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
574 	struct list_head *rq_list = &kcq->rq_list[sched_domain];
575 	bool merged;
576 
577 	spin_lock(&kcq->lock);
578 	merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
579 	spin_unlock(&kcq->lock);
580 
581 	return merged;
582 }
583 
584 static void kyber_prepare_request(struct request *rq)
585 {
586 	rq_set_domain_token(rq, -1);
587 }
588 
589 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
590 				  struct list_head *rq_list, bool at_head)
591 {
592 	struct kyber_hctx_data *khd = hctx->sched_data;
593 	struct request *rq, *next;
594 
595 	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
596 		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
597 		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
598 		struct list_head *head = &kcq->rq_list[sched_domain];
599 
600 		spin_lock(&kcq->lock);
601 		trace_block_rq_insert(rq);
602 		if (at_head)
603 			list_move(&rq->queuelist, head);
604 		else
605 			list_move_tail(&rq->queuelist, head);
606 		sbitmap_set_bit(&khd->kcq_map[sched_domain],
607 				rq->mq_ctx->index_hw[hctx->type]);
608 		spin_unlock(&kcq->lock);
609 	}
610 }
611 
612 static void kyber_finish_request(struct request *rq)
613 {
614 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
615 
616 	rq_clear_domain_token(kqd, rq);
617 }
618 
619 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
620 			       unsigned int sched_domain, unsigned int type,
621 			       u64 target, u64 latency)
622 {
623 	unsigned int bucket;
624 	u64 divisor;
625 
626 	if (latency > 0) {
627 		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
628 		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
629 			       KYBER_LATENCY_BUCKETS - 1);
630 	} else {
631 		bucket = 0;
632 	}
633 
634 	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
635 }
636 
637 static void kyber_completed_request(struct request *rq, u64 now)
638 {
639 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
640 	struct kyber_cpu_latency *cpu_latency;
641 	unsigned int sched_domain;
642 	u64 target;
643 
644 	sched_domain = kyber_sched_domain(rq->cmd_flags);
645 	if (sched_domain == KYBER_OTHER)
646 		return;
647 
648 	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
649 	target = kqd->latency_targets[sched_domain];
650 	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
651 			   target, now - rq->start_time_ns);
652 	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
653 			   now - rq->io_start_time_ns);
654 	put_cpu_ptr(kqd->cpu_latency);
655 
656 	timer_reduce(&kqd->timer, jiffies + HZ / 10);
657 }
658 
659 struct flush_kcq_data {
660 	struct kyber_hctx_data *khd;
661 	unsigned int sched_domain;
662 	struct list_head *list;
663 };
664 
665 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
666 {
667 	struct flush_kcq_data *flush_data = data;
668 	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
669 
670 	spin_lock(&kcq->lock);
671 	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
672 			      flush_data->list);
673 	sbitmap_clear_bit(sb, bitnr);
674 	spin_unlock(&kcq->lock);
675 
676 	return true;
677 }
678 
679 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
680 				  unsigned int sched_domain,
681 				  struct list_head *list)
682 {
683 	struct flush_kcq_data data = {
684 		.khd = khd,
685 		.sched_domain = sched_domain,
686 		.list = list,
687 	};
688 
689 	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
690 			     flush_busy_kcq, &data);
691 }
692 
693 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
694 			     void *key)
695 {
696 	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
697 	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
698 
699 	sbitmap_del_wait_queue(wait);
700 	blk_mq_run_hw_queue(hctx, true);
701 	return 1;
702 }
703 
704 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
705 				  struct kyber_hctx_data *khd,
706 				  struct blk_mq_hw_ctx *hctx)
707 {
708 	unsigned int sched_domain = khd->cur_domain;
709 	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
710 	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
711 	struct sbq_wait_state *ws;
712 	int nr;
713 
714 	nr = __sbitmap_queue_get(domain_tokens);
715 
716 	/*
717 	 * If we failed to get a domain token, make sure the hardware queue is
718 	 * run when one becomes available. Note that this is serialized on
719 	 * khd->lock, but we still need to be careful about the waker.
720 	 */
721 	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
722 		ws = sbq_wait_ptr(domain_tokens,
723 				  &khd->wait_index[sched_domain]);
724 		khd->domain_ws[sched_domain] = ws;
725 		sbitmap_add_wait_queue(domain_tokens, ws, wait);
726 
727 		/*
728 		 * Try again in case a token was freed before we got on the wait
729 		 * queue.
730 		 */
731 		nr = __sbitmap_queue_get(domain_tokens);
732 	}
733 
734 	/*
735 	 * If we got a token while we were on the wait queue, remove ourselves
736 	 * from the wait queue to ensure that all wake ups make forward
737 	 * progress. It's possible that the waker already deleted the entry
738 	 * between the !list_empty_careful() check and us grabbing the lock, but
739 	 * list_del_init() is okay with that.
740 	 */
741 	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
742 		ws = khd->domain_ws[sched_domain];
743 		spin_lock_irq(&ws->wait.lock);
744 		sbitmap_del_wait_queue(wait);
745 		spin_unlock_irq(&ws->wait.lock);
746 	}
747 
748 	return nr;
749 }
750 
751 static struct request *
752 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
753 			  struct kyber_hctx_data *khd,
754 			  struct blk_mq_hw_ctx *hctx)
755 {
756 	struct list_head *rqs;
757 	struct request *rq;
758 	int nr;
759 
760 	rqs = &khd->rqs[khd->cur_domain];
761 
762 	/*
763 	 * If we already have a flushed request, then we just need to get a
764 	 * token for it. Otherwise, if there are pending requests in the kcqs,
765 	 * flush the kcqs, but only if we can get a token. If not, we should
766 	 * leave the requests in the kcqs so that they can be merged. Note that
767 	 * khd->lock serializes the flushes, so if we observed any bit set in
768 	 * the kcq_map, we will always get a request.
769 	 */
770 	rq = list_first_entry_or_null(rqs, struct request, queuelist);
771 	if (rq) {
772 		nr = kyber_get_domain_token(kqd, khd, hctx);
773 		if (nr >= 0) {
774 			khd->batching++;
775 			rq_set_domain_token(rq, nr);
776 			list_del_init(&rq->queuelist);
777 			return rq;
778 		} else {
779 			trace_kyber_throttled(kqd->dev,
780 					      kyber_domain_names[khd->cur_domain]);
781 		}
782 	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
783 		nr = kyber_get_domain_token(kqd, khd, hctx);
784 		if (nr >= 0) {
785 			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
786 			rq = list_first_entry(rqs, struct request, queuelist);
787 			khd->batching++;
788 			rq_set_domain_token(rq, nr);
789 			list_del_init(&rq->queuelist);
790 			return rq;
791 		} else {
792 			trace_kyber_throttled(kqd->dev,
793 					      kyber_domain_names[khd->cur_domain]);
794 		}
795 	}
796 
797 	/* There were either no pending requests or no tokens. */
798 	return NULL;
799 }
800 
801 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
802 {
803 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
804 	struct kyber_hctx_data *khd = hctx->sched_data;
805 	struct request *rq;
806 	int i;
807 
808 	spin_lock(&khd->lock);
809 
810 	/*
811 	 * First, if we are still entitled to batch, try to dispatch a request
812 	 * from the batch.
813 	 */
814 	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
815 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
816 		if (rq)
817 			goto out;
818 	}
819 
820 	/*
821 	 * Either,
822 	 * 1. We were no longer entitled to a batch.
823 	 * 2. The domain we were batching didn't have any requests.
824 	 * 3. The domain we were batching was out of tokens.
825 	 *
826 	 * Start another batch. Note that this wraps back around to the original
827 	 * domain if no other domains have requests or tokens.
828 	 */
829 	khd->batching = 0;
830 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
831 		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
832 			khd->cur_domain = 0;
833 		else
834 			khd->cur_domain++;
835 
836 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
837 		if (rq)
838 			goto out;
839 	}
840 
841 	rq = NULL;
842 out:
843 	spin_unlock(&khd->lock);
844 	return rq;
845 }
846 
847 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
848 {
849 	struct kyber_hctx_data *khd = hctx->sched_data;
850 	int i;
851 
852 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
853 		if (!list_empty_careful(&khd->rqs[i]) ||
854 		    sbitmap_any_bit_set(&khd->kcq_map[i]))
855 			return true;
856 	}
857 
858 	return false;
859 }
860 
861 #define KYBER_LAT_SHOW_STORE(domain, name)				\
862 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
863 				       char *page)			\
864 {									\
865 	struct kyber_queue_data *kqd = e->elevator_data;		\
866 									\
867 	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
868 }									\
869 									\
870 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
871 					const char *page, size_t count)	\
872 {									\
873 	struct kyber_queue_data *kqd = e->elevator_data;		\
874 	unsigned long long nsec;					\
875 	int ret;							\
876 									\
877 	ret = kstrtoull(page, 10, &nsec);				\
878 	if (ret)							\
879 		return ret;						\
880 									\
881 	kqd->latency_targets[domain] = nsec;				\
882 									\
883 	return count;							\
884 }
885 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
886 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
887 #undef KYBER_LAT_SHOW_STORE
888 
889 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
890 static struct elv_fs_entry kyber_sched_attrs[] = {
891 	KYBER_LAT_ATTR(read),
892 	KYBER_LAT_ATTR(write),
893 	__ATTR_NULL
894 };
895 #undef KYBER_LAT_ATTR
896 
897 #ifdef CONFIG_BLK_DEBUG_FS
898 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
899 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
900 {									\
901 	struct request_queue *q = data;					\
902 	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
903 									\
904 	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
905 	return 0;							\
906 }									\
907 									\
908 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
909 	__acquires(&khd->lock)						\
910 {									\
911 	struct blk_mq_hw_ctx *hctx = m->private;			\
912 	struct kyber_hctx_data *khd = hctx->sched_data;			\
913 									\
914 	spin_lock(&khd->lock);						\
915 	return seq_list_start(&khd->rqs[domain], *pos);			\
916 }									\
917 									\
918 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
919 				     loff_t *pos)			\
920 {									\
921 	struct blk_mq_hw_ctx *hctx = m->private;			\
922 	struct kyber_hctx_data *khd = hctx->sched_data;			\
923 									\
924 	return seq_list_next(v, &khd->rqs[domain], pos);		\
925 }									\
926 									\
927 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
928 	__releases(&khd->lock)						\
929 {									\
930 	struct blk_mq_hw_ctx *hctx = m->private;			\
931 	struct kyber_hctx_data *khd = hctx->sched_data;			\
932 									\
933 	spin_unlock(&khd->lock);					\
934 }									\
935 									\
936 static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
937 	.start	= kyber_##name##_rqs_start,				\
938 	.next	= kyber_##name##_rqs_next,				\
939 	.stop	= kyber_##name##_rqs_stop,				\
940 	.show	= blk_mq_debugfs_rq_show,				\
941 };									\
942 									\
943 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
944 {									\
945 	struct blk_mq_hw_ctx *hctx = data;				\
946 	struct kyber_hctx_data *khd = hctx->sched_data;			\
947 	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
948 									\
949 	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
950 	return 0;							\
951 }
952 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
953 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
954 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
955 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
956 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
957 
958 static int kyber_async_depth_show(void *data, struct seq_file *m)
959 {
960 	struct request_queue *q = data;
961 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
962 
963 	seq_printf(m, "%u\n", kqd->async_depth);
964 	return 0;
965 }
966 
967 static int kyber_cur_domain_show(void *data, struct seq_file *m)
968 {
969 	struct blk_mq_hw_ctx *hctx = data;
970 	struct kyber_hctx_data *khd = hctx->sched_data;
971 
972 	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
973 	return 0;
974 }
975 
976 static int kyber_batching_show(void *data, struct seq_file *m)
977 {
978 	struct blk_mq_hw_ctx *hctx = data;
979 	struct kyber_hctx_data *khd = hctx->sched_data;
980 
981 	seq_printf(m, "%u\n", khd->batching);
982 	return 0;
983 }
984 
985 #define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
986 	{#name "_tokens", 0400, kyber_##name##_tokens_show}
987 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
988 	KYBER_QUEUE_DOMAIN_ATTRS(read),
989 	KYBER_QUEUE_DOMAIN_ATTRS(write),
990 	KYBER_QUEUE_DOMAIN_ATTRS(discard),
991 	KYBER_QUEUE_DOMAIN_ATTRS(other),
992 	{"async_depth", 0400, kyber_async_depth_show},
993 	{},
994 };
995 #undef KYBER_QUEUE_DOMAIN_ATTRS
996 
997 #define KYBER_HCTX_DOMAIN_ATTRS(name)					\
998 	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
999 	{#name "_waiting", 0400, kyber_##name##_waiting_show}
1000 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1001 	KYBER_HCTX_DOMAIN_ATTRS(read),
1002 	KYBER_HCTX_DOMAIN_ATTRS(write),
1003 	KYBER_HCTX_DOMAIN_ATTRS(discard),
1004 	KYBER_HCTX_DOMAIN_ATTRS(other),
1005 	{"cur_domain", 0400, kyber_cur_domain_show},
1006 	{"batching", 0400, kyber_batching_show},
1007 	{},
1008 };
1009 #undef KYBER_HCTX_DOMAIN_ATTRS
1010 #endif
1011 
1012 static struct elevator_type kyber_sched = {
1013 	.ops = {
1014 		.init_sched = kyber_init_sched,
1015 		.exit_sched = kyber_exit_sched,
1016 		.init_hctx = kyber_init_hctx,
1017 		.exit_hctx = kyber_exit_hctx,
1018 		.limit_depth = kyber_limit_depth,
1019 		.bio_merge = kyber_bio_merge,
1020 		.prepare_request = kyber_prepare_request,
1021 		.insert_requests = kyber_insert_requests,
1022 		.finish_request = kyber_finish_request,
1023 		.requeue_request = kyber_finish_request,
1024 		.completed_request = kyber_completed_request,
1025 		.dispatch_request = kyber_dispatch_request,
1026 		.has_work = kyber_has_work,
1027 		.depth_updated = kyber_depth_updated,
1028 	},
1029 #ifdef CONFIG_BLK_DEBUG_FS
1030 	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1031 	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1032 #endif
1033 	.elevator_attrs = kyber_sched_attrs,
1034 	.elevator_name = "kyber",
1035 	.elevator_features = ELEVATOR_F_MQ_AWARE,
1036 	.elevator_owner = THIS_MODULE,
1037 };
1038 
1039 static int __init kyber_init(void)
1040 {
1041 	return elv_register(&kyber_sched);
1042 }
1043 
1044 static void __exit kyber_exit(void)
1045 {
1046 	elv_unregister(&kyber_sched);
1047 }
1048 
1049 module_init(kyber_init);
1050 module_exit(kyber_exit);
1051 
1052 MODULE_AUTHOR("Omar Sandoval");
1053 MODULE_LICENSE("GPL");
1054 MODULE_DESCRIPTION("Kyber I/O scheduler");
1055