xref: /linux/block/genhd.c (revision fb0255fb2941ef6f21742b2bc146d6b9aef4fedc)
1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/kobj_map.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/badblocks.h>
24 
25 #include "blk.h"
26 
27 static DEFINE_MUTEX(block_class_lock);
28 struct kobject *block_depr;
29 
30 /* for extended dynamic devt allocation, currently only one major is used */
31 #define NR_EXT_DEVT		(1 << MINORBITS)
32 
33 /* For extended devt allocation.  ext_devt_lock prevents look up
34  * results from going away underneath its user.
35  */
36 static DEFINE_SPINLOCK(ext_devt_lock);
37 static DEFINE_IDR(ext_devt_idr);
38 
39 static const struct device_type disk_type;
40 
41 static void disk_check_events(struct disk_events *ev,
42 			      unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47 
48 void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
49 {
50 	if (q->mq_ops)
51 		return;
52 
53 	atomic_inc(&part->in_flight[rw]);
54 	if (part->partno)
55 		atomic_inc(&part_to_disk(part)->part0.in_flight[rw]);
56 }
57 
58 void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
59 {
60 	if (q->mq_ops)
61 		return;
62 
63 	atomic_dec(&part->in_flight[rw]);
64 	if (part->partno)
65 		atomic_dec(&part_to_disk(part)->part0.in_flight[rw]);
66 }
67 
68 void part_in_flight(struct request_queue *q, struct hd_struct *part,
69 		    unsigned int inflight[2])
70 {
71 	if (q->mq_ops) {
72 		blk_mq_in_flight(q, part, inflight);
73 		return;
74 	}
75 
76 	inflight[0] = atomic_read(&part->in_flight[0]) +
77 			atomic_read(&part->in_flight[1]);
78 	if (part->partno) {
79 		part = &part_to_disk(part)->part0;
80 		inflight[1] = atomic_read(&part->in_flight[0]) +
81 				atomic_read(&part->in_flight[1]);
82 	}
83 }
84 
85 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
86 {
87 	struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
88 
89 	if (unlikely(partno < 0 || partno >= ptbl->len))
90 		return NULL;
91 	return rcu_dereference(ptbl->part[partno]);
92 }
93 
94 /**
95  * disk_get_part - get partition
96  * @disk: disk to look partition from
97  * @partno: partition number
98  *
99  * Look for partition @partno from @disk.  If found, increment
100  * reference count and return it.
101  *
102  * CONTEXT:
103  * Don't care.
104  *
105  * RETURNS:
106  * Pointer to the found partition on success, NULL if not found.
107  */
108 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
109 {
110 	struct hd_struct *part;
111 
112 	rcu_read_lock();
113 	part = __disk_get_part(disk, partno);
114 	if (part)
115 		get_device(part_to_dev(part));
116 	rcu_read_unlock();
117 
118 	return part;
119 }
120 EXPORT_SYMBOL_GPL(disk_get_part);
121 
122 /**
123  * disk_part_iter_init - initialize partition iterator
124  * @piter: iterator to initialize
125  * @disk: disk to iterate over
126  * @flags: DISK_PITER_* flags
127  *
128  * Initialize @piter so that it iterates over partitions of @disk.
129  *
130  * CONTEXT:
131  * Don't care.
132  */
133 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
134 			  unsigned int flags)
135 {
136 	struct disk_part_tbl *ptbl;
137 
138 	rcu_read_lock();
139 	ptbl = rcu_dereference(disk->part_tbl);
140 
141 	piter->disk = disk;
142 	piter->part = NULL;
143 
144 	if (flags & DISK_PITER_REVERSE)
145 		piter->idx = ptbl->len - 1;
146 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
147 		piter->idx = 0;
148 	else
149 		piter->idx = 1;
150 
151 	piter->flags = flags;
152 
153 	rcu_read_unlock();
154 }
155 EXPORT_SYMBOL_GPL(disk_part_iter_init);
156 
157 /**
158  * disk_part_iter_next - proceed iterator to the next partition and return it
159  * @piter: iterator of interest
160  *
161  * Proceed @piter to the next partition and return it.
162  *
163  * CONTEXT:
164  * Don't care.
165  */
166 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
167 {
168 	struct disk_part_tbl *ptbl;
169 	int inc, end;
170 
171 	/* put the last partition */
172 	disk_put_part(piter->part);
173 	piter->part = NULL;
174 
175 	/* get part_tbl */
176 	rcu_read_lock();
177 	ptbl = rcu_dereference(piter->disk->part_tbl);
178 
179 	/* determine iteration parameters */
180 	if (piter->flags & DISK_PITER_REVERSE) {
181 		inc = -1;
182 		if (piter->flags & (DISK_PITER_INCL_PART0 |
183 				    DISK_PITER_INCL_EMPTY_PART0))
184 			end = -1;
185 		else
186 			end = 0;
187 	} else {
188 		inc = 1;
189 		end = ptbl->len;
190 	}
191 
192 	/* iterate to the next partition */
193 	for (; piter->idx != end; piter->idx += inc) {
194 		struct hd_struct *part;
195 
196 		part = rcu_dereference(ptbl->part[piter->idx]);
197 		if (!part)
198 			continue;
199 		if (!part_nr_sects_read(part) &&
200 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
201 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
202 		      piter->idx == 0))
203 			continue;
204 
205 		get_device(part_to_dev(part));
206 		piter->part = part;
207 		piter->idx += inc;
208 		break;
209 	}
210 
211 	rcu_read_unlock();
212 
213 	return piter->part;
214 }
215 EXPORT_SYMBOL_GPL(disk_part_iter_next);
216 
217 /**
218  * disk_part_iter_exit - finish up partition iteration
219  * @piter: iter of interest
220  *
221  * Called when iteration is over.  Cleans up @piter.
222  *
223  * CONTEXT:
224  * Don't care.
225  */
226 void disk_part_iter_exit(struct disk_part_iter *piter)
227 {
228 	disk_put_part(piter->part);
229 	piter->part = NULL;
230 }
231 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
232 
233 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
234 {
235 	return part->start_sect <= sector &&
236 		sector < part->start_sect + part_nr_sects_read(part);
237 }
238 
239 /**
240  * disk_map_sector_rcu - map sector to partition
241  * @disk: gendisk of interest
242  * @sector: sector to map
243  *
244  * Find out which partition @sector maps to on @disk.  This is
245  * primarily used for stats accounting.
246  *
247  * CONTEXT:
248  * RCU read locked.  The returned partition pointer is valid only
249  * while preemption is disabled.
250  *
251  * RETURNS:
252  * Found partition on success, part0 is returned if no partition matches
253  */
254 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
255 {
256 	struct disk_part_tbl *ptbl;
257 	struct hd_struct *part;
258 	int i;
259 
260 	ptbl = rcu_dereference(disk->part_tbl);
261 
262 	part = rcu_dereference(ptbl->last_lookup);
263 	if (part && sector_in_part(part, sector))
264 		return part;
265 
266 	for (i = 1; i < ptbl->len; i++) {
267 		part = rcu_dereference(ptbl->part[i]);
268 
269 		if (part && sector_in_part(part, sector)) {
270 			rcu_assign_pointer(ptbl->last_lookup, part);
271 			return part;
272 		}
273 	}
274 	return &disk->part0;
275 }
276 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
277 
278 /*
279  * Can be deleted altogether. Later.
280  *
281  */
282 #define BLKDEV_MAJOR_HASH_SIZE 255
283 static struct blk_major_name {
284 	struct blk_major_name *next;
285 	int major;
286 	char name[16];
287 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
288 
289 /* index in the above - for now: assume no multimajor ranges */
290 static inline int major_to_index(unsigned major)
291 {
292 	return major % BLKDEV_MAJOR_HASH_SIZE;
293 }
294 
295 #ifdef CONFIG_PROC_FS
296 void blkdev_show(struct seq_file *seqf, off_t offset)
297 {
298 	struct blk_major_name *dp;
299 
300 	mutex_lock(&block_class_lock);
301 	for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
302 		if (dp->major == offset)
303 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
304 	mutex_unlock(&block_class_lock);
305 }
306 #endif /* CONFIG_PROC_FS */
307 
308 /**
309  * register_blkdev - register a new block device
310  *
311  * @major: the requested major device number [1..255]. If @major = 0, try to
312  *         allocate any unused major number.
313  * @name: the name of the new block device as a zero terminated string
314  *
315  * The @name must be unique within the system.
316  *
317  * The return value depends on the @major input parameter:
318  *
319  *  - if a major device number was requested in range [1..255] then the
320  *    function returns zero on success, or a negative error code
321  *  - if any unused major number was requested with @major = 0 parameter
322  *    then the return value is the allocated major number in range
323  *    [1..255] or a negative error code otherwise
324  */
325 int register_blkdev(unsigned int major, const char *name)
326 {
327 	struct blk_major_name **n, *p;
328 	int index, ret = 0;
329 
330 	mutex_lock(&block_class_lock);
331 
332 	/* temporary */
333 	if (major == 0) {
334 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
335 			if (major_names[index] == NULL)
336 				break;
337 		}
338 
339 		if (index == 0) {
340 			printk("register_blkdev: failed to get major for %s\n",
341 			       name);
342 			ret = -EBUSY;
343 			goto out;
344 		}
345 		major = index;
346 		ret = major;
347 	}
348 
349 	if (major >= BLKDEV_MAJOR_MAX) {
350 		pr_err("register_blkdev: major requested (%d) is greater than the maximum (%d) for %s\n",
351 		       major, BLKDEV_MAJOR_MAX, name);
352 
353 		ret = -EINVAL;
354 		goto out;
355 	}
356 
357 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
358 	if (p == NULL) {
359 		ret = -ENOMEM;
360 		goto out;
361 	}
362 
363 	p->major = major;
364 	strlcpy(p->name, name, sizeof(p->name));
365 	p->next = NULL;
366 	index = major_to_index(major);
367 
368 	for (n = &major_names[index]; *n; n = &(*n)->next) {
369 		if ((*n)->major == major)
370 			break;
371 	}
372 	if (!*n)
373 		*n = p;
374 	else
375 		ret = -EBUSY;
376 
377 	if (ret < 0) {
378 		printk("register_blkdev: cannot get major %d for %s\n",
379 		       major, name);
380 		kfree(p);
381 	}
382 out:
383 	mutex_unlock(&block_class_lock);
384 	return ret;
385 }
386 
387 EXPORT_SYMBOL(register_blkdev);
388 
389 void unregister_blkdev(unsigned int major, const char *name)
390 {
391 	struct blk_major_name **n;
392 	struct blk_major_name *p = NULL;
393 	int index = major_to_index(major);
394 
395 	mutex_lock(&block_class_lock);
396 	for (n = &major_names[index]; *n; n = &(*n)->next)
397 		if ((*n)->major == major)
398 			break;
399 	if (!*n || strcmp((*n)->name, name)) {
400 		WARN_ON(1);
401 	} else {
402 		p = *n;
403 		*n = p->next;
404 	}
405 	mutex_unlock(&block_class_lock);
406 	kfree(p);
407 }
408 
409 EXPORT_SYMBOL(unregister_blkdev);
410 
411 static struct kobj_map *bdev_map;
412 
413 /**
414  * blk_mangle_minor - scatter minor numbers apart
415  * @minor: minor number to mangle
416  *
417  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
418  * is enabled.  Mangling twice gives the original value.
419  *
420  * RETURNS:
421  * Mangled value.
422  *
423  * CONTEXT:
424  * Don't care.
425  */
426 static int blk_mangle_minor(int minor)
427 {
428 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
429 	int i;
430 
431 	for (i = 0; i < MINORBITS / 2; i++) {
432 		int low = minor & (1 << i);
433 		int high = minor & (1 << (MINORBITS - 1 - i));
434 		int distance = MINORBITS - 1 - 2 * i;
435 
436 		minor ^= low | high;	/* clear both bits */
437 		low <<= distance;	/* swap the positions */
438 		high >>= distance;
439 		minor |= low | high;	/* and set */
440 	}
441 #endif
442 	return minor;
443 }
444 
445 /**
446  * blk_alloc_devt - allocate a dev_t for a partition
447  * @part: partition to allocate dev_t for
448  * @devt: out parameter for resulting dev_t
449  *
450  * Allocate a dev_t for block device.
451  *
452  * RETURNS:
453  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
454  * failure.
455  *
456  * CONTEXT:
457  * Might sleep.
458  */
459 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
460 {
461 	struct gendisk *disk = part_to_disk(part);
462 	int idx;
463 
464 	/* in consecutive minor range? */
465 	if (part->partno < disk->minors) {
466 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
467 		return 0;
468 	}
469 
470 	/* allocate ext devt */
471 	idr_preload(GFP_KERNEL);
472 
473 	spin_lock_bh(&ext_devt_lock);
474 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
475 	spin_unlock_bh(&ext_devt_lock);
476 
477 	idr_preload_end();
478 	if (idx < 0)
479 		return idx == -ENOSPC ? -EBUSY : idx;
480 
481 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
482 	return 0;
483 }
484 
485 /**
486  * blk_free_devt - free a dev_t
487  * @devt: dev_t to free
488  *
489  * Free @devt which was allocated using blk_alloc_devt().
490  *
491  * CONTEXT:
492  * Might sleep.
493  */
494 void blk_free_devt(dev_t devt)
495 {
496 	if (devt == MKDEV(0, 0))
497 		return;
498 
499 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
500 		spin_lock_bh(&ext_devt_lock);
501 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
502 		spin_unlock_bh(&ext_devt_lock);
503 	}
504 }
505 
506 static char *bdevt_str(dev_t devt, char *buf)
507 {
508 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
509 		char tbuf[BDEVT_SIZE];
510 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
511 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
512 	} else
513 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
514 
515 	return buf;
516 }
517 
518 /*
519  * Register device numbers dev..(dev+range-1)
520  * range must be nonzero
521  * The hash chain is sorted on range, so that subranges can override.
522  */
523 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
524 			 struct kobject *(*probe)(dev_t, int *, void *),
525 			 int (*lock)(dev_t, void *), void *data)
526 {
527 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
528 }
529 
530 EXPORT_SYMBOL(blk_register_region);
531 
532 void blk_unregister_region(dev_t devt, unsigned long range)
533 {
534 	kobj_unmap(bdev_map, devt, range);
535 }
536 
537 EXPORT_SYMBOL(blk_unregister_region);
538 
539 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
540 {
541 	struct gendisk *p = data;
542 
543 	return &disk_to_dev(p)->kobj;
544 }
545 
546 static int exact_lock(dev_t devt, void *data)
547 {
548 	struct gendisk *p = data;
549 
550 	if (!get_disk(p))
551 		return -1;
552 	return 0;
553 }
554 
555 static void register_disk(struct device *parent, struct gendisk *disk)
556 {
557 	struct device *ddev = disk_to_dev(disk);
558 	struct block_device *bdev;
559 	struct disk_part_iter piter;
560 	struct hd_struct *part;
561 	int err;
562 
563 	ddev->parent = parent;
564 
565 	dev_set_name(ddev, "%s", disk->disk_name);
566 
567 	/* delay uevents, until we scanned partition table */
568 	dev_set_uevent_suppress(ddev, 1);
569 
570 	if (device_add(ddev))
571 		return;
572 	if (!sysfs_deprecated) {
573 		err = sysfs_create_link(block_depr, &ddev->kobj,
574 					kobject_name(&ddev->kobj));
575 		if (err) {
576 			device_del(ddev);
577 			return;
578 		}
579 	}
580 
581 	/*
582 	 * avoid probable deadlock caused by allocating memory with
583 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
584 	 * devices
585 	 */
586 	pm_runtime_set_memalloc_noio(ddev, true);
587 
588 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
589 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
590 
591 	/* No minors to use for partitions */
592 	if (!disk_part_scan_enabled(disk))
593 		goto exit;
594 
595 	/* No such device (e.g., media were just removed) */
596 	if (!get_capacity(disk))
597 		goto exit;
598 
599 	bdev = bdget_disk(disk, 0);
600 	if (!bdev)
601 		goto exit;
602 
603 	bdev->bd_invalidated = 1;
604 	err = blkdev_get(bdev, FMODE_READ, NULL);
605 	if (err < 0)
606 		goto exit;
607 	blkdev_put(bdev, FMODE_READ);
608 
609 exit:
610 	/* announce disk after possible partitions are created */
611 	dev_set_uevent_suppress(ddev, 0);
612 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
613 
614 	/* announce possible partitions */
615 	disk_part_iter_init(&piter, disk, 0);
616 	while ((part = disk_part_iter_next(&piter)))
617 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
618 	disk_part_iter_exit(&piter);
619 }
620 
621 /**
622  * device_add_disk - add partitioning information to kernel list
623  * @parent: parent device for the disk
624  * @disk: per-device partitioning information
625  *
626  * This function registers the partitioning information in @disk
627  * with the kernel.
628  *
629  * FIXME: error handling
630  */
631 void device_add_disk(struct device *parent, struct gendisk *disk)
632 {
633 	struct backing_dev_info *bdi;
634 	dev_t devt;
635 	int retval;
636 
637 	/* minors == 0 indicates to use ext devt from part0 and should
638 	 * be accompanied with EXT_DEVT flag.  Make sure all
639 	 * parameters make sense.
640 	 */
641 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
642 	WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
643 
644 	disk->flags |= GENHD_FL_UP;
645 
646 	retval = blk_alloc_devt(&disk->part0, &devt);
647 	if (retval) {
648 		WARN_ON(1);
649 		return;
650 	}
651 	disk_to_dev(disk)->devt = devt;
652 
653 	/* ->major and ->first_minor aren't supposed to be
654 	 * dereferenced from here on, but set them just in case.
655 	 */
656 	disk->major = MAJOR(devt);
657 	disk->first_minor = MINOR(devt);
658 
659 	disk_alloc_events(disk);
660 
661 	/* Register BDI before referencing it from bdev */
662 	bdi = disk->queue->backing_dev_info;
663 	bdi_register_owner(bdi, disk_to_dev(disk));
664 
665 	blk_register_region(disk_devt(disk), disk->minors, NULL,
666 			    exact_match, exact_lock, disk);
667 	register_disk(parent, disk);
668 	blk_register_queue(disk);
669 
670 	/*
671 	 * Take an extra ref on queue which will be put on disk_release()
672 	 * so that it sticks around as long as @disk is there.
673 	 */
674 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
675 
676 	retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
677 				   "bdi");
678 	WARN_ON(retval);
679 
680 	disk_add_events(disk);
681 	blk_integrity_add(disk);
682 }
683 EXPORT_SYMBOL(device_add_disk);
684 
685 void del_gendisk(struct gendisk *disk)
686 {
687 	struct disk_part_iter piter;
688 	struct hd_struct *part;
689 
690 	blk_integrity_del(disk);
691 	disk_del_events(disk);
692 
693 	/* invalidate stuff */
694 	disk_part_iter_init(&piter, disk,
695 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
696 	while ((part = disk_part_iter_next(&piter))) {
697 		invalidate_partition(disk, part->partno);
698 		bdev_unhash_inode(part_devt(part));
699 		delete_partition(disk, part->partno);
700 	}
701 	disk_part_iter_exit(&piter);
702 
703 	invalidate_partition(disk, 0);
704 	bdev_unhash_inode(disk_devt(disk));
705 	set_capacity(disk, 0);
706 	disk->flags &= ~GENHD_FL_UP;
707 
708 	sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
709 	if (disk->queue) {
710 		/*
711 		 * Unregister bdi before releasing device numbers (as they can
712 		 * get reused and we'd get clashes in sysfs).
713 		 */
714 		bdi_unregister(disk->queue->backing_dev_info);
715 		blk_unregister_queue(disk);
716 	} else {
717 		WARN_ON(1);
718 	}
719 	blk_unregister_region(disk_devt(disk), disk->minors);
720 
721 	part_stat_set_all(&disk->part0, 0);
722 	disk->part0.stamp = 0;
723 
724 	kobject_put(disk->part0.holder_dir);
725 	kobject_put(disk->slave_dir);
726 	if (!sysfs_deprecated)
727 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
728 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
729 	device_del(disk_to_dev(disk));
730 }
731 EXPORT_SYMBOL(del_gendisk);
732 
733 /* sysfs access to bad-blocks list. */
734 static ssize_t disk_badblocks_show(struct device *dev,
735 					struct device_attribute *attr,
736 					char *page)
737 {
738 	struct gendisk *disk = dev_to_disk(dev);
739 
740 	if (!disk->bb)
741 		return sprintf(page, "\n");
742 
743 	return badblocks_show(disk->bb, page, 0);
744 }
745 
746 static ssize_t disk_badblocks_store(struct device *dev,
747 					struct device_attribute *attr,
748 					const char *page, size_t len)
749 {
750 	struct gendisk *disk = dev_to_disk(dev);
751 
752 	if (!disk->bb)
753 		return -ENXIO;
754 
755 	return badblocks_store(disk->bb, page, len, 0);
756 }
757 
758 /**
759  * get_gendisk - get partitioning information for a given device
760  * @devt: device to get partitioning information for
761  * @partno: returned partition index
762  *
763  * This function gets the structure containing partitioning
764  * information for the given device @devt.
765  */
766 struct gendisk *get_gendisk(dev_t devt, int *partno)
767 {
768 	struct gendisk *disk = NULL;
769 
770 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
771 		struct kobject *kobj;
772 
773 		kobj = kobj_lookup(bdev_map, devt, partno);
774 		if (kobj)
775 			disk = dev_to_disk(kobj_to_dev(kobj));
776 	} else {
777 		struct hd_struct *part;
778 
779 		spin_lock_bh(&ext_devt_lock);
780 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
781 		if (part && get_disk(part_to_disk(part))) {
782 			*partno = part->partno;
783 			disk = part_to_disk(part);
784 		}
785 		spin_unlock_bh(&ext_devt_lock);
786 	}
787 
788 	return disk;
789 }
790 EXPORT_SYMBOL(get_gendisk);
791 
792 /**
793  * bdget_disk - do bdget() by gendisk and partition number
794  * @disk: gendisk of interest
795  * @partno: partition number
796  *
797  * Find partition @partno from @disk, do bdget() on it.
798  *
799  * CONTEXT:
800  * Don't care.
801  *
802  * RETURNS:
803  * Resulting block_device on success, NULL on failure.
804  */
805 struct block_device *bdget_disk(struct gendisk *disk, int partno)
806 {
807 	struct hd_struct *part;
808 	struct block_device *bdev = NULL;
809 
810 	part = disk_get_part(disk, partno);
811 	if (part)
812 		bdev = bdget(part_devt(part));
813 	disk_put_part(part);
814 
815 	return bdev;
816 }
817 EXPORT_SYMBOL(bdget_disk);
818 
819 /*
820  * print a full list of all partitions - intended for places where the root
821  * filesystem can't be mounted and thus to give the victim some idea of what
822  * went wrong
823  */
824 void __init printk_all_partitions(void)
825 {
826 	struct class_dev_iter iter;
827 	struct device *dev;
828 
829 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
830 	while ((dev = class_dev_iter_next(&iter))) {
831 		struct gendisk *disk = dev_to_disk(dev);
832 		struct disk_part_iter piter;
833 		struct hd_struct *part;
834 		char name_buf[BDEVNAME_SIZE];
835 		char devt_buf[BDEVT_SIZE];
836 
837 		/*
838 		 * Don't show empty devices or things that have been
839 		 * suppressed
840 		 */
841 		if (get_capacity(disk) == 0 ||
842 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
843 			continue;
844 
845 		/*
846 		 * Note, unlike /proc/partitions, I am showing the
847 		 * numbers in hex - the same format as the root=
848 		 * option takes.
849 		 */
850 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
851 		while ((part = disk_part_iter_next(&piter))) {
852 			bool is_part0 = part == &disk->part0;
853 
854 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
855 			       bdevt_str(part_devt(part), devt_buf),
856 			       (unsigned long long)part_nr_sects_read(part) >> 1
857 			       , disk_name(disk, part->partno, name_buf),
858 			       part->info ? part->info->uuid : "");
859 			if (is_part0) {
860 				if (dev->parent && dev->parent->driver)
861 					printk(" driver: %s\n",
862 					      dev->parent->driver->name);
863 				else
864 					printk(" (driver?)\n");
865 			} else
866 				printk("\n");
867 		}
868 		disk_part_iter_exit(&piter);
869 	}
870 	class_dev_iter_exit(&iter);
871 }
872 
873 #ifdef CONFIG_PROC_FS
874 /* iterator */
875 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
876 {
877 	loff_t skip = *pos;
878 	struct class_dev_iter *iter;
879 	struct device *dev;
880 
881 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
882 	if (!iter)
883 		return ERR_PTR(-ENOMEM);
884 
885 	seqf->private = iter;
886 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
887 	do {
888 		dev = class_dev_iter_next(iter);
889 		if (!dev)
890 			return NULL;
891 	} while (skip--);
892 
893 	return dev_to_disk(dev);
894 }
895 
896 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
897 {
898 	struct device *dev;
899 
900 	(*pos)++;
901 	dev = class_dev_iter_next(seqf->private);
902 	if (dev)
903 		return dev_to_disk(dev);
904 
905 	return NULL;
906 }
907 
908 static void disk_seqf_stop(struct seq_file *seqf, void *v)
909 {
910 	struct class_dev_iter *iter = seqf->private;
911 
912 	/* stop is called even after start failed :-( */
913 	if (iter) {
914 		class_dev_iter_exit(iter);
915 		kfree(iter);
916 		seqf->private = NULL;
917 	}
918 }
919 
920 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
921 {
922 	void *p;
923 
924 	p = disk_seqf_start(seqf, pos);
925 	if (!IS_ERR_OR_NULL(p) && !*pos)
926 		seq_puts(seqf, "major minor  #blocks  name\n\n");
927 	return p;
928 }
929 
930 static int show_partition(struct seq_file *seqf, void *v)
931 {
932 	struct gendisk *sgp = v;
933 	struct disk_part_iter piter;
934 	struct hd_struct *part;
935 	char buf[BDEVNAME_SIZE];
936 
937 	/* Don't show non-partitionable removeable devices or empty devices */
938 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
939 				   (sgp->flags & GENHD_FL_REMOVABLE)))
940 		return 0;
941 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
942 		return 0;
943 
944 	/* show the full disk and all non-0 size partitions of it */
945 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
946 	while ((part = disk_part_iter_next(&piter)))
947 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
948 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
949 			   (unsigned long long)part_nr_sects_read(part) >> 1,
950 			   disk_name(sgp, part->partno, buf));
951 	disk_part_iter_exit(&piter);
952 
953 	return 0;
954 }
955 
956 static const struct seq_operations partitions_op = {
957 	.start	= show_partition_start,
958 	.next	= disk_seqf_next,
959 	.stop	= disk_seqf_stop,
960 	.show	= show_partition
961 };
962 
963 static int partitions_open(struct inode *inode, struct file *file)
964 {
965 	return seq_open(file, &partitions_op);
966 }
967 
968 static const struct file_operations proc_partitions_operations = {
969 	.open		= partitions_open,
970 	.read		= seq_read,
971 	.llseek		= seq_lseek,
972 	.release	= seq_release,
973 };
974 #endif
975 
976 
977 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
978 {
979 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
980 		/* Make old-style 2.4 aliases work */
981 		request_module("block-major-%d", MAJOR(devt));
982 	return NULL;
983 }
984 
985 static int __init genhd_device_init(void)
986 {
987 	int error;
988 
989 	block_class.dev_kobj = sysfs_dev_block_kobj;
990 	error = class_register(&block_class);
991 	if (unlikely(error))
992 		return error;
993 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
994 	blk_dev_init();
995 
996 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
997 
998 	/* create top-level block dir */
999 	if (!sysfs_deprecated)
1000 		block_depr = kobject_create_and_add("block", NULL);
1001 	return 0;
1002 }
1003 
1004 subsys_initcall(genhd_device_init);
1005 
1006 static ssize_t disk_range_show(struct device *dev,
1007 			       struct device_attribute *attr, char *buf)
1008 {
1009 	struct gendisk *disk = dev_to_disk(dev);
1010 
1011 	return sprintf(buf, "%d\n", disk->minors);
1012 }
1013 
1014 static ssize_t disk_ext_range_show(struct device *dev,
1015 				   struct device_attribute *attr, char *buf)
1016 {
1017 	struct gendisk *disk = dev_to_disk(dev);
1018 
1019 	return sprintf(buf, "%d\n", disk_max_parts(disk));
1020 }
1021 
1022 static ssize_t disk_removable_show(struct device *dev,
1023 				   struct device_attribute *attr, char *buf)
1024 {
1025 	struct gendisk *disk = dev_to_disk(dev);
1026 
1027 	return sprintf(buf, "%d\n",
1028 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1029 }
1030 
1031 static ssize_t disk_ro_show(struct device *dev,
1032 				   struct device_attribute *attr, char *buf)
1033 {
1034 	struct gendisk *disk = dev_to_disk(dev);
1035 
1036 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1037 }
1038 
1039 static ssize_t disk_capability_show(struct device *dev,
1040 				    struct device_attribute *attr, char *buf)
1041 {
1042 	struct gendisk *disk = dev_to_disk(dev);
1043 
1044 	return sprintf(buf, "%x\n", disk->flags);
1045 }
1046 
1047 static ssize_t disk_alignment_offset_show(struct device *dev,
1048 					  struct device_attribute *attr,
1049 					  char *buf)
1050 {
1051 	struct gendisk *disk = dev_to_disk(dev);
1052 
1053 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1054 }
1055 
1056 static ssize_t disk_discard_alignment_show(struct device *dev,
1057 					   struct device_attribute *attr,
1058 					   char *buf)
1059 {
1060 	struct gendisk *disk = dev_to_disk(dev);
1061 
1062 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1063 }
1064 
1065 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
1066 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
1067 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
1068 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
1069 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
1070 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
1071 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
1072 		   NULL);
1073 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
1074 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
1075 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
1076 static DEVICE_ATTR(badblocks, S_IRUGO | S_IWUSR, disk_badblocks_show,
1077 		disk_badblocks_store);
1078 #ifdef CONFIG_FAIL_MAKE_REQUEST
1079 static struct device_attribute dev_attr_fail =
1080 	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
1081 #endif
1082 #ifdef CONFIG_FAIL_IO_TIMEOUT
1083 static struct device_attribute dev_attr_fail_timeout =
1084 	__ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
1085 		part_timeout_store);
1086 #endif
1087 
1088 static struct attribute *disk_attrs[] = {
1089 	&dev_attr_range.attr,
1090 	&dev_attr_ext_range.attr,
1091 	&dev_attr_removable.attr,
1092 	&dev_attr_ro.attr,
1093 	&dev_attr_size.attr,
1094 	&dev_attr_alignment_offset.attr,
1095 	&dev_attr_discard_alignment.attr,
1096 	&dev_attr_capability.attr,
1097 	&dev_attr_stat.attr,
1098 	&dev_attr_inflight.attr,
1099 	&dev_attr_badblocks.attr,
1100 #ifdef CONFIG_FAIL_MAKE_REQUEST
1101 	&dev_attr_fail.attr,
1102 #endif
1103 #ifdef CONFIG_FAIL_IO_TIMEOUT
1104 	&dev_attr_fail_timeout.attr,
1105 #endif
1106 	NULL
1107 };
1108 
1109 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1110 {
1111 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
1112 	struct gendisk *disk = dev_to_disk(dev);
1113 
1114 	if (a == &dev_attr_badblocks.attr && !disk->bb)
1115 		return 0;
1116 	return a->mode;
1117 }
1118 
1119 static struct attribute_group disk_attr_group = {
1120 	.attrs = disk_attrs,
1121 	.is_visible = disk_visible,
1122 };
1123 
1124 static const struct attribute_group *disk_attr_groups[] = {
1125 	&disk_attr_group,
1126 	NULL
1127 };
1128 
1129 /**
1130  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1131  * @disk: disk to replace part_tbl for
1132  * @new_ptbl: new part_tbl to install
1133  *
1134  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1135  * original ptbl is freed using RCU callback.
1136  *
1137  * LOCKING:
1138  * Matching bd_mutex locked or the caller is the only user of @disk.
1139  */
1140 static void disk_replace_part_tbl(struct gendisk *disk,
1141 				  struct disk_part_tbl *new_ptbl)
1142 {
1143 	struct disk_part_tbl *old_ptbl =
1144 		rcu_dereference_protected(disk->part_tbl, 1);
1145 
1146 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1147 
1148 	if (old_ptbl) {
1149 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1150 		kfree_rcu(old_ptbl, rcu_head);
1151 	}
1152 }
1153 
1154 /**
1155  * disk_expand_part_tbl - expand disk->part_tbl
1156  * @disk: disk to expand part_tbl for
1157  * @partno: expand such that this partno can fit in
1158  *
1159  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1160  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1161  *
1162  * LOCKING:
1163  * Matching bd_mutex locked or the caller is the only user of @disk.
1164  * Might sleep.
1165  *
1166  * RETURNS:
1167  * 0 on success, -errno on failure.
1168  */
1169 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1170 {
1171 	struct disk_part_tbl *old_ptbl =
1172 		rcu_dereference_protected(disk->part_tbl, 1);
1173 	struct disk_part_tbl *new_ptbl;
1174 	int len = old_ptbl ? old_ptbl->len : 0;
1175 	int i, target;
1176 	size_t size;
1177 
1178 	/*
1179 	 * check for int overflow, since we can get here from blkpg_ioctl()
1180 	 * with a user passed 'partno'.
1181 	 */
1182 	target = partno + 1;
1183 	if (target < 0)
1184 		return -EINVAL;
1185 
1186 	/* disk_max_parts() is zero during initialization, ignore if so */
1187 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1188 		return -EINVAL;
1189 
1190 	if (target <= len)
1191 		return 0;
1192 
1193 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1194 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1195 	if (!new_ptbl)
1196 		return -ENOMEM;
1197 
1198 	new_ptbl->len = target;
1199 
1200 	for (i = 0; i < len; i++)
1201 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1202 
1203 	disk_replace_part_tbl(disk, new_ptbl);
1204 	return 0;
1205 }
1206 
1207 static void disk_release(struct device *dev)
1208 {
1209 	struct gendisk *disk = dev_to_disk(dev);
1210 
1211 	blk_free_devt(dev->devt);
1212 	disk_release_events(disk);
1213 	kfree(disk->random);
1214 	disk_replace_part_tbl(disk, NULL);
1215 	hd_free_part(&disk->part0);
1216 	if (disk->queue)
1217 		blk_put_queue(disk->queue);
1218 	kfree(disk);
1219 }
1220 struct class block_class = {
1221 	.name		= "block",
1222 };
1223 
1224 static char *block_devnode(struct device *dev, umode_t *mode,
1225 			   kuid_t *uid, kgid_t *gid)
1226 {
1227 	struct gendisk *disk = dev_to_disk(dev);
1228 
1229 	if (disk->devnode)
1230 		return disk->devnode(disk, mode);
1231 	return NULL;
1232 }
1233 
1234 static const struct device_type disk_type = {
1235 	.name		= "disk",
1236 	.groups		= disk_attr_groups,
1237 	.release	= disk_release,
1238 	.devnode	= block_devnode,
1239 };
1240 
1241 #ifdef CONFIG_PROC_FS
1242 /*
1243  * aggregate disk stat collector.  Uses the same stats that the sysfs
1244  * entries do, above, but makes them available through one seq_file.
1245  *
1246  * The output looks suspiciously like /proc/partitions with a bunch of
1247  * extra fields.
1248  */
1249 static int diskstats_show(struct seq_file *seqf, void *v)
1250 {
1251 	struct gendisk *gp = v;
1252 	struct disk_part_iter piter;
1253 	struct hd_struct *hd;
1254 	char buf[BDEVNAME_SIZE];
1255 	unsigned int inflight[2];
1256 	int cpu;
1257 
1258 	/*
1259 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1260 		seq_puts(seqf,	"major minor name"
1261 				"     rio rmerge rsect ruse wio wmerge "
1262 				"wsect wuse running use aveq"
1263 				"\n\n");
1264 	*/
1265 
1266 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1267 	while ((hd = disk_part_iter_next(&piter))) {
1268 		cpu = part_stat_lock();
1269 		part_round_stats(gp->queue, cpu, hd);
1270 		part_stat_unlock();
1271 		part_in_flight(gp->queue, hd, inflight);
1272 		seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1273 			   "%u %lu %lu %lu %u %u %u %u\n",
1274 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1275 			   disk_name(gp, hd->partno, buf),
1276 			   part_stat_read(hd, ios[READ]),
1277 			   part_stat_read(hd, merges[READ]),
1278 			   part_stat_read(hd, sectors[READ]),
1279 			   jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1280 			   part_stat_read(hd, ios[WRITE]),
1281 			   part_stat_read(hd, merges[WRITE]),
1282 			   part_stat_read(hd, sectors[WRITE]),
1283 			   jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1284 			   inflight[0],
1285 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1286 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1287 			);
1288 	}
1289 	disk_part_iter_exit(&piter);
1290 
1291 	return 0;
1292 }
1293 
1294 static const struct seq_operations diskstats_op = {
1295 	.start	= disk_seqf_start,
1296 	.next	= disk_seqf_next,
1297 	.stop	= disk_seqf_stop,
1298 	.show	= diskstats_show
1299 };
1300 
1301 static int diskstats_open(struct inode *inode, struct file *file)
1302 {
1303 	return seq_open(file, &diskstats_op);
1304 }
1305 
1306 static const struct file_operations proc_diskstats_operations = {
1307 	.open		= diskstats_open,
1308 	.read		= seq_read,
1309 	.llseek		= seq_lseek,
1310 	.release	= seq_release,
1311 };
1312 
1313 static int __init proc_genhd_init(void)
1314 {
1315 	proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1316 	proc_create("partitions", 0, NULL, &proc_partitions_operations);
1317 	return 0;
1318 }
1319 module_init(proc_genhd_init);
1320 #endif /* CONFIG_PROC_FS */
1321 
1322 dev_t blk_lookup_devt(const char *name, int partno)
1323 {
1324 	dev_t devt = MKDEV(0, 0);
1325 	struct class_dev_iter iter;
1326 	struct device *dev;
1327 
1328 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1329 	while ((dev = class_dev_iter_next(&iter))) {
1330 		struct gendisk *disk = dev_to_disk(dev);
1331 		struct hd_struct *part;
1332 
1333 		if (strcmp(dev_name(dev), name))
1334 			continue;
1335 
1336 		if (partno < disk->minors) {
1337 			/* We need to return the right devno, even
1338 			 * if the partition doesn't exist yet.
1339 			 */
1340 			devt = MKDEV(MAJOR(dev->devt),
1341 				     MINOR(dev->devt) + partno);
1342 			break;
1343 		}
1344 		part = disk_get_part(disk, partno);
1345 		if (part) {
1346 			devt = part_devt(part);
1347 			disk_put_part(part);
1348 			break;
1349 		}
1350 		disk_put_part(part);
1351 	}
1352 	class_dev_iter_exit(&iter);
1353 	return devt;
1354 }
1355 EXPORT_SYMBOL(blk_lookup_devt);
1356 
1357 struct gendisk *__alloc_disk_node(int minors, int node_id)
1358 {
1359 	struct gendisk *disk;
1360 	struct disk_part_tbl *ptbl;
1361 
1362 	if (minors > DISK_MAX_PARTS) {
1363 		printk(KERN_ERR
1364 			"block: can't allocated more than %d partitions\n",
1365 			DISK_MAX_PARTS);
1366 		minors = DISK_MAX_PARTS;
1367 	}
1368 
1369 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1370 	if (disk) {
1371 		if (!init_part_stats(&disk->part0)) {
1372 			kfree(disk);
1373 			return NULL;
1374 		}
1375 		disk->node_id = node_id;
1376 		if (disk_expand_part_tbl(disk, 0)) {
1377 			free_part_stats(&disk->part0);
1378 			kfree(disk);
1379 			return NULL;
1380 		}
1381 		ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1382 		rcu_assign_pointer(ptbl->part[0], &disk->part0);
1383 
1384 		/*
1385 		 * set_capacity() and get_capacity() currently don't use
1386 		 * seqcounter to read/update the part0->nr_sects. Still init
1387 		 * the counter as we can read the sectors in IO submission
1388 		 * patch using seqence counters.
1389 		 *
1390 		 * TODO: Ideally set_capacity() and get_capacity() should be
1391 		 * converted to make use of bd_mutex and sequence counters.
1392 		 */
1393 		seqcount_init(&disk->part0.nr_sects_seq);
1394 		if (hd_ref_init(&disk->part0)) {
1395 			hd_free_part(&disk->part0);
1396 			kfree(disk);
1397 			return NULL;
1398 		}
1399 
1400 		disk->minors = minors;
1401 		rand_initialize_disk(disk);
1402 		disk_to_dev(disk)->class = &block_class;
1403 		disk_to_dev(disk)->type = &disk_type;
1404 		device_initialize(disk_to_dev(disk));
1405 	}
1406 	return disk;
1407 }
1408 EXPORT_SYMBOL(__alloc_disk_node);
1409 
1410 struct kobject *get_disk(struct gendisk *disk)
1411 {
1412 	struct module *owner;
1413 	struct kobject *kobj;
1414 
1415 	if (!disk->fops)
1416 		return NULL;
1417 	owner = disk->fops->owner;
1418 	if (owner && !try_module_get(owner))
1419 		return NULL;
1420 	kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1421 	if (kobj == NULL) {
1422 		module_put(owner);
1423 		return NULL;
1424 	}
1425 	return kobj;
1426 
1427 }
1428 
1429 EXPORT_SYMBOL(get_disk);
1430 
1431 void put_disk(struct gendisk *disk)
1432 {
1433 	if (disk)
1434 		kobject_put(&disk_to_dev(disk)->kobj);
1435 }
1436 
1437 EXPORT_SYMBOL(put_disk);
1438 
1439 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1440 {
1441 	char event[] = "DISK_RO=1";
1442 	char *envp[] = { event, NULL };
1443 
1444 	if (!ro)
1445 		event[8] = '0';
1446 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1447 }
1448 
1449 void set_device_ro(struct block_device *bdev, int flag)
1450 {
1451 	bdev->bd_part->policy = flag;
1452 }
1453 
1454 EXPORT_SYMBOL(set_device_ro);
1455 
1456 void set_disk_ro(struct gendisk *disk, int flag)
1457 {
1458 	struct disk_part_iter piter;
1459 	struct hd_struct *part;
1460 
1461 	if (disk->part0.policy != flag) {
1462 		set_disk_ro_uevent(disk, flag);
1463 		disk->part0.policy = flag;
1464 	}
1465 
1466 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1467 	while ((part = disk_part_iter_next(&piter)))
1468 		part->policy = flag;
1469 	disk_part_iter_exit(&piter);
1470 }
1471 
1472 EXPORT_SYMBOL(set_disk_ro);
1473 
1474 int bdev_read_only(struct block_device *bdev)
1475 {
1476 	if (!bdev)
1477 		return 0;
1478 	return bdev->bd_part->policy;
1479 }
1480 
1481 EXPORT_SYMBOL(bdev_read_only);
1482 
1483 int invalidate_partition(struct gendisk *disk, int partno)
1484 {
1485 	int res = 0;
1486 	struct block_device *bdev = bdget_disk(disk, partno);
1487 	if (bdev) {
1488 		fsync_bdev(bdev);
1489 		res = __invalidate_device(bdev, true);
1490 		bdput(bdev);
1491 	}
1492 	return res;
1493 }
1494 
1495 EXPORT_SYMBOL(invalidate_partition);
1496 
1497 /*
1498  * Disk events - monitor disk events like media change and eject request.
1499  */
1500 struct disk_events {
1501 	struct list_head	node;		/* all disk_event's */
1502 	struct gendisk		*disk;		/* the associated disk */
1503 	spinlock_t		lock;
1504 
1505 	struct mutex		block_mutex;	/* protects blocking */
1506 	int			block;		/* event blocking depth */
1507 	unsigned int		pending;	/* events already sent out */
1508 	unsigned int		clearing;	/* events being cleared */
1509 
1510 	long			poll_msecs;	/* interval, -1 for default */
1511 	struct delayed_work	dwork;
1512 };
1513 
1514 static const char *disk_events_strs[] = {
1515 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1516 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1517 };
1518 
1519 static char *disk_uevents[] = {
1520 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1521 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1522 };
1523 
1524 /* list of all disk_events */
1525 static DEFINE_MUTEX(disk_events_mutex);
1526 static LIST_HEAD(disk_events);
1527 
1528 /* disable in-kernel polling by default */
1529 static unsigned long disk_events_dfl_poll_msecs;
1530 
1531 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1532 {
1533 	struct disk_events *ev = disk->ev;
1534 	long intv_msecs = 0;
1535 
1536 	/*
1537 	 * If device-specific poll interval is set, always use it.  If
1538 	 * the default is being used, poll iff there are events which
1539 	 * can't be monitored asynchronously.
1540 	 */
1541 	if (ev->poll_msecs >= 0)
1542 		intv_msecs = ev->poll_msecs;
1543 	else if (disk->events & ~disk->async_events)
1544 		intv_msecs = disk_events_dfl_poll_msecs;
1545 
1546 	return msecs_to_jiffies(intv_msecs);
1547 }
1548 
1549 /**
1550  * disk_block_events - block and flush disk event checking
1551  * @disk: disk to block events for
1552  *
1553  * On return from this function, it is guaranteed that event checking
1554  * isn't in progress and won't happen until unblocked by
1555  * disk_unblock_events().  Events blocking is counted and the actual
1556  * unblocking happens after the matching number of unblocks are done.
1557  *
1558  * Note that this intentionally does not block event checking from
1559  * disk_clear_events().
1560  *
1561  * CONTEXT:
1562  * Might sleep.
1563  */
1564 void disk_block_events(struct gendisk *disk)
1565 {
1566 	struct disk_events *ev = disk->ev;
1567 	unsigned long flags;
1568 	bool cancel;
1569 
1570 	if (!ev)
1571 		return;
1572 
1573 	/*
1574 	 * Outer mutex ensures that the first blocker completes canceling
1575 	 * the event work before further blockers are allowed to finish.
1576 	 */
1577 	mutex_lock(&ev->block_mutex);
1578 
1579 	spin_lock_irqsave(&ev->lock, flags);
1580 	cancel = !ev->block++;
1581 	spin_unlock_irqrestore(&ev->lock, flags);
1582 
1583 	if (cancel)
1584 		cancel_delayed_work_sync(&disk->ev->dwork);
1585 
1586 	mutex_unlock(&ev->block_mutex);
1587 }
1588 
1589 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1590 {
1591 	struct disk_events *ev = disk->ev;
1592 	unsigned long intv;
1593 	unsigned long flags;
1594 
1595 	spin_lock_irqsave(&ev->lock, flags);
1596 
1597 	if (WARN_ON_ONCE(ev->block <= 0))
1598 		goto out_unlock;
1599 
1600 	if (--ev->block)
1601 		goto out_unlock;
1602 
1603 	intv = disk_events_poll_jiffies(disk);
1604 	if (check_now)
1605 		queue_delayed_work(system_freezable_power_efficient_wq,
1606 				&ev->dwork, 0);
1607 	else if (intv)
1608 		queue_delayed_work(system_freezable_power_efficient_wq,
1609 				&ev->dwork, intv);
1610 out_unlock:
1611 	spin_unlock_irqrestore(&ev->lock, flags);
1612 }
1613 
1614 /**
1615  * disk_unblock_events - unblock disk event checking
1616  * @disk: disk to unblock events for
1617  *
1618  * Undo disk_block_events().  When the block count reaches zero, it
1619  * starts events polling if configured.
1620  *
1621  * CONTEXT:
1622  * Don't care.  Safe to call from irq context.
1623  */
1624 void disk_unblock_events(struct gendisk *disk)
1625 {
1626 	if (disk->ev)
1627 		__disk_unblock_events(disk, false);
1628 }
1629 
1630 /**
1631  * disk_flush_events - schedule immediate event checking and flushing
1632  * @disk: disk to check and flush events for
1633  * @mask: events to flush
1634  *
1635  * Schedule immediate event checking on @disk if not blocked.  Events in
1636  * @mask are scheduled to be cleared from the driver.  Note that this
1637  * doesn't clear the events from @disk->ev.
1638  *
1639  * CONTEXT:
1640  * If @mask is non-zero must be called with bdev->bd_mutex held.
1641  */
1642 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1643 {
1644 	struct disk_events *ev = disk->ev;
1645 
1646 	if (!ev)
1647 		return;
1648 
1649 	spin_lock_irq(&ev->lock);
1650 	ev->clearing |= mask;
1651 	if (!ev->block)
1652 		mod_delayed_work(system_freezable_power_efficient_wq,
1653 				&ev->dwork, 0);
1654 	spin_unlock_irq(&ev->lock);
1655 }
1656 
1657 /**
1658  * disk_clear_events - synchronously check, clear and return pending events
1659  * @disk: disk to fetch and clear events from
1660  * @mask: mask of events to be fetched and cleared
1661  *
1662  * Disk events are synchronously checked and pending events in @mask
1663  * are cleared and returned.  This ignores the block count.
1664  *
1665  * CONTEXT:
1666  * Might sleep.
1667  */
1668 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1669 {
1670 	const struct block_device_operations *bdops = disk->fops;
1671 	struct disk_events *ev = disk->ev;
1672 	unsigned int pending;
1673 	unsigned int clearing = mask;
1674 
1675 	if (!ev) {
1676 		/* for drivers still using the old ->media_changed method */
1677 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1678 		    bdops->media_changed && bdops->media_changed(disk))
1679 			return DISK_EVENT_MEDIA_CHANGE;
1680 		return 0;
1681 	}
1682 
1683 	disk_block_events(disk);
1684 
1685 	/*
1686 	 * store the union of mask and ev->clearing on the stack so that the
1687 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1688 	 * can still be modified even if events are blocked).
1689 	 */
1690 	spin_lock_irq(&ev->lock);
1691 	clearing |= ev->clearing;
1692 	ev->clearing = 0;
1693 	spin_unlock_irq(&ev->lock);
1694 
1695 	disk_check_events(ev, &clearing);
1696 	/*
1697 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1698 	 * middle of this function, so we want to run the workfn without delay.
1699 	 */
1700 	__disk_unblock_events(disk, ev->clearing ? true : false);
1701 
1702 	/* then, fetch and clear pending events */
1703 	spin_lock_irq(&ev->lock);
1704 	pending = ev->pending & mask;
1705 	ev->pending &= ~mask;
1706 	spin_unlock_irq(&ev->lock);
1707 	WARN_ON_ONCE(clearing & mask);
1708 
1709 	return pending;
1710 }
1711 
1712 /*
1713  * Separate this part out so that a different pointer for clearing_ptr can be
1714  * passed in for disk_clear_events.
1715  */
1716 static void disk_events_workfn(struct work_struct *work)
1717 {
1718 	struct delayed_work *dwork = to_delayed_work(work);
1719 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1720 
1721 	disk_check_events(ev, &ev->clearing);
1722 }
1723 
1724 static void disk_check_events(struct disk_events *ev,
1725 			      unsigned int *clearing_ptr)
1726 {
1727 	struct gendisk *disk = ev->disk;
1728 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1729 	unsigned int clearing = *clearing_ptr;
1730 	unsigned int events;
1731 	unsigned long intv;
1732 	int nr_events = 0, i;
1733 
1734 	/* check events */
1735 	events = disk->fops->check_events(disk, clearing);
1736 
1737 	/* accumulate pending events and schedule next poll if necessary */
1738 	spin_lock_irq(&ev->lock);
1739 
1740 	events &= ~ev->pending;
1741 	ev->pending |= events;
1742 	*clearing_ptr &= ~clearing;
1743 
1744 	intv = disk_events_poll_jiffies(disk);
1745 	if (!ev->block && intv)
1746 		queue_delayed_work(system_freezable_power_efficient_wq,
1747 				&ev->dwork, intv);
1748 
1749 	spin_unlock_irq(&ev->lock);
1750 
1751 	/*
1752 	 * Tell userland about new events.  Only the events listed in
1753 	 * @disk->events are reported.  Unlisted events are processed the
1754 	 * same internally but never get reported to userland.
1755 	 */
1756 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1757 		if (events & disk->events & (1 << i))
1758 			envp[nr_events++] = disk_uevents[i];
1759 
1760 	if (nr_events)
1761 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1762 }
1763 
1764 /*
1765  * A disk events enabled device has the following sysfs nodes under
1766  * its /sys/block/X/ directory.
1767  *
1768  * events		: list of all supported events
1769  * events_async		: list of events which can be detected w/o polling
1770  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1771  */
1772 static ssize_t __disk_events_show(unsigned int events, char *buf)
1773 {
1774 	const char *delim = "";
1775 	ssize_t pos = 0;
1776 	int i;
1777 
1778 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1779 		if (events & (1 << i)) {
1780 			pos += sprintf(buf + pos, "%s%s",
1781 				       delim, disk_events_strs[i]);
1782 			delim = " ";
1783 		}
1784 	if (pos)
1785 		pos += sprintf(buf + pos, "\n");
1786 	return pos;
1787 }
1788 
1789 static ssize_t disk_events_show(struct device *dev,
1790 				struct device_attribute *attr, char *buf)
1791 {
1792 	struct gendisk *disk = dev_to_disk(dev);
1793 
1794 	return __disk_events_show(disk->events, buf);
1795 }
1796 
1797 static ssize_t disk_events_async_show(struct device *dev,
1798 				      struct device_attribute *attr, char *buf)
1799 {
1800 	struct gendisk *disk = dev_to_disk(dev);
1801 
1802 	return __disk_events_show(disk->async_events, buf);
1803 }
1804 
1805 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1806 					   struct device_attribute *attr,
1807 					   char *buf)
1808 {
1809 	struct gendisk *disk = dev_to_disk(dev);
1810 
1811 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1812 }
1813 
1814 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1815 					    struct device_attribute *attr,
1816 					    const char *buf, size_t count)
1817 {
1818 	struct gendisk *disk = dev_to_disk(dev);
1819 	long intv;
1820 
1821 	if (!count || !sscanf(buf, "%ld", &intv))
1822 		return -EINVAL;
1823 
1824 	if (intv < 0 && intv != -1)
1825 		return -EINVAL;
1826 
1827 	disk_block_events(disk);
1828 	disk->ev->poll_msecs = intv;
1829 	__disk_unblock_events(disk, true);
1830 
1831 	return count;
1832 }
1833 
1834 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1835 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1836 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1837 			 disk_events_poll_msecs_show,
1838 			 disk_events_poll_msecs_store);
1839 
1840 static const struct attribute *disk_events_attrs[] = {
1841 	&dev_attr_events.attr,
1842 	&dev_attr_events_async.attr,
1843 	&dev_attr_events_poll_msecs.attr,
1844 	NULL,
1845 };
1846 
1847 /*
1848  * The default polling interval can be specified by the kernel
1849  * parameter block.events_dfl_poll_msecs which defaults to 0
1850  * (disable).  This can also be modified runtime by writing to
1851  * /sys/module/block/events_dfl_poll_msecs.
1852  */
1853 static int disk_events_set_dfl_poll_msecs(const char *val,
1854 					  const struct kernel_param *kp)
1855 {
1856 	struct disk_events *ev;
1857 	int ret;
1858 
1859 	ret = param_set_ulong(val, kp);
1860 	if (ret < 0)
1861 		return ret;
1862 
1863 	mutex_lock(&disk_events_mutex);
1864 
1865 	list_for_each_entry(ev, &disk_events, node)
1866 		disk_flush_events(ev->disk, 0);
1867 
1868 	mutex_unlock(&disk_events_mutex);
1869 
1870 	return 0;
1871 }
1872 
1873 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1874 	.set	= disk_events_set_dfl_poll_msecs,
1875 	.get	= param_get_ulong,
1876 };
1877 
1878 #undef MODULE_PARAM_PREFIX
1879 #define MODULE_PARAM_PREFIX	"block."
1880 
1881 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1882 		&disk_events_dfl_poll_msecs, 0644);
1883 
1884 /*
1885  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1886  */
1887 static void disk_alloc_events(struct gendisk *disk)
1888 {
1889 	struct disk_events *ev;
1890 
1891 	if (!disk->fops->check_events)
1892 		return;
1893 
1894 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1895 	if (!ev) {
1896 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1897 		return;
1898 	}
1899 
1900 	INIT_LIST_HEAD(&ev->node);
1901 	ev->disk = disk;
1902 	spin_lock_init(&ev->lock);
1903 	mutex_init(&ev->block_mutex);
1904 	ev->block = 1;
1905 	ev->poll_msecs = -1;
1906 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1907 
1908 	disk->ev = ev;
1909 }
1910 
1911 static void disk_add_events(struct gendisk *disk)
1912 {
1913 	if (!disk->ev)
1914 		return;
1915 
1916 	/* FIXME: error handling */
1917 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1918 		pr_warn("%s: failed to create sysfs files for events\n",
1919 			disk->disk_name);
1920 
1921 	mutex_lock(&disk_events_mutex);
1922 	list_add_tail(&disk->ev->node, &disk_events);
1923 	mutex_unlock(&disk_events_mutex);
1924 
1925 	/*
1926 	 * Block count is initialized to 1 and the following initial
1927 	 * unblock kicks it into action.
1928 	 */
1929 	__disk_unblock_events(disk, true);
1930 }
1931 
1932 static void disk_del_events(struct gendisk *disk)
1933 {
1934 	if (!disk->ev)
1935 		return;
1936 
1937 	disk_block_events(disk);
1938 
1939 	mutex_lock(&disk_events_mutex);
1940 	list_del_init(&disk->ev->node);
1941 	mutex_unlock(&disk_events_mutex);
1942 
1943 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1944 }
1945 
1946 static void disk_release_events(struct gendisk *disk)
1947 {
1948 	/* the block count should be 1 from disk_del_events() */
1949 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1950 	kfree(disk->ev);
1951 }
1952