xref: /linux/block/kyber-iosched.c (revision 55a42f78ffd386e01a5404419f8c5ded7db70a21)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4  * scalable techniques.
5  *
6  * Copyright (C) 2017 Facebook
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/module.h>
12 #include <linux/sbitmap.h>
13 
14 #include <trace/events/block.h>
15 
16 #include "elevator.h"
17 #include "blk.h"
18 #include "blk-mq.h"
19 #include "blk-mq-debugfs.h"
20 #include "blk-mq-sched.h"
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/kyber.h>
24 
25 /*
26  * Scheduling domains: the device is divided into multiple domains based on the
27  * request type.
28  */
29 enum {
30 	KYBER_READ,
31 	KYBER_WRITE,
32 	KYBER_DISCARD,
33 	KYBER_OTHER,
34 	KYBER_NUM_DOMAINS,
35 };
36 
37 static const char *kyber_domain_names[] = {
38 	[KYBER_READ] = "READ",
39 	[KYBER_WRITE] = "WRITE",
40 	[KYBER_DISCARD] = "DISCARD",
41 	[KYBER_OTHER] = "OTHER",
42 };
43 
44 enum {
45 	/*
46 	 * In order to prevent starvation of synchronous requests by a flood of
47 	 * asynchronous requests, we reserve 25% of requests for synchronous
48 	 * operations.
49 	 */
50 	KYBER_ASYNC_PERCENT = 75,
51 };
52 
53 /*
54  * Maximum device-wide depth for each scheduling domain.
55  *
56  * Even for fast devices with lots of tags like NVMe, you can saturate the
57  * device with only a fraction of the maximum possible queue depth. So, we cap
58  * these to a reasonable value.
59  */
60 static const unsigned int kyber_depth[] = {
61 	[KYBER_READ] = 256,
62 	[KYBER_WRITE] = 128,
63 	[KYBER_DISCARD] = 64,
64 	[KYBER_OTHER] = 16,
65 };
66 
67 /*
68  * Default latency targets for each scheduling domain.
69  */
70 static const u64 kyber_latency_targets[] = {
71 	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
72 	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
73 	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
74 };
75 
76 /*
77  * Batch size (number of requests we'll dispatch in a row) for each scheduling
78  * domain.
79  */
80 static const unsigned int kyber_batch_size[] = {
81 	[KYBER_READ] = 16,
82 	[KYBER_WRITE] = 8,
83 	[KYBER_DISCARD] = 1,
84 	[KYBER_OTHER] = 1,
85 };
86 
87 /*
88  * Requests latencies are recorded in a histogram with buckets defined relative
89  * to the target latency:
90  *
91  * <= 1/4 * target latency
92  * <= 1/2 * target latency
93  * <= 3/4 * target latency
94  * <= target latency
95  * <= 1 1/4 * target latency
96  * <= 1 1/2 * target latency
97  * <= 1 3/4 * target latency
98  * > 1 3/4 * target latency
99  */
100 enum {
101 	/*
102 	 * The width of the latency histogram buckets is
103 	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
104 	 */
105 	KYBER_LATENCY_SHIFT = 2,
106 	/*
107 	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
108 	 * thus, "good".
109 	 */
110 	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
111 	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
112 	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
113 };
114 
115 /*
116  * We measure both the total latency and the I/O latency (i.e., latency after
117  * submitting to the device).
118  */
119 enum {
120 	KYBER_TOTAL_LATENCY,
121 	KYBER_IO_LATENCY,
122 };
123 
124 static const char *kyber_latency_type_names[] = {
125 	[KYBER_TOTAL_LATENCY] = "total",
126 	[KYBER_IO_LATENCY] = "I/O",
127 };
128 
129 /*
130  * Per-cpu latency histograms: total latency and I/O latency for each scheduling
131  * domain except for KYBER_OTHER.
132  */
133 struct kyber_cpu_latency {
134 	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
135 };
136 
137 /*
138  * There is a same mapping between ctx & hctx and kcq & khd,
139  * we use request->mq_ctx->index_hw to index the kcq in khd.
140  */
141 struct kyber_ctx_queue {
142 	/*
143 	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
144 	 * Also protect the rqs on rq_list when merge.
145 	 */
146 	spinlock_t lock;
147 	struct list_head rq_list[KYBER_NUM_DOMAINS];
148 } ____cacheline_aligned_in_smp;
149 
150 struct kyber_queue_data {
151 	struct request_queue *q;
152 	dev_t dev;
153 
154 	/*
155 	 * Each scheduling domain has a limited number of in-flight requests
156 	 * device-wide, limited by these tokens.
157 	 */
158 	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
159 
160 	/* Number of allowed async requests. */
161 	unsigned int async_depth;
162 
163 	struct kyber_cpu_latency __percpu *cpu_latency;
164 
165 	/* Timer for stats aggregation and adjusting domain tokens. */
166 	struct timer_list timer;
167 
168 	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
169 
170 	unsigned long latency_timeout[KYBER_OTHER];
171 
172 	int domain_p99[KYBER_OTHER];
173 
174 	/* Target latencies in nanoseconds. */
175 	u64 latency_targets[KYBER_OTHER];
176 };
177 
178 struct kyber_hctx_data {
179 	spinlock_t lock;
180 	struct list_head rqs[KYBER_NUM_DOMAINS];
181 	unsigned int cur_domain;
182 	unsigned int batching;
183 	struct kyber_ctx_queue *kcqs;
184 	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
185 	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
186 	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
187 	atomic_t wait_index[KYBER_NUM_DOMAINS];
188 };
189 
190 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
191 			     void *key);
192 
193 static unsigned int kyber_sched_domain(blk_opf_t opf)
194 {
195 	switch (opf & REQ_OP_MASK) {
196 	case REQ_OP_READ:
197 		return KYBER_READ;
198 	case REQ_OP_WRITE:
199 		return KYBER_WRITE;
200 	case REQ_OP_DISCARD:
201 		return KYBER_DISCARD;
202 	default:
203 		return KYBER_OTHER;
204 	}
205 }
206 
207 static void flush_latency_buckets(struct kyber_queue_data *kqd,
208 				  struct kyber_cpu_latency *cpu_latency,
209 				  unsigned int sched_domain, unsigned int type)
210 {
211 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
212 	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
213 	unsigned int bucket;
214 
215 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
216 		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
217 }
218 
219 /*
220  * Calculate the histogram bucket with the given percentile rank, or -1 if there
221  * aren't enough samples yet.
222  */
223 static int calculate_percentile(struct kyber_queue_data *kqd,
224 				unsigned int sched_domain, unsigned int type,
225 				unsigned int percentile)
226 {
227 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
228 	unsigned int bucket, samples = 0, percentile_samples;
229 
230 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
231 		samples += buckets[bucket];
232 
233 	if (!samples)
234 		return -1;
235 
236 	/*
237 	 * We do the calculation once we have 500 samples or one second passes
238 	 * since the first sample was recorded, whichever comes first.
239 	 */
240 	if (!kqd->latency_timeout[sched_domain])
241 		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
242 	if (samples < 500 &&
243 	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
244 		return -1;
245 	}
246 	kqd->latency_timeout[sched_domain] = 0;
247 
248 	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
249 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
250 		if (buckets[bucket] >= percentile_samples)
251 			break;
252 		percentile_samples -= buckets[bucket];
253 	}
254 	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
255 
256 	trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain],
257 			    kyber_latency_type_names[type], percentile,
258 			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
259 
260 	return bucket;
261 }
262 
263 static void kyber_resize_domain(struct kyber_queue_data *kqd,
264 				unsigned int sched_domain, unsigned int depth)
265 {
266 	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
267 	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
268 		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
269 		trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain],
270 				   depth);
271 	}
272 }
273 
274 static void kyber_timer_fn(struct timer_list *t)
275 {
276 	struct kyber_queue_data *kqd = timer_container_of(kqd, t, timer);
277 	unsigned int sched_domain;
278 	int cpu;
279 	bool bad = false;
280 
281 	/* Sum all of the per-cpu latency histograms. */
282 	for_each_online_cpu(cpu) {
283 		struct kyber_cpu_latency *cpu_latency;
284 
285 		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
286 		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
287 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
288 					      KYBER_TOTAL_LATENCY);
289 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
290 					      KYBER_IO_LATENCY);
291 		}
292 	}
293 
294 	/*
295 	 * Check if any domains have a high I/O latency, which might indicate
296 	 * congestion in the device. Note that we use the p90; we don't want to
297 	 * be too sensitive to outliers here.
298 	 */
299 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
300 		int p90;
301 
302 		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
303 					   90);
304 		if (p90 >= KYBER_GOOD_BUCKETS)
305 			bad = true;
306 	}
307 
308 	/*
309 	 * Adjust the scheduling domain depths. If we determined that there was
310 	 * congestion, we throttle all domains with good latencies. Either way,
311 	 * we ease up on throttling domains with bad latencies.
312 	 */
313 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
314 		unsigned int orig_depth, depth;
315 		int p99;
316 
317 		p99 = calculate_percentile(kqd, sched_domain,
318 					   KYBER_TOTAL_LATENCY, 99);
319 		/*
320 		 * This is kind of subtle: different domains will not
321 		 * necessarily have enough samples to calculate the latency
322 		 * percentiles during the same window, so we have to remember
323 		 * the p99 for the next time we observe congestion; once we do,
324 		 * we don't want to throttle again until we get more data, so we
325 		 * reset it to -1.
326 		 */
327 		if (bad) {
328 			if (p99 < 0)
329 				p99 = kqd->domain_p99[sched_domain];
330 			kqd->domain_p99[sched_domain] = -1;
331 		} else if (p99 >= 0) {
332 			kqd->domain_p99[sched_domain] = p99;
333 		}
334 		if (p99 < 0)
335 			continue;
336 
337 		/*
338 		 * If this domain has bad latency, throttle less. Otherwise,
339 		 * throttle more iff we determined that there is congestion.
340 		 *
341 		 * The new depth is scaled linearly with the p99 latency vs the
342 		 * latency target. E.g., if the p99 is 3/4 of the target, then
343 		 * we throttle down to 3/4 of the current depth, and if the p99
344 		 * is 2x the target, then we double the depth.
345 		 */
346 		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
347 			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
348 			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
349 			kyber_resize_domain(kqd, sched_domain, depth);
350 		}
351 	}
352 }
353 
354 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
355 {
356 	struct kyber_queue_data *kqd;
357 	int ret = -ENOMEM;
358 	int i;
359 
360 	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
361 	if (!kqd)
362 		goto err;
363 
364 	kqd->q = q;
365 	kqd->dev = disk_devt(q->disk);
366 
367 	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
368 					    GFP_KERNEL | __GFP_ZERO);
369 	if (!kqd->cpu_latency)
370 		goto err_kqd;
371 
372 	timer_setup(&kqd->timer, kyber_timer_fn, 0);
373 
374 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
375 		WARN_ON(!kyber_depth[i]);
376 		WARN_ON(!kyber_batch_size[i]);
377 		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
378 					      kyber_depth[i], -1, false,
379 					      GFP_KERNEL, q->node);
380 		if (ret) {
381 			while (--i >= 0)
382 				sbitmap_queue_free(&kqd->domain_tokens[i]);
383 			goto err_buckets;
384 		}
385 	}
386 
387 	for (i = 0; i < KYBER_OTHER; i++) {
388 		kqd->domain_p99[i] = -1;
389 		kqd->latency_targets[i] = kyber_latency_targets[i];
390 	}
391 
392 	return kqd;
393 
394 err_buckets:
395 	free_percpu(kqd->cpu_latency);
396 err_kqd:
397 	kfree(kqd);
398 err:
399 	return ERR_PTR(ret);
400 }
401 
402 static void kyber_depth_updated(struct request_queue *q)
403 {
404 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
405 
406 	kqd->async_depth = q->nr_requests * KYBER_ASYNC_PERCENT / 100U;
407 	blk_mq_set_min_shallow_depth(q, kqd->async_depth);
408 }
409 
410 static int kyber_init_sched(struct request_queue *q, struct elevator_queue *eq)
411 {
412 	struct kyber_queue_data *kqd;
413 
414 	kqd = kyber_queue_data_alloc(q);
415 	if (IS_ERR(kqd))
416 		return PTR_ERR(kqd);
417 
418 	blk_stat_enable_accounting(q);
419 
420 	blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q);
421 
422 	eq->elevator_data = kqd;
423 	q->elevator = eq;
424 	kyber_depth_updated(q);
425 
426 	return 0;
427 }
428 
429 static void kyber_exit_sched(struct elevator_queue *e)
430 {
431 	struct kyber_queue_data *kqd = e->elevator_data;
432 	int i;
433 
434 	timer_shutdown_sync(&kqd->timer);
435 	blk_stat_disable_accounting(kqd->q);
436 
437 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
438 		sbitmap_queue_free(&kqd->domain_tokens[i]);
439 	free_percpu(kqd->cpu_latency);
440 	kfree(kqd);
441 }
442 
443 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
444 {
445 	unsigned int i;
446 
447 	spin_lock_init(&kcq->lock);
448 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
449 		INIT_LIST_HEAD(&kcq->rq_list[i]);
450 }
451 
452 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
453 {
454 	struct kyber_hctx_data *khd;
455 	int i;
456 
457 	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
458 	if (!khd)
459 		return -ENOMEM;
460 
461 	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
462 				       sizeof(struct kyber_ctx_queue),
463 				       GFP_KERNEL, hctx->numa_node);
464 	if (!khd->kcqs)
465 		goto err_khd;
466 
467 	for (i = 0; i < hctx->nr_ctx; i++)
468 		kyber_ctx_queue_init(&khd->kcqs[i]);
469 
470 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
471 		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
472 				      ilog2(8), GFP_KERNEL, hctx->numa_node,
473 				      false, false)) {
474 			while (--i >= 0)
475 				sbitmap_free(&khd->kcq_map[i]);
476 			goto err_kcqs;
477 		}
478 	}
479 
480 	spin_lock_init(&khd->lock);
481 
482 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
483 		INIT_LIST_HEAD(&khd->rqs[i]);
484 		khd->domain_wait[i].sbq = NULL;
485 		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
486 					  kyber_domain_wake);
487 		khd->domain_wait[i].wait.private = hctx;
488 		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
489 		atomic_set(&khd->wait_index[i], 0);
490 	}
491 
492 	khd->cur_domain = 0;
493 	khd->batching = 0;
494 
495 	hctx->sched_data = khd;
496 
497 	return 0;
498 
499 err_kcqs:
500 	kfree(khd->kcqs);
501 err_khd:
502 	kfree(khd);
503 	return -ENOMEM;
504 }
505 
506 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
507 {
508 	struct kyber_hctx_data *khd = hctx->sched_data;
509 	int i;
510 
511 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
512 		sbitmap_free(&khd->kcq_map[i]);
513 	kfree(khd->kcqs);
514 	kfree(hctx->sched_data);
515 }
516 
517 static int rq_get_domain_token(struct request *rq)
518 {
519 	return (long)rq->elv.priv[0];
520 }
521 
522 static void rq_set_domain_token(struct request *rq, int token)
523 {
524 	rq->elv.priv[0] = (void *)(long)token;
525 }
526 
527 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
528 				  struct request *rq)
529 {
530 	unsigned int sched_domain;
531 	int nr;
532 
533 	nr = rq_get_domain_token(rq);
534 	if (nr != -1) {
535 		sched_domain = kyber_sched_domain(rq->cmd_flags);
536 		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
537 				    rq->mq_ctx->cpu);
538 	}
539 }
540 
541 static void kyber_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
542 {
543 	/*
544 	 * We use the scheduler tags as per-hardware queue queueing tokens.
545 	 * Async requests can be limited at this stage.
546 	 */
547 	if (!op_is_sync(opf)) {
548 		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
549 
550 		data->shallow_depth = kqd->async_depth;
551 	}
552 }
553 
554 static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
555 		unsigned int nr_segs)
556 {
557 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
558 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(bio->bi_opf, ctx);
559 	struct kyber_hctx_data *khd = hctx->sched_data;
560 	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
561 	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
562 	struct list_head *rq_list = &kcq->rq_list[sched_domain];
563 	bool merged;
564 
565 	spin_lock(&kcq->lock);
566 	merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
567 	spin_unlock(&kcq->lock);
568 
569 	return merged;
570 }
571 
572 static void kyber_prepare_request(struct request *rq)
573 {
574 	rq_set_domain_token(rq, -1);
575 }
576 
577 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
578 				  struct list_head *rq_list,
579 				  blk_insert_t flags)
580 {
581 	struct kyber_hctx_data *khd = hctx->sched_data;
582 	struct request *rq, *next;
583 
584 	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
585 		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
586 		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
587 		struct list_head *head = &kcq->rq_list[sched_domain];
588 
589 		spin_lock(&kcq->lock);
590 		trace_block_rq_insert(rq);
591 		if (flags & BLK_MQ_INSERT_AT_HEAD)
592 			list_move(&rq->queuelist, head);
593 		else
594 			list_move_tail(&rq->queuelist, head);
595 		sbitmap_set_bit(&khd->kcq_map[sched_domain],
596 				rq->mq_ctx->index_hw[hctx->type]);
597 		spin_unlock(&kcq->lock);
598 	}
599 }
600 
601 static void kyber_finish_request(struct request *rq)
602 {
603 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
604 
605 	rq_clear_domain_token(kqd, rq);
606 }
607 
608 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
609 			       unsigned int sched_domain, unsigned int type,
610 			       u64 target, u64 latency)
611 {
612 	unsigned int bucket;
613 	u64 divisor;
614 
615 	if (latency > 0) {
616 		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
617 		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
618 			       KYBER_LATENCY_BUCKETS - 1);
619 	} else {
620 		bucket = 0;
621 	}
622 
623 	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
624 }
625 
626 static void kyber_completed_request(struct request *rq, u64 now)
627 {
628 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
629 	struct kyber_cpu_latency *cpu_latency;
630 	unsigned int sched_domain;
631 	u64 target;
632 
633 	sched_domain = kyber_sched_domain(rq->cmd_flags);
634 	if (sched_domain == KYBER_OTHER)
635 		return;
636 
637 	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
638 	target = kqd->latency_targets[sched_domain];
639 	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
640 			   target, now - rq->start_time_ns);
641 	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
642 			   now - rq->io_start_time_ns);
643 	put_cpu_ptr(kqd->cpu_latency);
644 
645 	timer_reduce(&kqd->timer, jiffies + HZ / 10);
646 }
647 
648 struct flush_kcq_data {
649 	struct kyber_hctx_data *khd;
650 	unsigned int sched_domain;
651 	struct list_head *list;
652 };
653 
654 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
655 {
656 	struct flush_kcq_data *flush_data = data;
657 	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
658 
659 	spin_lock(&kcq->lock);
660 	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
661 			      flush_data->list);
662 	sbitmap_clear_bit(sb, bitnr);
663 	spin_unlock(&kcq->lock);
664 
665 	return true;
666 }
667 
668 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
669 				  unsigned int sched_domain,
670 				  struct list_head *list)
671 {
672 	struct flush_kcq_data data = {
673 		.khd = khd,
674 		.sched_domain = sched_domain,
675 		.list = list,
676 	};
677 
678 	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
679 			     flush_busy_kcq, &data);
680 }
681 
682 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
683 			     void *key)
684 {
685 	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
686 	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
687 
688 	sbitmap_del_wait_queue(wait);
689 	blk_mq_run_hw_queue(hctx, true);
690 	return 1;
691 }
692 
693 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
694 				  struct kyber_hctx_data *khd,
695 				  struct blk_mq_hw_ctx *hctx)
696 {
697 	unsigned int sched_domain = khd->cur_domain;
698 	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
699 	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
700 	struct sbq_wait_state *ws;
701 	int nr;
702 
703 	nr = __sbitmap_queue_get(domain_tokens);
704 
705 	/*
706 	 * If we failed to get a domain token, make sure the hardware queue is
707 	 * run when one becomes available. Note that this is serialized on
708 	 * khd->lock, but we still need to be careful about the waker.
709 	 */
710 	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
711 		ws = sbq_wait_ptr(domain_tokens,
712 				  &khd->wait_index[sched_domain]);
713 		khd->domain_ws[sched_domain] = ws;
714 		sbitmap_add_wait_queue(domain_tokens, ws, wait);
715 
716 		/*
717 		 * Try again in case a token was freed before we got on the wait
718 		 * queue.
719 		 */
720 		nr = __sbitmap_queue_get(domain_tokens);
721 	}
722 
723 	/*
724 	 * If we got a token while we were on the wait queue, remove ourselves
725 	 * from the wait queue to ensure that all wake ups make forward
726 	 * progress. It's possible that the waker already deleted the entry
727 	 * between the !list_empty_careful() check and us grabbing the lock, but
728 	 * list_del_init() is okay with that.
729 	 */
730 	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
731 		ws = khd->domain_ws[sched_domain];
732 		spin_lock_irq(&ws->wait.lock);
733 		sbitmap_del_wait_queue(wait);
734 		spin_unlock_irq(&ws->wait.lock);
735 	}
736 
737 	return nr;
738 }
739 
740 static struct request *
741 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
742 			  struct kyber_hctx_data *khd,
743 			  struct blk_mq_hw_ctx *hctx)
744 {
745 	struct list_head *rqs;
746 	struct request *rq;
747 	int nr;
748 
749 	rqs = &khd->rqs[khd->cur_domain];
750 
751 	/*
752 	 * If we already have a flushed request, then we just need to get a
753 	 * token for it. Otherwise, if there are pending requests in the kcqs,
754 	 * flush the kcqs, but only if we can get a token. If not, we should
755 	 * leave the requests in the kcqs so that they can be merged. Note that
756 	 * khd->lock serializes the flushes, so if we observed any bit set in
757 	 * the kcq_map, we will always get a request.
758 	 */
759 	rq = list_first_entry_or_null(rqs, struct request, queuelist);
760 	if (rq) {
761 		nr = kyber_get_domain_token(kqd, khd, hctx);
762 		if (nr >= 0) {
763 			khd->batching++;
764 			rq_set_domain_token(rq, nr);
765 			list_del_init(&rq->queuelist);
766 			return rq;
767 		} else {
768 			trace_kyber_throttled(kqd->dev,
769 					      kyber_domain_names[khd->cur_domain]);
770 		}
771 	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
772 		nr = kyber_get_domain_token(kqd, khd, hctx);
773 		if (nr >= 0) {
774 			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
775 			rq = list_first_entry(rqs, struct request, queuelist);
776 			khd->batching++;
777 			rq_set_domain_token(rq, nr);
778 			list_del_init(&rq->queuelist);
779 			return rq;
780 		} else {
781 			trace_kyber_throttled(kqd->dev,
782 					      kyber_domain_names[khd->cur_domain]);
783 		}
784 	}
785 
786 	/* There were either no pending requests or no tokens. */
787 	return NULL;
788 }
789 
790 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
791 {
792 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
793 	struct kyber_hctx_data *khd = hctx->sched_data;
794 	struct request *rq;
795 	int i;
796 
797 	spin_lock(&khd->lock);
798 
799 	/*
800 	 * First, if we are still entitled to batch, try to dispatch a request
801 	 * from the batch.
802 	 */
803 	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
804 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
805 		if (rq)
806 			goto out;
807 	}
808 
809 	/*
810 	 * Either,
811 	 * 1. We were no longer entitled to a batch.
812 	 * 2. The domain we were batching didn't have any requests.
813 	 * 3. The domain we were batching was out of tokens.
814 	 *
815 	 * Start another batch. Note that this wraps back around to the original
816 	 * domain if no other domains have requests or tokens.
817 	 */
818 	khd->batching = 0;
819 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
820 		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
821 			khd->cur_domain = 0;
822 		else
823 			khd->cur_domain++;
824 
825 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
826 		if (rq)
827 			goto out;
828 	}
829 
830 	rq = NULL;
831 out:
832 	spin_unlock(&khd->lock);
833 	return rq;
834 }
835 
836 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
837 {
838 	struct kyber_hctx_data *khd = hctx->sched_data;
839 	int i;
840 
841 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
842 		if (!list_empty_careful(&khd->rqs[i]) ||
843 		    sbitmap_any_bit_set(&khd->kcq_map[i]))
844 			return true;
845 	}
846 
847 	return false;
848 }
849 
850 #define KYBER_LAT_SHOW_STORE(domain, name)				\
851 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
852 				       char *page)			\
853 {									\
854 	struct kyber_queue_data *kqd = e->elevator_data;		\
855 									\
856 	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
857 }									\
858 									\
859 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
860 					const char *page, size_t count)	\
861 {									\
862 	struct kyber_queue_data *kqd = e->elevator_data;		\
863 	unsigned long long nsec;					\
864 	int ret;							\
865 									\
866 	ret = kstrtoull(page, 10, &nsec);				\
867 	if (ret)							\
868 		return ret;						\
869 									\
870 	kqd->latency_targets[domain] = nsec;				\
871 									\
872 	return count;							\
873 }
874 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
875 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
876 #undef KYBER_LAT_SHOW_STORE
877 
878 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
879 static const struct elv_fs_entry kyber_sched_attrs[] = {
880 	KYBER_LAT_ATTR(read),
881 	KYBER_LAT_ATTR(write),
882 	__ATTR_NULL
883 };
884 #undef KYBER_LAT_ATTR
885 
886 #ifdef CONFIG_BLK_DEBUG_FS
887 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
888 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
889 {									\
890 	struct request_queue *q = data;					\
891 	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
892 									\
893 	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
894 	return 0;							\
895 }									\
896 									\
897 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
898 	__acquires(&khd->lock)						\
899 {									\
900 	struct blk_mq_hw_ctx *hctx = m->private;			\
901 	struct kyber_hctx_data *khd = hctx->sched_data;			\
902 									\
903 	spin_lock(&khd->lock);						\
904 	return seq_list_start(&khd->rqs[domain], *pos);			\
905 }									\
906 									\
907 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
908 				     loff_t *pos)			\
909 {									\
910 	struct blk_mq_hw_ctx *hctx = m->private;			\
911 	struct kyber_hctx_data *khd = hctx->sched_data;			\
912 									\
913 	return seq_list_next(v, &khd->rqs[domain], pos);		\
914 }									\
915 									\
916 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
917 	__releases(&khd->lock)						\
918 {									\
919 	struct blk_mq_hw_ctx *hctx = m->private;			\
920 	struct kyber_hctx_data *khd = hctx->sched_data;			\
921 									\
922 	spin_unlock(&khd->lock);					\
923 }									\
924 									\
925 static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
926 	.start	= kyber_##name##_rqs_start,				\
927 	.next	= kyber_##name##_rqs_next,				\
928 	.stop	= kyber_##name##_rqs_stop,				\
929 	.show	= blk_mq_debugfs_rq_show,				\
930 };									\
931 									\
932 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
933 {									\
934 	struct blk_mq_hw_ctx *hctx = data;				\
935 	struct kyber_hctx_data *khd = hctx->sched_data;			\
936 	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
937 									\
938 	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
939 	return 0;							\
940 }
941 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
942 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
943 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
944 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
945 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
946 
947 static int kyber_async_depth_show(void *data, struct seq_file *m)
948 {
949 	struct request_queue *q = data;
950 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
951 
952 	seq_printf(m, "%u\n", kqd->async_depth);
953 	return 0;
954 }
955 
956 static int kyber_cur_domain_show(void *data, struct seq_file *m)
957 {
958 	struct blk_mq_hw_ctx *hctx = data;
959 	struct kyber_hctx_data *khd = hctx->sched_data;
960 
961 	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
962 	return 0;
963 }
964 
965 static int kyber_batching_show(void *data, struct seq_file *m)
966 {
967 	struct blk_mq_hw_ctx *hctx = data;
968 	struct kyber_hctx_data *khd = hctx->sched_data;
969 
970 	seq_printf(m, "%u\n", khd->batching);
971 	return 0;
972 }
973 
974 #define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
975 	{#name "_tokens", 0400, kyber_##name##_tokens_show}
976 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
977 	KYBER_QUEUE_DOMAIN_ATTRS(read),
978 	KYBER_QUEUE_DOMAIN_ATTRS(write),
979 	KYBER_QUEUE_DOMAIN_ATTRS(discard),
980 	KYBER_QUEUE_DOMAIN_ATTRS(other),
981 	{"async_depth", 0400, kyber_async_depth_show},
982 	{},
983 };
984 #undef KYBER_QUEUE_DOMAIN_ATTRS
985 
986 #define KYBER_HCTX_DOMAIN_ATTRS(name)					\
987 	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
988 	{#name "_waiting", 0400, kyber_##name##_waiting_show}
989 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
990 	KYBER_HCTX_DOMAIN_ATTRS(read),
991 	KYBER_HCTX_DOMAIN_ATTRS(write),
992 	KYBER_HCTX_DOMAIN_ATTRS(discard),
993 	KYBER_HCTX_DOMAIN_ATTRS(other),
994 	{"cur_domain", 0400, kyber_cur_domain_show},
995 	{"batching", 0400, kyber_batching_show},
996 	{},
997 };
998 #undef KYBER_HCTX_DOMAIN_ATTRS
999 #endif
1000 
1001 static struct elevator_type kyber_sched = {
1002 	.ops = {
1003 		.init_sched = kyber_init_sched,
1004 		.exit_sched = kyber_exit_sched,
1005 		.init_hctx = kyber_init_hctx,
1006 		.exit_hctx = kyber_exit_hctx,
1007 		.limit_depth = kyber_limit_depth,
1008 		.bio_merge = kyber_bio_merge,
1009 		.prepare_request = kyber_prepare_request,
1010 		.insert_requests = kyber_insert_requests,
1011 		.finish_request = kyber_finish_request,
1012 		.requeue_request = kyber_finish_request,
1013 		.completed_request = kyber_completed_request,
1014 		.dispatch_request = kyber_dispatch_request,
1015 		.has_work = kyber_has_work,
1016 		.depth_updated = kyber_depth_updated,
1017 	},
1018 #ifdef CONFIG_BLK_DEBUG_FS
1019 	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1020 	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1021 #endif
1022 	.elevator_attrs = kyber_sched_attrs,
1023 	.elevator_name = "kyber",
1024 	.elevator_owner = THIS_MODULE,
1025 };
1026 
1027 static int __init kyber_init(void)
1028 {
1029 	return elv_register(&kyber_sched);
1030 }
1031 
1032 static void __exit kyber_exit(void)
1033 {
1034 	elv_unregister(&kyber_sched);
1035 }
1036 
1037 module_init(kyber_init);
1038 module_exit(kyber_exit);
1039 
1040 MODULE_AUTHOR("Omar Sandoval");
1041 MODULE_LICENSE("GPL");
1042 MODULE_DESCRIPTION("Kyber I/O scheduler");
1043