xref: /linux/block/kyber-iosched.c (revision 4e0ae876f77bc01a7e77724dea57b4b82bd53244)
1 /*
2  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
3  * scalable techniques.
4  *
5  * Copyright (C) 2017 Facebook
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public
9  * License v2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <https://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/blkdev.h>
22 #include <linux/blk-mq.h>
23 #include <linux/elevator.h>
24 #include <linux/module.h>
25 #include <linux/sbitmap.h>
26 
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-debugfs.h"
30 #include "blk-mq-sched.h"
31 #include "blk-mq-tag.h"
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/kyber.h>
35 
36 /*
37  * Scheduling domains: the device is divided into multiple domains based on the
38  * request type.
39  */
40 enum {
41 	KYBER_READ,
42 	KYBER_WRITE,
43 	KYBER_DISCARD,
44 	KYBER_OTHER,
45 	KYBER_NUM_DOMAINS,
46 };
47 
48 static const char *kyber_domain_names[] = {
49 	[KYBER_READ] = "READ",
50 	[KYBER_WRITE] = "WRITE",
51 	[KYBER_DISCARD] = "DISCARD",
52 	[KYBER_OTHER] = "OTHER",
53 };
54 
55 enum {
56 	/*
57 	 * In order to prevent starvation of synchronous requests by a flood of
58 	 * asynchronous requests, we reserve 25% of requests for synchronous
59 	 * operations.
60 	 */
61 	KYBER_ASYNC_PERCENT = 75,
62 };
63 
64 /*
65  * Maximum device-wide depth for each scheduling domain.
66  *
67  * Even for fast devices with lots of tags like NVMe, you can saturate the
68  * device with only a fraction of the maximum possible queue depth. So, we cap
69  * these to a reasonable value.
70  */
71 static const unsigned int kyber_depth[] = {
72 	[KYBER_READ] = 256,
73 	[KYBER_WRITE] = 128,
74 	[KYBER_DISCARD] = 64,
75 	[KYBER_OTHER] = 16,
76 };
77 
78 /*
79  * Default latency targets for each scheduling domain.
80  */
81 static const u64 kyber_latency_targets[] = {
82 	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
83 	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
84 	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
85 };
86 
87 /*
88  * Batch size (number of requests we'll dispatch in a row) for each scheduling
89  * domain.
90  */
91 static const unsigned int kyber_batch_size[] = {
92 	[KYBER_READ] = 16,
93 	[KYBER_WRITE] = 8,
94 	[KYBER_DISCARD] = 1,
95 	[KYBER_OTHER] = 1,
96 };
97 
98 /*
99  * Requests latencies are recorded in a histogram with buckets defined relative
100  * to the target latency:
101  *
102  * <= 1/4 * target latency
103  * <= 1/2 * target latency
104  * <= 3/4 * target latency
105  * <= target latency
106  * <= 1 1/4 * target latency
107  * <= 1 1/2 * target latency
108  * <= 1 3/4 * target latency
109  * > 1 3/4 * target latency
110  */
111 enum {
112 	/*
113 	 * The width of the latency histogram buckets is
114 	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
115 	 */
116 	KYBER_LATENCY_SHIFT = 2,
117 	/*
118 	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
119 	 * thus, "good".
120 	 */
121 	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
122 	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
123 	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
124 };
125 
126 /*
127  * We measure both the total latency and the I/O latency (i.e., latency after
128  * submitting to the device).
129  */
130 enum {
131 	KYBER_TOTAL_LATENCY,
132 	KYBER_IO_LATENCY,
133 };
134 
135 static const char *kyber_latency_type_names[] = {
136 	[KYBER_TOTAL_LATENCY] = "total",
137 	[KYBER_IO_LATENCY] = "I/O",
138 };
139 
140 /*
141  * Per-cpu latency histograms: total latency and I/O latency for each scheduling
142  * domain except for KYBER_OTHER.
143  */
144 struct kyber_cpu_latency {
145 	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
146 };
147 
148 /*
149  * There is a same mapping between ctx & hctx and kcq & khd,
150  * we use request->mq_ctx->index_hw to index the kcq in khd.
151  */
152 struct kyber_ctx_queue {
153 	/*
154 	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
155 	 * Also protect the rqs on rq_list when merge.
156 	 */
157 	spinlock_t lock;
158 	struct list_head rq_list[KYBER_NUM_DOMAINS];
159 } ____cacheline_aligned_in_smp;
160 
161 struct kyber_queue_data {
162 	struct request_queue *q;
163 
164 	/*
165 	 * Each scheduling domain has a limited number of in-flight requests
166 	 * device-wide, limited by these tokens.
167 	 */
168 	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
169 
170 	/*
171 	 * Async request percentage, converted to per-word depth for
172 	 * sbitmap_get_shallow().
173 	 */
174 	unsigned int async_depth;
175 
176 	struct kyber_cpu_latency __percpu *cpu_latency;
177 
178 	/* Timer for stats aggregation and adjusting domain tokens. */
179 	struct timer_list timer;
180 
181 	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
182 
183 	unsigned long latency_timeout[KYBER_OTHER];
184 
185 	int domain_p99[KYBER_OTHER];
186 
187 	/* Target latencies in nanoseconds. */
188 	u64 latency_targets[KYBER_OTHER];
189 };
190 
191 struct kyber_hctx_data {
192 	spinlock_t lock;
193 	struct list_head rqs[KYBER_NUM_DOMAINS];
194 	unsigned int cur_domain;
195 	unsigned int batching;
196 	struct kyber_ctx_queue *kcqs;
197 	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
198 	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
199 	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
200 	atomic_t wait_index[KYBER_NUM_DOMAINS];
201 };
202 
203 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
204 			     void *key);
205 
206 static unsigned int kyber_sched_domain(unsigned int op)
207 {
208 	switch (op & REQ_OP_MASK) {
209 	case REQ_OP_READ:
210 		return KYBER_READ;
211 	case REQ_OP_WRITE:
212 		return KYBER_WRITE;
213 	case REQ_OP_DISCARD:
214 		return KYBER_DISCARD;
215 	default:
216 		return KYBER_OTHER;
217 	}
218 }
219 
220 static void flush_latency_buckets(struct kyber_queue_data *kqd,
221 				  struct kyber_cpu_latency *cpu_latency,
222 				  unsigned int sched_domain, unsigned int type)
223 {
224 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
225 	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
226 	unsigned int bucket;
227 
228 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
229 		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
230 }
231 
232 /*
233  * Calculate the histogram bucket with the given percentile rank, or -1 if there
234  * aren't enough samples yet.
235  */
236 static int calculate_percentile(struct kyber_queue_data *kqd,
237 				unsigned int sched_domain, unsigned int type,
238 				unsigned int percentile)
239 {
240 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
241 	unsigned int bucket, samples = 0, percentile_samples;
242 
243 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
244 		samples += buckets[bucket];
245 
246 	if (!samples)
247 		return -1;
248 
249 	/*
250 	 * We do the calculation once we have 500 samples or one second passes
251 	 * since the first sample was recorded, whichever comes first.
252 	 */
253 	if (!kqd->latency_timeout[sched_domain])
254 		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
255 	if (samples < 500 &&
256 	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
257 		return -1;
258 	}
259 	kqd->latency_timeout[sched_domain] = 0;
260 
261 	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
262 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
263 		if (buckets[bucket] >= percentile_samples)
264 			break;
265 		percentile_samples -= buckets[bucket];
266 	}
267 	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
268 
269 	trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
270 			    kyber_latency_type_names[type], percentile,
271 			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
272 
273 	return bucket;
274 }
275 
276 static void kyber_resize_domain(struct kyber_queue_data *kqd,
277 				unsigned int sched_domain, unsigned int depth)
278 {
279 	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
280 	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
281 		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
282 		trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
283 				   depth);
284 	}
285 }
286 
287 static void kyber_timer_fn(struct timer_list *t)
288 {
289 	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
290 	unsigned int sched_domain;
291 	int cpu;
292 	bool bad = false;
293 
294 	/* Sum all of the per-cpu latency histograms. */
295 	for_each_online_cpu(cpu) {
296 		struct kyber_cpu_latency *cpu_latency;
297 
298 		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
299 		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
300 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
301 					      KYBER_TOTAL_LATENCY);
302 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
303 					      KYBER_IO_LATENCY);
304 		}
305 	}
306 
307 	/*
308 	 * Check if any domains have a high I/O latency, which might indicate
309 	 * congestion in the device. Note that we use the p90; we don't want to
310 	 * be too sensitive to outliers here.
311 	 */
312 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
313 		int p90;
314 
315 		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
316 					   90);
317 		if (p90 >= KYBER_GOOD_BUCKETS)
318 			bad = true;
319 	}
320 
321 	/*
322 	 * Adjust the scheduling domain depths. If we determined that there was
323 	 * congestion, we throttle all domains with good latencies. Either way,
324 	 * we ease up on throttling domains with bad latencies.
325 	 */
326 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
327 		unsigned int orig_depth, depth;
328 		int p99;
329 
330 		p99 = calculate_percentile(kqd, sched_domain,
331 					   KYBER_TOTAL_LATENCY, 99);
332 		/*
333 		 * This is kind of subtle: different domains will not
334 		 * necessarily have enough samples to calculate the latency
335 		 * percentiles during the same window, so we have to remember
336 		 * the p99 for the next time we observe congestion; once we do,
337 		 * we don't want to throttle again until we get more data, so we
338 		 * reset it to -1.
339 		 */
340 		if (bad) {
341 			if (p99 < 0)
342 				p99 = kqd->domain_p99[sched_domain];
343 			kqd->domain_p99[sched_domain] = -1;
344 		} else if (p99 >= 0) {
345 			kqd->domain_p99[sched_domain] = p99;
346 		}
347 		if (p99 < 0)
348 			continue;
349 
350 		/*
351 		 * If this domain has bad latency, throttle less. Otherwise,
352 		 * throttle more iff we determined that there is congestion.
353 		 *
354 		 * The new depth is scaled linearly with the p99 latency vs the
355 		 * latency target. E.g., if the p99 is 3/4 of the target, then
356 		 * we throttle down to 3/4 of the current depth, and if the p99
357 		 * is 2x the target, then we double the depth.
358 		 */
359 		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
360 			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
361 			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
362 			kyber_resize_domain(kqd, sched_domain, depth);
363 		}
364 	}
365 }
366 
367 static unsigned int kyber_sched_tags_shift(struct request_queue *q)
368 {
369 	/*
370 	 * All of the hardware queues have the same depth, so we can just grab
371 	 * the shift of the first one.
372 	 */
373 	return q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
374 }
375 
376 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
377 {
378 	struct kyber_queue_data *kqd;
379 	unsigned int shift;
380 	int ret = -ENOMEM;
381 	int i;
382 
383 	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
384 	if (!kqd)
385 		goto err;
386 
387 	kqd->q = q;
388 
389 	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
390 					    GFP_KERNEL | __GFP_ZERO);
391 	if (!kqd->cpu_latency)
392 		goto err_kqd;
393 
394 	timer_setup(&kqd->timer, kyber_timer_fn, 0);
395 
396 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
397 		WARN_ON(!kyber_depth[i]);
398 		WARN_ON(!kyber_batch_size[i]);
399 		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
400 					      kyber_depth[i], -1, false,
401 					      GFP_KERNEL, q->node);
402 		if (ret) {
403 			while (--i >= 0)
404 				sbitmap_queue_free(&kqd->domain_tokens[i]);
405 			goto err_buckets;
406 		}
407 	}
408 
409 	for (i = 0; i < KYBER_OTHER; i++) {
410 		kqd->domain_p99[i] = -1;
411 		kqd->latency_targets[i] = kyber_latency_targets[i];
412 	}
413 
414 	shift = kyber_sched_tags_shift(q);
415 	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
416 
417 	return kqd;
418 
419 err_buckets:
420 	free_percpu(kqd->cpu_latency);
421 err_kqd:
422 	kfree(kqd);
423 err:
424 	return ERR_PTR(ret);
425 }
426 
427 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
428 {
429 	struct kyber_queue_data *kqd;
430 	struct elevator_queue *eq;
431 
432 	eq = elevator_alloc(q, e);
433 	if (!eq)
434 		return -ENOMEM;
435 
436 	kqd = kyber_queue_data_alloc(q);
437 	if (IS_ERR(kqd)) {
438 		kobject_put(&eq->kobj);
439 		return PTR_ERR(kqd);
440 	}
441 
442 	blk_stat_enable_accounting(q);
443 
444 	eq->elevator_data = kqd;
445 	q->elevator = eq;
446 
447 	return 0;
448 }
449 
450 static void kyber_exit_sched(struct elevator_queue *e)
451 {
452 	struct kyber_queue_data *kqd = e->elevator_data;
453 	int i;
454 
455 	del_timer_sync(&kqd->timer);
456 
457 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
458 		sbitmap_queue_free(&kqd->domain_tokens[i]);
459 	free_percpu(kqd->cpu_latency);
460 	kfree(kqd);
461 }
462 
463 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
464 {
465 	unsigned int i;
466 
467 	spin_lock_init(&kcq->lock);
468 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
469 		INIT_LIST_HEAD(&kcq->rq_list[i]);
470 }
471 
472 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
473 {
474 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
475 	struct kyber_hctx_data *khd;
476 	int i;
477 
478 	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
479 	if (!khd)
480 		return -ENOMEM;
481 
482 	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
483 				       sizeof(struct kyber_ctx_queue),
484 				       GFP_KERNEL, hctx->numa_node);
485 	if (!khd->kcqs)
486 		goto err_khd;
487 
488 	for (i = 0; i < hctx->nr_ctx; i++)
489 		kyber_ctx_queue_init(&khd->kcqs[i]);
490 
491 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
492 		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
493 				      ilog2(8), GFP_KERNEL, hctx->numa_node)) {
494 			while (--i >= 0)
495 				sbitmap_free(&khd->kcq_map[i]);
496 			goto err_kcqs;
497 		}
498 	}
499 
500 	spin_lock_init(&khd->lock);
501 
502 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
503 		INIT_LIST_HEAD(&khd->rqs[i]);
504 		khd->domain_wait[i].sbq = NULL;
505 		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
506 					  kyber_domain_wake);
507 		khd->domain_wait[i].wait.private = hctx;
508 		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
509 		atomic_set(&khd->wait_index[i], 0);
510 	}
511 
512 	khd->cur_domain = 0;
513 	khd->batching = 0;
514 
515 	hctx->sched_data = khd;
516 	sbitmap_queue_min_shallow_depth(&hctx->sched_tags->bitmap_tags,
517 					kqd->async_depth);
518 
519 	return 0;
520 
521 err_kcqs:
522 	kfree(khd->kcqs);
523 err_khd:
524 	kfree(khd);
525 	return -ENOMEM;
526 }
527 
528 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
529 {
530 	struct kyber_hctx_data *khd = hctx->sched_data;
531 	int i;
532 
533 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
534 		sbitmap_free(&khd->kcq_map[i]);
535 	kfree(khd->kcqs);
536 	kfree(hctx->sched_data);
537 }
538 
539 static int rq_get_domain_token(struct request *rq)
540 {
541 	return (long)rq->elv.priv[0];
542 }
543 
544 static void rq_set_domain_token(struct request *rq, int token)
545 {
546 	rq->elv.priv[0] = (void *)(long)token;
547 }
548 
549 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
550 				  struct request *rq)
551 {
552 	unsigned int sched_domain;
553 	int nr;
554 
555 	nr = rq_get_domain_token(rq);
556 	if (nr != -1) {
557 		sched_domain = kyber_sched_domain(rq->cmd_flags);
558 		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
559 				    rq->mq_ctx->cpu);
560 	}
561 }
562 
563 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
564 {
565 	/*
566 	 * We use the scheduler tags as per-hardware queue queueing tokens.
567 	 * Async requests can be limited at this stage.
568 	 */
569 	if (!op_is_sync(op)) {
570 		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
571 
572 		data->shallow_depth = kqd->async_depth;
573 	}
574 }
575 
576 static bool kyber_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
577 {
578 	struct kyber_hctx_data *khd = hctx->sched_data;
579 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(hctx->queue);
580 	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
581 	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
582 	struct list_head *rq_list = &kcq->rq_list[sched_domain];
583 	bool merged;
584 
585 	spin_lock(&kcq->lock);
586 	merged = blk_mq_bio_list_merge(hctx->queue, rq_list, bio);
587 	spin_unlock(&kcq->lock);
588 	blk_mq_put_ctx(ctx);
589 
590 	return merged;
591 }
592 
593 static void kyber_prepare_request(struct request *rq, struct bio *bio)
594 {
595 	rq_set_domain_token(rq, -1);
596 }
597 
598 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
599 				  struct list_head *rq_list, bool at_head)
600 {
601 	struct kyber_hctx_data *khd = hctx->sched_data;
602 	struct request *rq, *next;
603 
604 	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
605 		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
606 		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
607 		struct list_head *head = &kcq->rq_list[sched_domain];
608 
609 		spin_lock(&kcq->lock);
610 		if (at_head)
611 			list_move(&rq->queuelist, head);
612 		else
613 			list_move_tail(&rq->queuelist, head);
614 		sbitmap_set_bit(&khd->kcq_map[sched_domain],
615 				rq->mq_ctx->index_hw[hctx->type]);
616 		blk_mq_sched_request_inserted(rq);
617 		spin_unlock(&kcq->lock);
618 	}
619 }
620 
621 static void kyber_finish_request(struct request *rq)
622 {
623 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
624 
625 	rq_clear_domain_token(kqd, rq);
626 }
627 
628 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
629 			       unsigned int sched_domain, unsigned int type,
630 			       u64 target, u64 latency)
631 {
632 	unsigned int bucket;
633 	u64 divisor;
634 
635 	if (latency > 0) {
636 		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
637 		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
638 			       KYBER_LATENCY_BUCKETS - 1);
639 	} else {
640 		bucket = 0;
641 	}
642 
643 	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
644 }
645 
646 static void kyber_completed_request(struct request *rq, u64 now)
647 {
648 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
649 	struct kyber_cpu_latency *cpu_latency;
650 	unsigned int sched_domain;
651 	u64 target;
652 
653 	sched_domain = kyber_sched_domain(rq->cmd_flags);
654 	if (sched_domain == KYBER_OTHER)
655 		return;
656 
657 	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
658 	target = kqd->latency_targets[sched_domain];
659 	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
660 			   target, now - rq->start_time_ns);
661 	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
662 			   now - rq->io_start_time_ns);
663 	put_cpu_ptr(kqd->cpu_latency);
664 
665 	timer_reduce(&kqd->timer, jiffies + HZ / 10);
666 }
667 
668 struct flush_kcq_data {
669 	struct kyber_hctx_data *khd;
670 	unsigned int sched_domain;
671 	struct list_head *list;
672 };
673 
674 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
675 {
676 	struct flush_kcq_data *flush_data = data;
677 	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
678 
679 	spin_lock(&kcq->lock);
680 	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
681 			      flush_data->list);
682 	sbitmap_clear_bit(sb, bitnr);
683 	spin_unlock(&kcq->lock);
684 
685 	return true;
686 }
687 
688 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
689 				  unsigned int sched_domain,
690 				  struct list_head *list)
691 {
692 	struct flush_kcq_data data = {
693 		.khd = khd,
694 		.sched_domain = sched_domain,
695 		.list = list,
696 	};
697 
698 	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
699 			     flush_busy_kcq, &data);
700 }
701 
702 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
703 			     void *key)
704 {
705 	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
706 	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
707 
708 	sbitmap_del_wait_queue(wait);
709 	blk_mq_run_hw_queue(hctx, true);
710 	return 1;
711 }
712 
713 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
714 				  struct kyber_hctx_data *khd,
715 				  struct blk_mq_hw_ctx *hctx)
716 {
717 	unsigned int sched_domain = khd->cur_domain;
718 	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
719 	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
720 	struct sbq_wait_state *ws;
721 	int nr;
722 
723 	nr = __sbitmap_queue_get(domain_tokens);
724 
725 	/*
726 	 * If we failed to get a domain token, make sure the hardware queue is
727 	 * run when one becomes available. Note that this is serialized on
728 	 * khd->lock, but we still need to be careful about the waker.
729 	 */
730 	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
731 		ws = sbq_wait_ptr(domain_tokens,
732 				  &khd->wait_index[sched_domain]);
733 		khd->domain_ws[sched_domain] = ws;
734 		sbitmap_add_wait_queue(domain_tokens, ws, wait);
735 
736 		/*
737 		 * Try again in case a token was freed before we got on the wait
738 		 * queue.
739 		 */
740 		nr = __sbitmap_queue_get(domain_tokens);
741 	}
742 
743 	/*
744 	 * If we got a token while we were on the wait queue, remove ourselves
745 	 * from the wait queue to ensure that all wake ups make forward
746 	 * progress. It's possible that the waker already deleted the entry
747 	 * between the !list_empty_careful() check and us grabbing the lock, but
748 	 * list_del_init() is okay with that.
749 	 */
750 	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
751 		ws = khd->domain_ws[sched_domain];
752 		spin_lock_irq(&ws->wait.lock);
753 		sbitmap_del_wait_queue(wait);
754 		spin_unlock_irq(&ws->wait.lock);
755 	}
756 
757 	return nr;
758 }
759 
760 static struct request *
761 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
762 			  struct kyber_hctx_data *khd,
763 			  struct blk_mq_hw_ctx *hctx)
764 {
765 	struct list_head *rqs;
766 	struct request *rq;
767 	int nr;
768 
769 	rqs = &khd->rqs[khd->cur_domain];
770 
771 	/*
772 	 * If we already have a flushed request, then we just need to get a
773 	 * token for it. Otherwise, if there are pending requests in the kcqs,
774 	 * flush the kcqs, but only if we can get a token. If not, we should
775 	 * leave the requests in the kcqs so that they can be merged. Note that
776 	 * khd->lock serializes the flushes, so if we observed any bit set in
777 	 * the kcq_map, we will always get a request.
778 	 */
779 	rq = list_first_entry_or_null(rqs, struct request, queuelist);
780 	if (rq) {
781 		nr = kyber_get_domain_token(kqd, khd, hctx);
782 		if (nr >= 0) {
783 			khd->batching++;
784 			rq_set_domain_token(rq, nr);
785 			list_del_init(&rq->queuelist);
786 			return rq;
787 		} else {
788 			trace_kyber_throttled(kqd->q,
789 					      kyber_domain_names[khd->cur_domain]);
790 		}
791 	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
792 		nr = kyber_get_domain_token(kqd, khd, hctx);
793 		if (nr >= 0) {
794 			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
795 			rq = list_first_entry(rqs, struct request, queuelist);
796 			khd->batching++;
797 			rq_set_domain_token(rq, nr);
798 			list_del_init(&rq->queuelist);
799 			return rq;
800 		} else {
801 			trace_kyber_throttled(kqd->q,
802 					      kyber_domain_names[khd->cur_domain]);
803 		}
804 	}
805 
806 	/* There were either no pending requests or no tokens. */
807 	return NULL;
808 }
809 
810 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
811 {
812 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
813 	struct kyber_hctx_data *khd = hctx->sched_data;
814 	struct request *rq;
815 	int i;
816 
817 	spin_lock(&khd->lock);
818 
819 	/*
820 	 * First, if we are still entitled to batch, try to dispatch a request
821 	 * from the batch.
822 	 */
823 	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
824 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
825 		if (rq)
826 			goto out;
827 	}
828 
829 	/*
830 	 * Either,
831 	 * 1. We were no longer entitled to a batch.
832 	 * 2. The domain we were batching didn't have any requests.
833 	 * 3. The domain we were batching was out of tokens.
834 	 *
835 	 * Start another batch. Note that this wraps back around to the original
836 	 * domain if no other domains have requests or tokens.
837 	 */
838 	khd->batching = 0;
839 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
840 		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
841 			khd->cur_domain = 0;
842 		else
843 			khd->cur_domain++;
844 
845 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
846 		if (rq)
847 			goto out;
848 	}
849 
850 	rq = NULL;
851 out:
852 	spin_unlock(&khd->lock);
853 	return rq;
854 }
855 
856 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
857 {
858 	struct kyber_hctx_data *khd = hctx->sched_data;
859 	int i;
860 
861 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
862 		if (!list_empty_careful(&khd->rqs[i]) ||
863 		    sbitmap_any_bit_set(&khd->kcq_map[i]))
864 			return true;
865 	}
866 
867 	return false;
868 }
869 
870 #define KYBER_LAT_SHOW_STORE(domain, name)				\
871 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
872 				       char *page)			\
873 {									\
874 	struct kyber_queue_data *kqd = e->elevator_data;		\
875 									\
876 	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
877 }									\
878 									\
879 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
880 					const char *page, size_t count)	\
881 {									\
882 	struct kyber_queue_data *kqd = e->elevator_data;		\
883 	unsigned long long nsec;					\
884 	int ret;							\
885 									\
886 	ret = kstrtoull(page, 10, &nsec);				\
887 	if (ret)							\
888 		return ret;						\
889 									\
890 	kqd->latency_targets[domain] = nsec;				\
891 									\
892 	return count;							\
893 }
894 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
895 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
896 #undef KYBER_LAT_SHOW_STORE
897 
898 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
899 static struct elv_fs_entry kyber_sched_attrs[] = {
900 	KYBER_LAT_ATTR(read),
901 	KYBER_LAT_ATTR(write),
902 	__ATTR_NULL
903 };
904 #undef KYBER_LAT_ATTR
905 
906 #ifdef CONFIG_BLK_DEBUG_FS
907 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
908 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
909 {									\
910 	struct request_queue *q = data;					\
911 	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
912 									\
913 	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
914 	return 0;							\
915 }									\
916 									\
917 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
918 	__acquires(&khd->lock)						\
919 {									\
920 	struct blk_mq_hw_ctx *hctx = m->private;			\
921 	struct kyber_hctx_data *khd = hctx->sched_data;			\
922 									\
923 	spin_lock(&khd->lock);						\
924 	return seq_list_start(&khd->rqs[domain], *pos);			\
925 }									\
926 									\
927 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
928 				     loff_t *pos)			\
929 {									\
930 	struct blk_mq_hw_ctx *hctx = m->private;			\
931 	struct kyber_hctx_data *khd = hctx->sched_data;			\
932 									\
933 	return seq_list_next(v, &khd->rqs[domain], pos);		\
934 }									\
935 									\
936 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
937 	__releases(&khd->lock)						\
938 {									\
939 	struct blk_mq_hw_ctx *hctx = m->private;			\
940 	struct kyber_hctx_data *khd = hctx->sched_data;			\
941 									\
942 	spin_unlock(&khd->lock);					\
943 }									\
944 									\
945 static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
946 	.start	= kyber_##name##_rqs_start,				\
947 	.next	= kyber_##name##_rqs_next,				\
948 	.stop	= kyber_##name##_rqs_stop,				\
949 	.show	= blk_mq_debugfs_rq_show,				\
950 };									\
951 									\
952 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
953 {									\
954 	struct blk_mq_hw_ctx *hctx = data;				\
955 	struct kyber_hctx_data *khd = hctx->sched_data;			\
956 	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
957 									\
958 	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
959 	return 0;							\
960 }
961 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
962 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
963 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
964 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
965 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
966 
967 static int kyber_async_depth_show(void *data, struct seq_file *m)
968 {
969 	struct request_queue *q = data;
970 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
971 
972 	seq_printf(m, "%u\n", kqd->async_depth);
973 	return 0;
974 }
975 
976 static int kyber_cur_domain_show(void *data, struct seq_file *m)
977 {
978 	struct blk_mq_hw_ctx *hctx = data;
979 	struct kyber_hctx_data *khd = hctx->sched_data;
980 
981 	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
982 	return 0;
983 }
984 
985 static int kyber_batching_show(void *data, struct seq_file *m)
986 {
987 	struct blk_mq_hw_ctx *hctx = data;
988 	struct kyber_hctx_data *khd = hctx->sched_data;
989 
990 	seq_printf(m, "%u\n", khd->batching);
991 	return 0;
992 }
993 
994 #define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
995 	{#name "_tokens", 0400, kyber_##name##_tokens_show}
996 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
997 	KYBER_QUEUE_DOMAIN_ATTRS(read),
998 	KYBER_QUEUE_DOMAIN_ATTRS(write),
999 	KYBER_QUEUE_DOMAIN_ATTRS(discard),
1000 	KYBER_QUEUE_DOMAIN_ATTRS(other),
1001 	{"async_depth", 0400, kyber_async_depth_show},
1002 	{},
1003 };
1004 #undef KYBER_QUEUE_DOMAIN_ATTRS
1005 
1006 #define KYBER_HCTX_DOMAIN_ATTRS(name)					\
1007 	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
1008 	{#name "_waiting", 0400, kyber_##name##_waiting_show}
1009 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1010 	KYBER_HCTX_DOMAIN_ATTRS(read),
1011 	KYBER_HCTX_DOMAIN_ATTRS(write),
1012 	KYBER_HCTX_DOMAIN_ATTRS(discard),
1013 	KYBER_HCTX_DOMAIN_ATTRS(other),
1014 	{"cur_domain", 0400, kyber_cur_domain_show},
1015 	{"batching", 0400, kyber_batching_show},
1016 	{},
1017 };
1018 #undef KYBER_HCTX_DOMAIN_ATTRS
1019 #endif
1020 
1021 static struct elevator_type kyber_sched = {
1022 	.ops = {
1023 		.init_sched = kyber_init_sched,
1024 		.exit_sched = kyber_exit_sched,
1025 		.init_hctx = kyber_init_hctx,
1026 		.exit_hctx = kyber_exit_hctx,
1027 		.limit_depth = kyber_limit_depth,
1028 		.bio_merge = kyber_bio_merge,
1029 		.prepare_request = kyber_prepare_request,
1030 		.insert_requests = kyber_insert_requests,
1031 		.finish_request = kyber_finish_request,
1032 		.requeue_request = kyber_finish_request,
1033 		.completed_request = kyber_completed_request,
1034 		.dispatch_request = kyber_dispatch_request,
1035 		.has_work = kyber_has_work,
1036 	},
1037 #ifdef CONFIG_BLK_DEBUG_FS
1038 	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1039 	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1040 #endif
1041 	.elevator_attrs = kyber_sched_attrs,
1042 	.elevator_name = "kyber",
1043 	.elevator_owner = THIS_MODULE,
1044 };
1045 
1046 static int __init kyber_init(void)
1047 {
1048 	return elv_register(&kyber_sched);
1049 }
1050 
1051 static void __exit kyber_exit(void)
1052 {
1053 	elv_unregister(&kyber_sched);
1054 }
1055 
1056 module_init(kyber_init);
1057 module_exit(kyber_exit);
1058 
1059 MODULE_AUTHOR("Omar Sandoval");
1060 MODULE_LICENSE("GPL");
1061 MODULE_DESCRIPTION("Kyber I/O scheduler");
1062