1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using 4 * scalable techniques. 5 * 6 * Copyright (C) 2017 Facebook 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/blkdev.h> 11 #include <linux/module.h> 12 #include <linux/sbitmap.h> 13 14 #include <trace/events/block.h> 15 16 #include "elevator.h" 17 #include "blk.h" 18 #include "blk-mq.h" 19 #include "blk-mq-debugfs.h" 20 #include "blk-mq-sched.h" 21 22 #define CREATE_TRACE_POINTS 23 #include <trace/events/kyber.h> 24 25 /* 26 * Scheduling domains: the device is divided into multiple domains based on the 27 * request type. 28 */ 29 enum { 30 KYBER_READ, 31 KYBER_WRITE, 32 KYBER_DISCARD, 33 KYBER_OTHER, 34 KYBER_NUM_DOMAINS, 35 }; 36 37 static const char *kyber_domain_names[] = { 38 [KYBER_READ] = "READ", 39 [KYBER_WRITE] = "WRITE", 40 [KYBER_DISCARD] = "DISCARD", 41 [KYBER_OTHER] = "OTHER", 42 }; 43 44 enum { 45 /* 46 * In order to prevent starvation of synchronous requests by a flood of 47 * asynchronous requests, we reserve 25% of requests for synchronous 48 * operations. 49 */ 50 KYBER_ASYNC_PERCENT = 75, 51 }; 52 53 /* 54 * Maximum device-wide depth for each scheduling domain. 55 * 56 * Even for fast devices with lots of tags like NVMe, you can saturate the 57 * device with only a fraction of the maximum possible queue depth. So, we cap 58 * these to a reasonable value. 59 */ 60 static const unsigned int kyber_depth[] = { 61 [KYBER_READ] = 256, 62 [KYBER_WRITE] = 128, 63 [KYBER_DISCARD] = 64, 64 [KYBER_OTHER] = 16, 65 }; 66 67 /* 68 * Default latency targets for each scheduling domain. 69 */ 70 static const u64 kyber_latency_targets[] = { 71 [KYBER_READ] = 2ULL * NSEC_PER_MSEC, 72 [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC, 73 [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC, 74 }; 75 76 /* 77 * Batch size (number of requests we'll dispatch in a row) for each scheduling 78 * domain. 79 */ 80 static const unsigned int kyber_batch_size[] = { 81 [KYBER_READ] = 16, 82 [KYBER_WRITE] = 8, 83 [KYBER_DISCARD] = 1, 84 [KYBER_OTHER] = 1, 85 }; 86 87 /* 88 * Requests latencies are recorded in a histogram with buckets defined relative 89 * to the target latency: 90 * 91 * <= 1/4 * target latency 92 * <= 1/2 * target latency 93 * <= 3/4 * target latency 94 * <= target latency 95 * <= 1 1/4 * target latency 96 * <= 1 1/2 * target latency 97 * <= 1 3/4 * target latency 98 * > 1 3/4 * target latency 99 */ 100 enum { 101 /* 102 * The width of the latency histogram buckets is 103 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency. 104 */ 105 KYBER_LATENCY_SHIFT = 2, 106 /* 107 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency, 108 * thus, "good". 109 */ 110 KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT, 111 /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */ 112 KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT, 113 }; 114 115 /* 116 * We measure both the total latency and the I/O latency (i.e., latency after 117 * submitting to the device). 118 */ 119 enum { 120 KYBER_TOTAL_LATENCY, 121 KYBER_IO_LATENCY, 122 }; 123 124 static const char *kyber_latency_type_names[] = { 125 [KYBER_TOTAL_LATENCY] = "total", 126 [KYBER_IO_LATENCY] = "I/O", 127 }; 128 129 /* 130 * Per-cpu latency histograms: total latency and I/O latency for each scheduling 131 * domain except for KYBER_OTHER. 132 */ 133 struct kyber_cpu_latency { 134 atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS]; 135 }; 136 137 /* 138 * There is a same mapping between ctx & hctx and kcq & khd, 139 * we use request->mq_ctx->index_hw to index the kcq in khd. 140 */ 141 struct kyber_ctx_queue { 142 /* 143 * Used to ensure operations on rq_list and kcq_map to be an atmoic one. 144 * Also protect the rqs on rq_list when merge. 145 */ 146 spinlock_t lock; 147 struct list_head rq_list[KYBER_NUM_DOMAINS]; 148 } ____cacheline_aligned_in_smp; 149 150 struct kyber_queue_data { 151 struct request_queue *q; 152 dev_t dev; 153 154 /* 155 * Each scheduling domain has a limited number of in-flight requests 156 * device-wide, limited by these tokens. 157 */ 158 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS]; 159 160 /* Number of allowed async requests. */ 161 unsigned int async_depth; 162 163 struct kyber_cpu_latency __percpu *cpu_latency; 164 165 /* Timer for stats aggregation and adjusting domain tokens. */ 166 struct timer_list timer; 167 168 unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS]; 169 170 unsigned long latency_timeout[KYBER_OTHER]; 171 172 int domain_p99[KYBER_OTHER]; 173 174 /* Target latencies in nanoseconds. */ 175 u64 latency_targets[KYBER_OTHER]; 176 }; 177 178 struct kyber_hctx_data { 179 spinlock_t lock; 180 struct list_head rqs[KYBER_NUM_DOMAINS]; 181 unsigned int cur_domain; 182 unsigned int batching; 183 struct kyber_ctx_queue *kcqs; 184 struct sbitmap kcq_map[KYBER_NUM_DOMAINS]; 185 struct sbq_wait domain_wait[KYBER_NUM_DOMAINS]; 186 struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS]; 187 atomic_t wait_index[KYBER_NUM_DOMAINS]; 188 }; 189 190 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags, 191 void *key); 192 193 static unsigned int kyber_sched_domain(blk_opf_t opf) 194 { 195 switch (opf & REQ_OP_MASK) { 196 case REQ_OP_READ: 197 return KYBER_READ; 198 case REQ_OP_WRITE: 199 return KYBER_WRITE; 200 case REQ_OP_DISCARD: 201 return KYBER_DISCARD; 202 default: 203 return KYBER_OTHER; 204 } 205 } 206 207 static void flush_latency_buckets(struct kyber_queue_data *kqd, 208 struct kyber_cpu_latency *cpu_latency, 209 unsigned int sched_domain, unsigned int type) 210 { 211 unsigned int *buckets = kqd->latency_buckets[sched_domain][type]; 212 atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type]; 213 unsigned int bucket; 214 215 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++) 216 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0); 217 } 218 219 /* 220 * Calculate the histogram bucket with the given percentile rank, or -1 if there 221 * aren't enough samples yet. 222 */ 223 static int calculate_percentile(struct kyber_queue_data *kqd, 224 unsigned int sched_domain, unsigned int type, 225 unsigned int percentile) 226 { 227 unsigned int *buckets = kqd->latency_buckets[sched_domain][type]; 228 unsigned int bucket, samples = 0, percentile_samples; 229 230 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++) 231 samples += buckets[bucket]; 232 233 if (!samples) 234 return -1; 235 236 /* 237 * We do the calculation once we have 500 samples or one second passes 238 * since the first sample was recorded, whichever comes first. 239 */ 240 if (!kqd->latency_timeout[sched_domain]) 241 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL); 242 if (samples < 500 && 243 time_is_after_jiffies(kqd->latency_timeout[sched_domain])) { 244 return -1; 245 } 246 kqd->latency_timeout[sched_domain] = 0; 247 248 percentile_samples = DIV_ROUND_UP(samples * percentile, 100); 249 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) { 250 if (buckets[bucket] >= percentile_samples) 251 break; 252 percentile_samples -= buckets[bucket]; 253 } 254 memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type])); 255 256 trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain], 257 kyber_latency_type_names[type], percentile, 258 bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples); 259 260 return bucket; 261 } 262 263 static void kyber_resize_domain(struct kyber_queue_data *kqd, 264 unsigned int sched_domain, unsigned int depth) 265 { 266 depth = clamp(depth, 1U, kyber_depth[sched_domain]); 267 if (depth != kqd->domain_tokens[sched_domain].sb.depth) { 268 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth); 269 trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain], 270 depth); 271 } 272 } 273 274 static void kyber_timer_fn(struct timer_list *t) 275 { 276 struct kyber_queue_data *kqd = timer_container_of(kqd, t, timer); 277 unsigned int sched_domain; 278 int cpu; 279 bool bad = false; 280 281 /* Sum all of the per-cpu latency histograms. */ 282 for_each_online_cpu(cpu) { 283 struct kyber_cpu_latency *cpu_latency; 284 285 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu); 286 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { 287 flush_latency_buckets(kqd, cpu_latency, sched_domain, 288 KYBER_TOTAL_LATENCY); 289 flush_latency_buckets(kqd, cpu_latency, sched_domain, 290 KYBER_IO_LATENCY); 291 } 292 } 293 294 /* 295 * Check if any domains have a high I/O latency, which might indicate 296 * congestion in the device. Note that we use the p90; we don't want to 297 * be too sensitive to outliers here. 298 */ 299 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { 300 int p90; 301 302 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY, 303 90); 304 if (p90 >= KYBER_GOOD_BUCKETS) 305 bad = true; 306 } 307 308 /* 309 * Adjust the scheduling domain depths. If we determined that there was 310 * congestion, we throttle all domains with good latencies. Either way, 311 * we ease up on throttling domains with bad latencies. 312 */ 313 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { 314 unsigned int orig_depth, depth; 315 int p99; 316 317 p99 = calculate_percentile(kqd, sched_domain, 318 KYBER_TOTAL_LATENCY, 99); 319 /* 320 * This is kind of subtle: different domains will not 321 * necessarily have enough samples to calculate the latency 322 * percentiles during the same window, so we have to remember 323 * the p99 for the next time we observe congestion; once we do, 324 * we don't want to throttle again until we get more data, so we 325 * reset it to -1. 326 */ 327 if (bad) { 328 if (p99 < 0) 329 p99 = kqd->domain_p99[sched_domain]; 330 kqd->domain_p99[sched_domain] = -1; 331 } else if (p99 >= 0) { 332 kqd->domain_p99[sched_domain] = p99; 333 } 334 if (p99 < 0) 335 continue; 336 337 /* 338 * If this domain has bad latency, throttle less. Otherwise, 339 * throttle more iff we determined that there is congestion. 340 * 341 * The new depth is scaled linearly with the p99 latency vs the 342 * latency target. E.g., if the p99 is 3/4 of the target, then 343 * we throttle down to 3/4 of the current depth, and if the p99 344 * is 2x the target, then we double the depth. 345 */ 346 if (bad || p99 >= KYBER_GOOD_BUCKETS) { 347 orig_depth = kqd->domain_tokens[sched_domain].sb.depth; 348 depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT; 349 kyber_resize_domain(kqd, sched_domain, depth); 350 } 351 } 352 } 353 354 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q) 355 { 356 struct kyber_queue_data *kqd; 357 int ret = -ENOMEM; 358 int i; 359 360 kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node); 361 if (!kqd) 362 goto err; 363 364 kqd->q = q; 365 kqd->dev = disk_devt(q->disk); 366 367 kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency, 368 GFP_KERNEL | __GFP_ZERO); 369 if (!kqd->cpu_latency) 370 goto err_kqd; 371 372 timer_setup(&kqd->timer, kyber_timer_fn, 0); 373 374 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 375 WARN_ON(!kyber_depth[i]); 376 WARN_ON(!kyber_batch_size[i]); 377 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i], 378 kyber_depth[i], -1, false, 379 GFP_KERNEL, q->node); 380 if (ret) { 381 while (--i >= 0) 382 sbitmap_queue_free(&kqd->domain_tokens[i]); 383 goto err_buckets; 384 } 385 } 386 387 for (i = 0; i < KYBER_OTHER; i++) { 388 kqd->domain_p99[i] = -1; 389 kqd->latency_targets[i] = kyber_latency_targets[i]; 390 } 391 392 return kqd; 393 394 err_buckets: 395 free_percpu(kqd->cpu_latency); 396 err_kqd: 397 kfree(kqd); 398 err: 399 return ERR_PTR(ret); 400 } 401 402 static void kyber_depth_updated(struct request_queue *q) 403 { 404 struct kyber_queue_data *kqd = q->elevator->elevator_data; 405 406 kqd->async_depth = q->nr_requests * KYBER_ASYNC_PERCENT / 100U; 407 blk_mq_set_min_shallow_depth(q, kqd->async_depth); 408 } 409 410 static int kyber_init_sched(struct request_queue *q, struct elevator_queue *eq) 411 { 412 struct kyber_queue_data *kqd; 413 414 kqd = kyber_queue_data_alloc(q); 415 if (IS_ERR(kqd)) 416 return PTR_ERR(kqd); 417 418 blk_stat_enable_accounting(q); 419 420 blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q); 421 422 eq->elevator_data = kqd; 423 q->elevator = eq; 424 kyber_depth_updated(q); 425 426 return 0; 427 } 428 429 static void kyber_exit_sched(struct elevator_queue *e) 430 { 431 struct kyber_queue_data *kqd = e->elevator_data; 432 int i; 433 434 timer_shutdown_sync(&kqd->timer); 435 blk_stat_disable_accounting(kqd->q); 436 437 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 438 sbitmap_queue_free(&kqd->domain_tokens[i]); 439 free_percpu(kqd->cpu_latency); 440 kfree(kqd); 441 } 442 443 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq) 444 { 445 unsigned int i; 446 447 spin_lock_init(&kcq->lock); 448 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 449 INIT_LIST_HEAD(&kcq->rq_list[i]); 450 } 451 452 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 453 { 454 struct kyber_hctx_data *khd; 455 int i; 456 457 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node); 458 if (!khd) 459 return -ENOMEM; 460 461 khd->kcqs = kmalloc_array_node(hctx->nr_ctx, 462 sizeof(struct kyber_ctx_queue), 463 GFP_KERNEL, hctx->numa_node); 464 if (!khd->kcqs) 465 goto err_khd; 466 467 for (i = 0; i < hctx->nr_ctx; i++) 468 kyber_ctx_queue_init(&khd->kcqs[i]); 469 470 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 471 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx, 472 ilog2(8), GFP_KERNEL, hctx->numa_node, 473 false, false)) { 474 while (--i >= 0) 475 sbitmap_free(&khd->kcq_map[i]); 476 goto err_kcqs; 477 } 478 } 479 480 spin_lock_init(&khd->lock); 481 482 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 483 INIT_LIST_HEAD(&khd->rqs[i]); 484 khd->domain_wait[i].sbq = NULL; 485 init_waitqueue_func_entry(&khd->domain_wait[i].wait, 486 kyber_domain_wake); 487 khd->domain_wait[i].wait.private = hctx; 488 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry); 489 atomic_set(&khd->wait_index[i], 0); 490 } 491 492 khd->cur_domain = 0; 493 khd->batching = 0; 494 495 hctx->sched_data = khd; 496 497 return 0; 498 499 err_kcqs: 500 kfree(khd->kcqs); 501 err_khd: 502 kfree(khd); 503 return -ENOMEM; 504 } 505 506 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 507 { 508 struct kyber_hctx_data *khd = hctx->sched_data; 509 int i; 510 511 for (i = 0; i < KYBER_NUM_DOMAINS; i++) 512 sbitmap_free(&khd->kcq_map[i]); 513 kfree(khd->kcqs); 514 kfree(hctx->sched_data); 515 } 516 517 static int rq_get_domain_token(struct request *rq) 518 { 519 return (long)rq->elv.priv[0]; 520 } 521 522 static void rq_set_domain_token(struct request *rq, int token) 523 { 524 rq->elv.priv[0] = (void *)(long)token; 525 } 526 527 static void rq_clear_domain_token(struct kyber_queue_data *kqd, 528 struct request *rq) 529 { 530 unsigned int sched_domain; 531 int nr; 532 533 nr = rq_get_domain_token(rq); 534 if (nr != -1) { 535 sched_domain = kyber_sched_domain(rq->cmd_flags); 536 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr, 537 rq->mq_ctx->cpu); 538 } 539 } 540 541 static void kyber_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data) 542 { 543 /* 544 * We use the scheduler tags as per-hardware queue queueing tokens. 545 * Async requests can be limited at this stage. 546 */ 547 if (!op_is_sync(opf)) { 548 struct kyber_queue_data *kqd = data->q->elevator->elevator_data; 549 550 data->shallow_depth = kqd->async_depth; 551 } 552 } 553 554 static bool kyber_bio_merge(struct request_queue *q, struct bio *bio, 555 unsigned int nr_segs) 556 { 557 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 558 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(bio->bi_opf, ctx); 559 struct kyber_hctx_data *khd = hctx->sched_data; 560 struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]]; 561 unsigned int sched_domain = kyber_sched_domain(bio->bi_opf); 562 struct list_head *rq_list = &kcq->rq_list[sched_domain]; 563 bool merged; 564 565 spin_lock(&kcq->lock); 566 merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs); 567 spin_unlock(&kcq->lock); 568 569 return merged; 570 } 571 572 static void kyber_prepare_request(struct request *rq) 573 { 574 rq_set_domain_token(rq, -1); 575 } 576 577 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx, 578 struct list_head *rq_list, 579 blk_insert_t flags) 580 { 581 struct kyber_hctx_data *khd = hctx->sched_data; 582 struct request *rq, *next; 583 584 list_for_each_entry_safe(rq, next, rq_list, queuelist) { 585 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags); 586 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]]; 587 struct list_head *head = &kcq->rq_list[sched_domain]; 588 589 spin_lock(&kcq->lock); 590 trace_block_rq_insert(rq); 591 if (flags & BLK_MQ_INSERT_AT_HEAD) 592 list_move(&rq->queuelist, head); 593 else 594 list_move_tail(&rq->queuelist, head); 595 sbitmap_set_bit(&khd->kcq_map[sched_domain], 596 rq->mq_ctx->index_hw[hctx->type]); 597 spin_unlock(&kcq->lock); 598 } 599 } 600 601 static void kyber_finish_request(struct request *rq) 602 { 603 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data; 604 605 rq_clear_domain_token(kqd, rq); 606 } 607 608 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency, 609 unsigned int sched_domain, unsigned int type, 610 u64 target, u64 latency) 611 { 612 unsigned int bucket; 613 u64 divisor; 614 615 if (latency > 0) { 616 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1); 617 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor), 618 KYBER_LATENCY_BUCKETS - 1); 619 } else { 620 bucket = 0; 621 } 622 623 atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]); 624 } 625 626 static void kyber_completed_request(struct request *rq, u64 now) 627 { 628 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data; 629 struct kyber_cpu_latency *cpu_latency; 630 unsigned int sched_domain; 631 u64 target; 632 633 sched_domain = kyber_sched_domain(rq->cmd_flags); 634 if (sched_domain == KYBER_OTHER) 635 return; 636 637 cpu_latency = get_cpu_ptr(kqd->cpu_latency); 638 target = kqd->latency_targets[sched_domain]; 639 add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY, 640 target, now - rq->start_time_ns); 641 add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target, 642 now - rq->io_start_time_ns); 643 put_cpu_ptr(kqd->cpu_latency); 644 645 timer_reduce(&kqd->timer, jiffies + HZ / 10); 646 } 647 648 struct flush_kcq_data { 649 struct kyber_hctx_data *khd; 650 unsigned int sched_domain; 651 struct list_head *list; 652 }; 653 654 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data) 655 { 656 struct flush_kcq_data *flush_data = data; 657 struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr]; 658 659 spin_lock(&kcq->lock); 660 list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain], 661 flush_data->list); 662 sbitmap_clear_bit(sb, bitnr); 663 spin_unlock(&kcq->lock); 664 665 return true; 666 } 667 668 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd, 669 unsigned int sched_domain, 670 struct list_head *list) 671 { 672 struct flush_kcq_data data = { 673 .khd = khd, 674 .sched_domain = sched_domain, 675 .list = list, 676 }; 677 678 sbitmap_for_each_set(&khd->kcq_map[sched_domain], 679 flush_busy_kcq, &data); 680 } 681 682 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags, 683 void *key) 684 { 685 struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private); 686 struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait); 687 688 sbitmap_del_wait_queue(wait); 689 blk_mq_run_hw_queue(hctx, true); 690 return 1; 691 } 692 693 static int kyber_get_domain_token(struct kyber_queue_data *kqd, 694 struct kyber_hctx_data *khd, 695 struct blk_mq_hw_ctx *hctx) 696 { 697 unsigned int sched_domain = khd->cur_domain; 698 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain]; 699 struct sbq_wait *wait = &khd->domain_wait[sched_domain]; 700 struct sbq_wait_state *ws; 701 int nr; 702 703 nr = __sbitmap_queue_get(domain_tokens); 704 705 /* 706 * If we failed to get a domain token, make sure the hardware queue is 707 * run when one becomes available. Note that this is serialized on 708 * khd->lock, but we still need to be careful about the waker. 709 */ 710 if (nr < 0 && list_empty_careful(&wait->wait.entry)) { 711 ws = sbq_wait_ptr(domain_tokens, 712 &khd->wait_index[sched_domain]); 713 khd->domain_ws[sched_domain] = ws; 714 sbitmap_add_wait_queue(domain_tokens, ws, wait); 715 716 /* 717 * Try again in case a token was freed before we got on the wait 718 * queue. 719 */ 720 nr = __sbitmap_queue_get(domain_tokens); 721 } 722 723 /* 724 * If we got a token while we were on the wait queue, remove ourselves 725 * from the wait queue to ensure that all wake ups make forward 726 * progress. It's possible that the waker already deleted the entry 727 * between the !list_empty_careful() check and us grabbing the lock, but 728 * list_del_init() is okay with that. 729 */ 730 if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) { 731 ws = khd->domain_ws[sched_domain]; 732 spin_lock_irq(&ws->wait.lock); 733 sbitmap_del_wait_queue(wait); 734 spin_unlock_irq(&ws->wait.lock); 735 } 736 737 return nr; 738 } 739 740 static struct request * 741 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd, 742 struct kyber_hctx_data *khd, 743 struct blk_mq_hw_ctx *hctx) 744 { 745 struct list_head *rqs; 746 struct request *rq; 747 int nr; 748 749 rqs = &khd->rqs[khd->cur_domain]; 750 751 /* 752 * If we already have a flushed request, then we just need to get a 753 * token for it. Otherwise, if there are pending requests in the kcqs, 754 * flush the kcqs, but only if we can get a token. If not, we should 755 * leave the requests in the kcqs so that they can be merged. Note that 756 * khd->lock serializes the flushes, so if we observed any bit set in 757 * the kcq_map, we will always get a request. 758 */ 759 rq = list_first_entry_or_null(rqs, struct request, queuelist); 760 if (rq) { 761 nr = kyber_get_domain_token(kqd, khd, hctx); 762 if (nr >= 0) { 763 khd->batching++; 764 rq_set_domain_token(rq, nr); 765 list_del_init(&rq->queuelist); 766 return rq; 767 } else { 768 trace_kyber_throttled(kqd->dev, 769 kyber_domain_names[khd->cur_domain]); 770 } 771 } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) { 772 nr = kyber_get_domain_token(kqd, khd, hctx); 773 if (nr >= 0) { 774 kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs); 775 rq = list_first_entry(rqs, struct request, queuelist); 776 khd->batching++; 777 rq_set_domain_token(rq, nr); 778 list_del_init(&rq->queuelist); 779 return rq; 780 } else { 781 trace_kyber_throttled(kqd->dev, 782 kyber_domain_names[khd->cur_domain]); 783 } 784 } 785 786 /* There were either no pending requests or no tokens. */ 787 return NULL; 788 } 789 790 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx) 791 { 792 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data; 793 struct kyber_hctx_data *khd = hctx->sched_data; 794 struct request *rq; 795 int i; 796 797 spin_lock(&khd->lock); 798 799 /* 800 * First, if we are still entitled to batch, try to dispatch a request 801 * from the batch. 802 */ 803 if (khd->batching < kyber_batch_size[khd->cur_domain]) { 804 rq = kyber_dispatch_cur_domain(kqd, khd, hctx); 805 if (rq) 806 goto out; 807 } 808 809 /* 810 * Either, 811 * 1. We were no longer entitled to a batch. 812 * 2. The domain we were batching didn't have any requests. 813 * 3. The domain we were batching was out of tokens. 814 * 815 * Start another batch. Note that this wraps back around to the original 816 * domain if no other domains have requests or tokens. 817 */ 818 khd->batching = 0; 819 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 820 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1) 821 khd->cur_domain = 0; 822 else 823 khd->cur_domain++; 824 825 rq = kyber_dispatch_cur_domain(kqd, khd, hctx); 826 if (rq) 827 goto out; 828 } 829 830 rq = NULL; 831 out: 832 spin_unlock(&khd->lock); 833 return rq; 834 } 835 836 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx) 837 { 838 struct kyber_hctx_data *khd = hctx->sched_data; 839 int i; 840 841 for (i = 0; i < KYBER_NUM_DOMAINS; i++) { 842 if (!list_empty_careful(&khd->rqs[i]) || 843 sbitmap_any_bit_set(&khd->kcq_map[i])) 844 return true; 845 } 846 847 return false; 848 } 849 850 #define KYBER_LAT_SHOW_STORE(domain, name) \ 851 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \ 852 char *page) \ 853 { \ 854 struct kyber_queue_data *kqd = e->elevator_data; \ 855 \ 856 return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \ 857 } \ 858 \ 859 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \ 860 const char *page, size_t count) \ 861 { \ 862 struct kyber_queue_data *kqd = e->elevator_data; \ 863 unsigned long long nsec; \ 864 int ret; \ 865 \ 866 ret = kstrtoull(page, 10, &nsec); \ 867 if (ret) \ 868 return ret; \ 869 \ 870 kqd->latency_targets[domain] = nsec; \ 871 \ 872 return count; \ 873 } 874 KYBER_LAT_SHOW_STORE(KYBER_READ, read); 875 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write); 876 #undef KYBER_LAT_SHOW_STORE 877 878 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store) 879 static const struct elv_fs_entry kyber_sched_attrs[] = { 880 KYBER_LAT_ATTR(read), 881 KYBER_LAT_ATTR(write), 882 __ATTR_NULL 883 }; 884 #undef KYBER_LAT_ATTR 885 886 #ifdef CONFIG_BLK_DEBUG_FS 887 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \ 888 static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \ 889 { \ 890 struct request_queue *q = data; \ 891 struct kyber_queue_data *kqd = q->elevator->elevator_data; \ 892 \ 893 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \ 894 return 0; \ 895 } \ 896 \ 897 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \ 898 __acquires(&khd->lock) \ 899 { \ 900 struct blk_mq_hw_ctx *hctx = m->private; \ 901 struct kyber_hctx_data *khd = hctx->sched_data; \ 902 \ 903 spin_lock(&khd->lock); \ 904 return seq_list_start(&khd->rqs[domain], *pos); \ 905 } \ 906 \ 907 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \ 908 loff_t *pos) \ 909 { \ 910 struct blk_mq_hw_ctx *hctx = m->private; \ 911 struct kyber_hctx_data *khd = hctx->sched_data; \ 912 \ 913 return seq_list_next(v, &khd->rqs[domain], pos); \ 914 } \ 915 \ 916 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \ 917 __releases(&khd->lock) \ 918 { \ 919 struct blk_mq_hw_ctx *hctx = m->private; \ 920 struct kyber_hctx_data *khd = hctx->sched_data; \ 921 \ 922 spin_unlock(&khd->lock); \ 923 } \ 924 \ 925 static const struct seq_operations kyber_##name##_rqs_seq_ops = { \ 926 .start = kyber_##name##_rqs_start, \ 927 .next = kyber_##name##_rqs_next, \ 928 .stop = kyber_##name##_rqs_stop, \ 929 .show = blk_mq_debugfs_rq_show, \ 930 }; \ 931 \ 932 static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \ 933 { \ 934 struct blk_mq_hw_ctx *hctx = data; \ 935 struct kyber_hctx_data *khd = hctx->sched_data; \ 936 wait_queue_entry_t *wait = &khd->domain_wait[domain].wait; \ 937 \ 938 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \ 939 return 0; \ 940 } 941 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read) 942 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write) 943 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard) 944 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other) 945 #undef KYBER_DEBUGFS_DOMAIN_ATTRS 946 947 static int kyber_async_depth_show(void *data, struct seq_file *m) 948 { 949 struct request_queue *q = data; 950 struct kyber_queue_data *kqd = q->elevator->elevator_data; 951 952 seq_printf(m, "%u\n", kqd->async_depth); 953 return 0; 954 } 955 956 static int kyber_cur_domain_show(void *data, struct seq_file *m) 957 { 958 struct blk_mq_hw_ctx *hctx = data; 959 struct kyber_hctx_data *khd = hctx->sched_data; 960 961 seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]); 962 return 0; 963 } 964 965 static int kyber_batching_show(void *data, struct seq_file *m) 966 { 967 struct blk_mq_hw_ctx *hctx = data; 968 struct kyber_hctx_data *khd = hctx->sched_data; 969 970 seq_printf(m, "%u\n", khd->batching); 971 return 0; 972 } 973 974 #define KYBER_QUEUE_DOMAIN_ATTRS(name) \ 975 {#name "_tokens", 0400, kyber_##name##_tokens_show} 976 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = { 977 KYBER_QUEUE_DOMAIN_ATTRS(read), 978 KYBER_QUEUE_DOMAIN_ATTRS(write), 979 KYBER_QUEUE_DOMAIN_ATTRS(discard), 980 KYBER_QUEUE_DOMAIN_ATTRS(other), 981 {"async_depth", 0400, kyber_async_depth_show}, 982 {}, 983 }; 984 #undef KYBER_QUEUE_DOMAIN_ATTRS 985 986 #define KYBER_HCTX_DOMAIN_ATTRS(name) \ 987 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \ 988 {#name "_waiting", 0400, kyber_##name##_waiting_show} 989 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = { 990 KYBER_HCTX_DOMAIN_ATTRS(read), 991 KYBER_HCTX_DOMAIN_ATTRS(write), 992 KYBER_HCTX_DOMAIN_ATTRS(discard), 993 KYBER_HCTX_DOMAIN_ATTRS(other), 994 {"cur_domain", 0400, kyber_cur_domain_show}, 995 {"batching", 0400, kyber_batching_show}, 996 {}, 997 }; 998 #undef KYBER_HCTX_DOMAIN_ATTRS 999 #endif 1000 1001 static struct elevator_type kyber_sched = { 1002 .ops = { 1003 .init_sched = kyber_init_sched, 1004 .exit_sched = kyber_exit_sched, 1005 .init_hctx = kyber_init_hctx, 1006 .exit_hctx = kyber_exit_hctx, 1007 .limit_depth = kyber_limit_depth, 1008 .bio_merge = kyber_bio_merge, 1009 .prepare_request = kyber_prepare_request, 1010 .insert_requests = kyber_insert_requests, 1011 .finish_request = kyber_finish_request, 1012 .requeue_request = kyber_finish_request, 1013 .completed_request = kyber_completed_request, 1014 .dispatch_request = kyber_dispatch_request, 1015 .has_work = kyber_has_work, 1016 .depth_updated = kyber_depth_updated, 1017 }, 1018 #ifdef CONFIG_BLK_DEBUG_FS 1019 .queue_debugfs_attrs = kyber_queue_debugfs_attrs, 1020 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs, 1021 #endif 1022 .elevator_attrs = kyber_sched_attrs, 1023 .elevator_name = "kyber", 1024 .elevator_owner = THIS_MODULE, 1025 }; 1026 1027 static int __init kyber_init(void) 1028 { 1029 return elv_register(&kyber_sched); 1030 } 1031 1032 static void __exit kyber_exit(void) 1033 { 1034 elv_unregister(&kyber_sched); 1035 } 1036 1037 module_init(kyber_init); 1038 module_exit(kyber_exit); 1039 1040 MODULE_AUTHOR("Omar Sandoval"); 1041 MODULE_LICENSE("GPL"); 1042 MODULE_DESCRIPTION("Kyber I/O scheduler"); 1043