1 /* 2 * gendisk handling 3 */ 4 5 #include <linux/module.h> 6 #include <linux/fs.h> 7 #include <linux/genhd.h> 8 #include <linux/kdev_t.h> 9 #include <linux/kernel.h> 10 #include <linux/blkdev.h> 11 #include <linux/init.h> 12 #include <linux/spinlock.h> 13 #include <linux/proc_fs.h> 14 #include <linux/seq_file.h> 15 #include <linux/slab.h> 16 #include <linux/kmod.h> 17 #include <linux/kobj_map.h> 18 #include <linux/buffer_head.h> 19 #include <linux/mutex.h> 20 #include <linux/idr.h> 21 #include <linux/log2.h> 22 #include <linux/ctype.h> 23 24 #include "blk.h" 25 26 static DEFINE_MUTEX(block_class_lock); 27 struct kobject *block_depr; 28 29 /* for extended dynamic devt allocation, currently only one major is used */ 30 #define MAX_EXT_DEVT (1 << MINORBITS) 31 32 /* For extended devt allocation. ext_devt_mutex prevents look up 33 * results from going away underneath its user. 34 */ 35 static DEFINE_MUTEX(ext_devt_mutex); 36 static DEFINE_IDR(ext_devt_idr); 37 38 static struct device_type disk_type; 39 40 static void disk_add_events(struct gendisk *disk); 41 static void disk_del_events(struct gendisk *disk); 42 static void disk_release_events(struct gendisk *disk); 43 44 /** 45 * disk_get_part - get partition 46 * @disk: disk to look partition from 47 * @partno: partition number 48 * 49 * Look for partition @partno from @disk. If found, increment 50 * reference count and return it. 51 * 52 * CONTEXT: 53 * Don't care. 54 * 55 * RETURNS: 56 * Pointer to the found partition on success, NULL if not found. 57 */ 58 struct hd_struct *disk_get_part(struct gendisk *disk, int partno) 59 { 60 struct hd_struct *part = NULL; 61 struct disk_part_tbl *ptbl; 62 63 if (unlikely(partno < 0)) 64 return NULL; 65 66 rcu_read_lock(); 67 68 ptbl = rcu_dereference(disk->part_tbl); 69 if (likely(partno < ptbl->len)) { 70 part = rcu_dereference(ptbl->part[partno]); 71 if (part) 72 get_device(part_to_dev(part)); 73 } 74 75 rcu_read_unlock(); 76 77 return part; 78 } 79 EXPORT_SYMBOL_GPL(disk_get_part); 80 81 /** 82 * disk_part_iter_init - initialize partition iterator 83 * @piter: iterator to initialize 84 * @disk: disk to iterate over 85 * @flags: DISK_PITER_* flags 86 * 87 * Initialize @piter so that it iterates over partitions of @disk. 88 * 89 * CONTEXT: 90 * Don't care. 91 */ 92 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, 93 unsigned int flags) 94 { 95 struct disk_part_tbl *ptbl; 96 97 rcu_read_lock(); 98 ptbl = rcu_dereference(disk->part_tbl); 99 100 piter->disk = disk; 101 piter->part = NULL; 102 103 if (flags & DISK_PITER_REVERSE) 104 piter->idx = ptbl->len - 1; 105 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0)) 106 piter->idx = 0; 107 else 108 piter->idx = 1; 109 110 piter->flags = flags; 111 112 rcu_read_unlock(); 113 } 114 EXPORT_SYMBOL_GPL(disk_part_iter_init); 115 116 /** 117 * disk_part_iter_next - proceed iterator to the next partition and return it 118 * @piter: iterator of interest 119 * 120 * Proceed @piter to the next partition and return it. 121 * 122 * CONTEXT: 123 * Don't care. 124 */ 125 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter) 126 { 127 struct disk_part_tbl *ptbl; 128 int inc, end; 129 130 /* put the last partition */ 131 disk_put_part(piter->part); 132 piter->part = NULL; 133 134 /* get part_tbl */ 135 rcu_read_lock(); 136 ptbl = rcu_dereference(piter->disk->part_tbl); 137 138 /* determine iteration parameters */ 139 if (piter->flags & DISK_PITER_REVERSE) { 140 inc = -1; 141 if (piter->flags & (DISK_PITER_INCL_PART0 | 142 DISK_PITER_INCL_EMPTY_PART0)) 143 end = -1; 144 else 145 end = 0; 146 } else { 147 inc = 1; 148 end = ptbl->len; 149 } 150 151 /* iterate to the next partition */ 152 for (; piter->idx != end; piter->idx += inc) { 153 struct hd_struct *part; 154 155 part = rcu_dereference(ptbl->part[piter->idx]); 156 if (!part) 157 continue; 158 if (!part->nr_sects && 159 !(piter->flags & DISK_PITER_INCL_EMPTY) && 160 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 && 161 piter->idx == 0)) 162 continue; 163 164 get_device(part_to_dev(part)); 165 piter->part = part; 166 piter->idx += inc; 167 break; 168 } 169 170 rcu_read_unlock(); 171 172 return piter->part; 173 } 174 EXPORT_SYMBOL_GPL(disk_part_iter_next); 175 176 /** 177 * disk_part_iter_exit - finish up partition iteration 178 * @piter: iter of interest 179 * 180 * Called when iteration is over. Cleans up @piter. 181 * 182 * CONTEXT: 183 * Don't care. 184 */ 185 void disk_part_iter_exit(struct disk_part_iter *piter) 186 { 187 disk_put_part(piter->part); 188 piter->part = NULL; 189 } 190 EXPORT_SYMBOL_GPL(disk_part_iter_exit); 191 192 static inline int sector_in_part(struct hd_struct *part, sector_t sector) 193 { 194 return part->start_sect <= sector && 195 sector < part->start_sect + part->nr_sects; 196 } 197 198 /** 199 * disk_map_sector_rcu - map sector to partition 200 * @disk: gendisk of interest 201 * @sector: sector to map 202 * 203 * Find out which partition @sector maps to on @disk. This is 204 * primarily used for stats accounting. 205 * 206 * CONTEXT: 207 * RCU read locked. The returned partition pointer is valid only 208 * while preemption is disabled. 209 * 210 * RETURNS: 211 * Found partition on success, part0 is returned if no partition matches 212 */ 213 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector) 214 { 215 struct disk_part_tbl *ptbl; 216 struct hd_struct *part; 217 int i; 218 219 ptbl = rcu_dereference(disk->part_tbl); 220 221 part = rcu_dereference(ptbl->last_lookup); 222 if (part && sector_in_part(part, sector)) 223 return part; 224 225 for (i = 1; i < ptbl->len; i++) { 226 part = rcu_dereference(ptbl->part[i]); 227 228 if (part && sector_in_part(part, sector)) { 229 rcu_assign_pointer(ptbl->last_lookup, part); 230 return part; 231 } 232 } 233 return &disk->part0; 234 } 235 EXPORT_SYMBOL_GPL(disk_map_sector_rcu); 236 237 /* 238 * Can be deleted altogether. Later. 239 * 240 */ 241 static struct blk_major_name { 242 struct blk_major_name *next; 243 int major; 244 char name[16]; 245 } *major_names[BLKDEV_MAJOR_HASH_SIZE]; 246 247 /* index in the above - for now: assume no multimajor ranges */ 248 static inline int major_to_index(unsigned major) 249 { 250 return major % BLKDEV_MAJOR_HASH_SIZE; 251 } 252 253 #ifdef CONFIG_PROC_FS 254 void blkdev_show(struct seq_file *seqf, off_t offset) 255 { 256 struct blk_major_name *dp; 257 258 if (offset < BLKDEV_MAJOR_HASH_SIZE) { 259 mutex_lock(&block_class_lock); 260 for (dp = major_names[offset]; dp; dp = dp->next) 261 seq_printf(seqf, "%3d %s\n", dp->major, dp->name); 262 mutex_unlock(&block_class_lock); 263 } 264 } 265 #endif /* CONFIG_PROC_FS */ 266 267 /** 268 * register_blkdev - register a new block device 269 * 270 * @major: the requested major device number [1..255]. If @major=0, try to 271 * allocate any unused major number. 272 * @name: the name of the new block device as a zero terminated string 273 * 274 * The @name must be unique within the system. 275 * 276 * The return value depends on the @major input parameter. 277 * - if a major device number was requested in range [1..255] then the 278 * function returns zero on success, or a negative error code 279 * - if any unused major number was requested with @major=0 parameter 280 * then the return value is the allocated major number in range 281 * [1..255] or a negative error code otherwise 282 */ 283 int register_blkdev(unsigned int major, const char *name) 284 { 285 struct blk_major_name **n, *p; 286 int index, ret = 0; 287 288 mutex_lock(&block_class_lock); 289 290 /* temporary */ 291 if (major == 0) { 292 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { 293 if (major_names[index] == NULL) 294 break; 295 } 296 297 if (index == 0) { 298 printk("register_blkdev: failed to get major for %s\n", 299 name); 300 ret = -EBUSY; 301 goto out; 302 } 303 major = index; 304 ret = major; 305 } 306 307 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); 308 if (p == NULL) { 309 ret = -ENOMEM; 310 goto out; 311 } 312 313 p->major = major; 314 strlcpy(p->name, name, sizeof(p->name)); 315 p->next = NULL; 316 index = major_to_index(major); 317 318 for (n = &major_names[index]; *n; n = &(*n)->next) { 319 if ((*n)->major == major) 320 break; 321 } 322 if (!*n) 323 *n = p; 324 else 325 ret = -EBUSY; 326 327 if (ret < 0) { 328 printk("register_blkdev: cannot get major %d for %s\n", 329 major, name); 330 kfree(p); 331 } 332 out: 333 mutex_unlock(&block_class_lock); 334 return ret; 335 } 336 337 EXPORT_SYMBOL(register_blkdev); 338 339 void unregister_blkdev(unsigned int major, const char *name) 340 { 341 struct blk_major_name **n; 342 struct blk_major_name *p = NULL; 343 int index = major_to_index(major); 344 345 mutex_lock(&block_class_lock); 346 for (n = &major_names[index]; *n; n = &(*n)->next) 347 if ((*n)->major == major) 348 break; 349 if (!*n || strcmp((*n)->name, name)) { 350 WARN_ON(1); 351 } else { 352 p = *n; 353 *n = p->next; 354 } 355 mutex_unlock(&block_class_lock); 356 kfree(p); 357 } 358 359 EXPORT_SYMBOL(unregister_blkdev); 360 361 static struct kobj_map *bdev_map; 362 363 /** 364 * blk_mangle_minor - scatter minor numbers apart 365 * @minor: minor number to mangle 366 * 367 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT 368 * is enabled. Mangling twice gives the original value. 369 * 370 * RETURNS: 371 * Mangled value. 372 * 373 * CONTEXT: 374 * Don't care. 375 */ 376 static int blk_mangle_minor(int minor) 377 { 378 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT 379 int i; 380 381 for (i = 0; i < MINORBITS / 2; i++) { 382 int low = minor & (1 << i); 383 int high = minor & (1 << (MINORBITS - 1 - i)); 384 int distance = MINORBITS - 1 - 2 * i; 385 386 minor ^= low | high; /* clear both bits */ 387 low <<= distance; /* swap the positions */ 388 high >>= distance; 389 minor |= low | high; /* and set */ 390 } 391 #endif 392 return minor; 393 } 394 395 /** 396 * blk_alloc_devt - allocate a dev_t for a partition 397 * @part: partition to allocate dev_t for 398 * @devt: out parameter for resulting dev_t 399 * 400 * Allocate a dev_t for block device. 401 * 402 * RETURNS: 403 * 0 on success, allocated dev_t is returned in *@devt. -errno on 404 * failure. 405 * 406 * CONTEXT: 407 * Might sleep. 408 */ 409 int blk_alloc_devt(struct hd_struct *part, dev_t *devt) 410 { 411 struct gendisk *disk = part_to_disk(part); 412 int idx, rc; 413 414 /* in consecutive minor range? */ 415 if (part->partno < disk->minors) { 416 *devt = MKDEV(disk->major, disk->first_minor + part->partno); 417 return 0; 418 } 419 420 /* allocate ext devt */ 421 do { 422 if (!idr_pre_get(&ext_devt_idr, GFP_KERNEL)) 423 return -ENOMEM; 424 rc = idr_get_new(&ext_devt_idr, part, &idx); 425 } while (rc == -EAGAIN); 426 427 if (rc) 428 return rc; 429 430 if (idx > MAX_EXT_DEVT) { 431 idr_remove(&ext_devt_idr, idx); 432 return -EBUSY; 433 } 434 435 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx)); 436 return 0; 437 } 438 439 /** 440 * blk_free_devt - free a dev_t 441 * @devt: dev_t to free 442 * 443 * Free @devt which was allocated using blk_alloc_devt(). 444 * 445 * CONTEXT: 446 * Might sleep. 447 */ 448 void blk_free_devt(dev_t devt) 449 { 450 might_sleep(); 451 452 if (devt == MKDEV(0, 0)) 453 return; 454 455 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 456 mutex_lock(&ext_devt_mutex); 457 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 458 mutex_unlock(&ext_devt_mutex); 459 } 460 } 461 462 static char *bdevt_str(dev_t devt, char *buf) 463 { 464 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { 465 char tbuf[BDEVT_SIZE]; 466 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); 467 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); 468 } else 469 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); 470 471 return buf; 472 } 473 474 /* 475 * Register device numbers dev..(dev+range-1) 476 * range must be nonzero 477 * The hash chain is sorted on range, so that subranges can override. 478 */ 479 void blk_register_region(dev_t devt, unsigned long range, struct module *module, 480 struct kobject *(*probe)(dev_t, int *, void *), 481 int (*lock)(dev_t, void *), void *data) 482 { 483 kobj_map(bdev_map, devt, range, module, probe, lock, data); 484 } 485 486 EXPORT_SYMBOL(blk_register_region); 487 488 void blk_unregister_region(dev_t devt, unsigned long range) 489 { 490 kobj_unmap(bdev_map, devt, range); 491 } 492 493 EXPORT_SYMBOL(blk_unregister_region); 494 495 static struct kobject *exact_match(dev_t devt, int *partno, void *data) 496 { 497 struct gendisk *p = data; 498 499 return &disk_to_dev(p)->kobj; 500 } 501 502 static int exact_lock(dev_t devt, void *data) 503 { 504 struct gendisk *p = data; 505 506 if (!get_disk(p)) 507 return -1; 508 return 0; 509 } 510 511 void register_disk(struct gendisk *disk) 512 { 513 struct device *ddev = disk_to_dev(disk); 514 struct block_device *bdev; 515 struct disk_part_iter piter; 516 struct hd_struct *part; 517 int err; 518 519 ddev->parent = disk->driverfs_dev; 520 521 dev_set_name(ddev, disk->disk_name); 522 523 /* delay uevents, until we scanned partition table */ 524 dev_set_uevent_suppress(ddev, 1); 525 526 if (device_add(ddev)) 527 return; 528 if (!sysfs_deprecated) { 529 err = sysfs_create_link(block_depr, &ddev->kobj, 530 kobject_name(&ddev->kobj)); 531 if (err) { 532 device_del(ddev); 533 return; 534 } 535 } 536 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj); 537 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); 538 539 /* No minors to use for partitions */ 540 if (!disk_part_scan_enabled(disk)) 541 goto exit; 542 543 /* No such device (e.g., media were just removed) */ 544 if (!get_capacity(disk)) 545 goto exit; 546 547 bdev = bdget_disk(disk, 0); 548 if (!bdev) 549 goto exit; 550 551 bdev->bd_invalidated = 1; 552 err = blkdev_get(bdev, FMODE_READ, NULL); 553 if (err < 0) 554 goto exit; 555 blkdev_put(bdev, FMODE_READ); 556 557 exit: 558 /* announce disk after possible partitions are created */ 559 dev_set_uevent_suppress(ddev, 0); 560 kobject_uevent(&ddev->kobj, KOBJ_ADD); 561 562 /* announce possible partitions */ 563 disk_part_iter_init(&piter, disk, 0); 564 while ((part = disk_part_iter_next(&piter))) 565 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD); 566 disk_part_iter_exit(&piter); 567 } 568 569 /** 570 * add_disk - add partitioning information to kernel list 571 * @disk: per-device partitioning information 572 * 573 * This function registers the partitioning information in @disk 574 * with the kernel. 575 * 576 * FIXME: error handling 577 */ 578 void add_disk(struct gendisk *disk) 579 { 580 struct backing_dev_info *bdi; 581 dev_t devt; 582 int retval; 583 584 /* minors == 0 indicates to use ext devt from part0 and should 585 * be accompanied with EXT_DEVT flag. Make sure all 586 * parameters make sense. 587 */ 588 WARN_ON(disk->minors && !(disk->major || disk->first_minor)); 589 WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT)); 590 591 disk->flags |= GENHD_FL_UP; 592 593 retval = blk_alloc_devt(&disk->part0, &devt); 594 if (retval) { 595 WARN_ON(1); 596 return; 597 } 598 disk_to_dev(disk)->devt = devt; 599 600 /* ->major and ->first_minor aren't supposed to be 601 * dereferenced from here on, but set them just in case. 602 */ 603 disk->major = MAJOR(devt); 604 disk->first_minor = MINOR(devt); 605 606 /* Register BDI before referencing it from bdev */ 607 bdi = &disk->queue->backing_dev_info; 608 bdi_register_dev(bdi, disk_devt(disk)); 609 610 blk_register_region(disk_devt(disk), disk->minors, NULL, 611 exact_match, exact_lock, disk); 612 register_disk(disk); 613 blk_register_queue(disk); 614 615 /* 616 * Take an extra ref on queue which will be put on disk_release() 617 * so that it sticks around as long as @disk is there. 618 */ 619 WARN_ON_ONCE(blk_get_queue(disk->queue)); 620 621 retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj, 622 "bdi"); 623 WARN_ON(retval); 624 625 disk_add_events(disk); 626 } 627 EXPORT_SYMBOL(add_disk); 628 629 void del_gendisk(struct gendisk *disk) 630 { 631 struct disk_part_iter piter; 632 struct hd_struct *part; 633 634 disk_del_events(disk); 635 636 /* invalidate stuff */ 637 disk_part_iter_init(&piter, disk, 638 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE); 639 while ((part = disk_part_iter_next(&piter))) { 640 invalidate_partition(disk, part->partno); 641 delete_partition(disk, part->partno); 642 } 643 disk_part_iter_exit(&piter); 644 645 invalidate_partition(disk, 0); 646 blk_free_devt(disk_to_dev(disk)->devt); 647 set_capacity(disk, 0); 648 disk->flags &= ~GENHD_FL_UP; 649 650 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); 651 bdi_unregister(&disk->queue->backing_dev_info); 652 blk_unregister_queue(disk); 653 blk_unregister_region(disk_devt(disk), disk->minors); 654 655 part_stat_set_all(&disk->part0, 0); 656 disk->part0.stamp = 0; 657 658 kobject_put(disk->part0.holder_dir); 659 kobject_put(disk->slave_dir); 660 disk->driverfs_dev = NULL; 661 if (!sysfs_deprecated) 662 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); 663 device_del(disk_to_dev(disk)); 664 } 665 EXPORT_SYMBOL(del_gendisk); 666 667 /** 668 * get_gendisk - get partitioning information for a given device 669 * @devt: device to get partitioning information for 670 * @partno: returned partition index 671 * 672 * This function gets the structure containing partitioning 673 * information for the given device @devt. 674 */ 675 struct gendisk *get_gendisk(dev_t devt, int *partno) 676 { 677 struct gendisk *disk = NULL; 678 679 if (MAJOR(devt) != BLOCK_EXT_MAJOR) { 680 struct kobject *kobj; 681 682 kobj = kobj_lookup(bdev_map, devt, partno); 683 if (kobj) 684 disk = dev_to_disk(kobj_to_dev(kobj)); 685 } else { 686 struct hd_struct *part; 687 688 mutex_lock(&ext_devt_mutex); 689 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 690 if (part && get_disk(part_to_disk(part))) { 691 *partno = part->partno; 692 disk = part_to_disk(part); 693 } 694 mutex_unlock(&ext_devt_mutex); 695 } 696 697 return disk; 698 } 699 EXPORT_SYMBOL(get_gendisk); 700 701 /** 702 * bdget_disk - do bdget() by gendisk and partition number 703 * @disk: gendisk of interest 704 * @partno: partition number 705 * 706 * Find partition @partno from @disk, do bdget() on it. 707 * 708 * CONTEXT: 709 * Don't care. 710 * 711 * RETURNS: 712 * Resulting block_device on success, NULL on failure. 713 */ 714 struct block_device *bdget_disk(struct gendisk *disk, int partno) 715 { 716 struct hd_struct *part; 717 struct block_device *bdev = NULL; 718 719 part = disk_get_part(disk, partno); 720 if (part) 721 bdev = bdget(part_devt(part)); 722 disk_put_part(part); 723 724 return bdev; 725 } 726 EXPORT_SYMBOL(bdget_disk); 727 728 /* 729 * print a full list of all partitions - intended for places where the root 730 * filesystem can't be mounted and thus to give the victim some idea of what 731 * went wrong 732 */ 733 void __init printk_all_partitions(void) 734 { 735 struct class_dev_iter iter; 736 struct device *dev; 737 738 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 739 while ((dev = class_dev_iter_next(&iter))) { 740 struct gendisk *disk = dev_to_disk(dev); 741 struct disk_part_iter piter; 742 struct hd_struct *part; 743 char name_buf[BDEVNAME_SIZE]; 744 char devt_buf[BDEVT_SIZE]; 745 u8 uuid[PARTITION_META_INFO_UUIDLTH * 2 + 1]; 746 747 /* 748 * Don't show empty devices or things that have been 749 * suppressed 750 */ 751 if (get_capacity(disk) == 0 || 752 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) 753 continue; 754 755 /* 756 * Note, unlike /proc/partitions, I am showing the 757 * numbers in hex - the same format as the root= 758 * option takes. 759 */ 760 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); 761 while ((part = disk_part_iter_next(&piter))) { 762 bool is_part0 = part == &disk->part0; 763 764 uuid[0] = 0; 765 if (part->info) 766 part_unpack_uuid(part->info->uuid, uuid); 767 768 printk("%s%s %10llu %s %s", is_part0 ? "" : " ", 769 bdevt_str(part_devt(part), devt_buf), 770 (unsigned long long)part->nr_sects >> 1, 771 disk_name(disk, part->partno, name_buf), uuid); 772 if (is_part0) { 773 if (disk->driverfs_dev != NULL && 774 disk->driverfs_dev->driver != NULL) 775 printk(" driver: %s\n", 776 disk->driverfs_dev->driver->name); 777 else 778 printk(" (driver?)\n"); 779 } else 780 printk("\n"); 781 } 782 disk_part_iter_exit(&piter); 783 } 784 class_dev_iter_exit(&iter); 785 } 786 787 #ifdef CONFIG_PROC_FS 788 /* iterator */ 789 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) 790 { 791 loff_t skip = *pos; 792 struct class_dev_iter *iter; 793 struct device *dev; 794 795 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 796 if (!iter) 797 return ERR_PTR(-ENOMEM); 798 799 seqf->private = iter; 800 class_dev_iter_init(iter, &block_class, NULL, &disk_type); 801 do { 802 dev = class_dev_iter_next(iter); 803 if (!dev) 804 return NULL; 805 } while (skip--); 806 807 return dev_to_disk(dev); 808 } 809 810 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) 811 { 812 struct device *dev; 813 814 (*pos)++; 815 dev = class_dev_iter_next(seqf->private); 816 if (dev) 817 return dev_to_disk(dev); 818 819 return NULL; 820 } 821 822 static void disk_seqf_stop(struct seq_file *seqf, void *v) 823 { 824 struct class_dev_iter *iter = seqf->private; 825 826 /* stop is called even after start failed :-( */ 827 if (iter) { 828 class_dev_iter_exit(iter); 829 kfree(iter); 830 } 831 } 832 833 static void *show_partition_start(struct seq_file *seqf, loff_t *pos) 834 { 835 static void *p; 836 837 p = disk_seqf_start(seqf, pos); 838 if (!IS_ERR_OR_NULL(p) && !*pos) 839 seq_puts(seqf, "major minor #blocks name\n\n"); 840 return p; 841 } 842 843 static int show_partition(struct seq_file *seqf, void *v) 844 { 845 struct gendisk *sgp = v; 846 struct disk_part_iter piter; 847 struct hd_struct *part; 848 char buf[BDEVNAME_SIZE]; 849 850 /* Don't show non-partitionable removeable devices or empty devices */ 851 if (!get_capacity(sgp) || (!disk_max_parts(sgp) && 852 (sgp->flags & GENHD_FL_REMOVABLE))) 853 return 0; 854 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) 855 return 0; 856 857 /* show the full disk and all non-0 size partitions of it */ 858 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0); 859 while ((part = disk_part_iter_next(&piter))) 860 seq_printf(seqf, "%4d %7d %10llu %s\n", 861 MAJOR(part_devt(part)), MINOR(part_devt(part)), 862 (unsigned long long)part->nr_sects >> 1, 863 disk_name(sgp, part->partno, buf)); 864 disk_part_iter_exit(&piter); 865 866 return 0; 867 } 868 869 static const struct seq_operations partitions_op = { 870 .start = show_partition_start, 871 .next = disk_seqf_next, 872 .stop = disk_seqf_stop, 873 .show = show_partition 874 }; 875 876 static int partitions_open(struct inode *inode, struct file *file) 877 { 878 return seq_open(file, &partitions_op); 879 } 880 881 static const struct file_operations proc_partitions_operations = { 882 .open = partitions_open, 883 .read = seq_read, 884 .llseek = seq_lseek, 885 .release = seq_release, 886 }; 887 #endif 888 889 890 static struct kobject *base_probe(dev_t devt, int *partno, void *data) 891 { 892 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) 893 /* Make old-style 2.4 aliases work */ 894 request_module("block-major-%d", MAJOR(devt)); 895 return NULL; 896 } 897 898 static int __init genhd_device_init(void) 899 { 900 int error; 901 902 block_class.dev_kobj = sysfs_dev_block_kobj; 903 error = class_register(&block_class); 904 if (unlikely(error)) 905 return error; 906 bdev_map = kobj_map_init(base_probe, &block_class_lock); 907 blk_dev_init(); 908 909 register_blkdev(BLOCK_EXT_MAJOR, "blkext"); 910 911 /* create top-level block dir */ 912 if (!sysfs_deprecated) 913 block_depr = kobject_create_and_add("block", NULL); 914 return 0; 915 } 916 917 subsys_initcall(genhd_device_init); 918 919 static ssize_t alias_show(struct device *dev, 920 struct device_attribute *attr, char *buf) 921 { 922 struct gendisk *disk = dev_to_disk(dev); 923 ssize_t ret = 0; 924 925 if (disk->alias) 926 ret = snprintf(buf, ALIAS_LEN, "%s\n", disk->alias); 927 return ret; 928 } 929 930 static ssize_t alias_store(struct device *dev, struct device_attribute *attr, 931 const char *buf, size_t count) 932 { 933 struct gendisk *disk = dev_to_disk(dev); 934 char *alias; 935 char *envp[] = { NULL, NULL }; 936 unsigned char c; 937 int i; 938 ssize_t ret = count; 939 940 if (!count) 941 return -EINVAL; 942 943 if (count >= ALIAS_LEN) { 944 printk(KERN_ERR "alias: alias is too long\n"); 945 return -EINVAL; 946 } 947 948 /* Validation check */ 949 for (i = 0; i < count; i++) { 950 c = buf[i]; 951 if (i == count - 1 && c == '\n') 952 break; 953 if (!isalnum(c) && c != '_' && c != '-') { 954 printk(KERN_ERR "alias: invalid alias\n"); 955 return -EINVAL; 956 } 957 } 958 959 if (disk->alias) { 960 printk(KERN_INFO "alias: %s is already assigned (%s)\n", 961 disk->disk_name, disk->alias); 962 return -EINVAL; 963 } 964 965 alias = kasprintf(GFP_KERNEL, "%s", buf); 966 if (!alias) 967 return -ENOMEM; 968 969 if (alias[count - 1] == '\n') 970 alias[count - 1] = '\0'; 971 972 envp[0] = kasprintf(GFP_KERNEL, "ALIAS=%s", alias); 973 if (!envp[0]) { 974 kfree(alias); 975 return -ENOMEM; 976 } 977 978 disk->alias = alias; 979 printk(KERN_INFO "alias: assigned %s to %s\n", alias, disk->disk_name); 980 981 kobject_uevent_env(&dev->kobj, KOBJ_ADD, envp); 982 983 kfree(envp[0]); 984 return ret; 985 } 986 987 static ssize_t disk_range_show(struct device *dev, 988 struct device_attribute *attr, char *buf) 989 { 990 struct gendisk *disk = dev_to_disk(dev); 991 992 return sprintf(buf, "%d\n", disk->minors); 993 } 994 995 static ssize_t disk_ext_range_show(struct device *dev, 996 struct device_attribute *attr, char *buf) 997 { 998 struct gendisk *disk = dev_to_disk(dev); 999 1000 return sprintf(buf, "%d\n", disk_max_parts(disk)); 1001 } 1002 1003 static ssize_t disk_removable_show(struct device *dev, 1004 struct device_attribute *attr, char *buf) 1005 { 1006 struct gendisk *disk = dev_to_disk(dev); 1007 1008 return sprintf(buf, "%d\n", 1009 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); 1010 } 1011 1012 static ssize_t disk_ro_show(struct device *dev, 1013 struct device_attribute *attr, char *buf) 1014 { 1015 struct gendisk *disk = dev_to_disk(dev); 1016 1017 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); 1018 } 1019 1020 static ssize_t disk_capability_show(struct device *dev, 1021 struct device_attribute *attr, char *buf) 1022 { 1023 struct gendisk *disk = dev_to_disk(dev); 1024 1025 return sprintf(buf, "%x\n", disk->flags); 1026 } 1027 1028 static ssize_t disk_alignment_offset_show(struct device *dev, 1029 struct device_attribute *attr, 1030 char *buf) 1031 { 1032 struct gendisk *disk = dev_to_disk(dev); 1033 1034 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); 1035 } 1036 1037 static ssize_t disk_discard_alignment_show(struct device *dev, 1038 struct device_attribute *attr, 1039 char *buf) 1040 { 1041 struct gendisk *disk = dev_to_disk(dev); 1042 1043 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); 1044 } 1045 1046 static DEVICE_ATTR(alias, S_IRUGO|S_IWUSR, alias_show, alias_store); 1047 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL); 1048 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL); 1049 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL); 1050 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL); 1051 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL); 1052 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL); 1053 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show, 1054 NULL); 1055 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL); 1056 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL); 1057 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL); 1058 #ifdef CONFIG_FAIL_MAKE_REQUEST 1059 static struct device_attribute dev_attr_fail = 1060 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store); 1061 #endif 1062 #ifdef CONFIG_FAIL_IO_TIMEOUT 1063 static struct device_attribute dev_attr_fail_timeout = 1064 __ATTR(io-timeout-fail, S_IRUGO|S_IWUSR, part_timeout_show, 1065 part_timeout_store); 1066 #endif 1067 1068 static struct attribute *disk_attrs[] = { 1069 &dev_attr_alias.attr, 1070 &dev_attr_range.attr, 1071 &dev_attr_ext_range.attr, 1072 &dev_attr_removable.attr, 1073 &dev_attr_ro.attr, 1074 &dev_attr_size.attr, 1075 &dev_attr_alignment_offset.attr, 1076 &dev_attr_discard_alignment.attr, 1077 &dev_attr_capability.attr, 1078 &dev_attr_stat.attr, 1079 &dev_attr_inflight.attr, 1080 #ifdef CONFIG_FAIL_MAKE_REQUEST 1081 &dev_attr_fail.attr, 1082 #endif 1083 #ifdef CONFIG_FAIL_IO_TIMEOUT 1084 &dev_attr_fail_timeout.attr, 1085 #endif 1086 NULL 1087 }; 1088 1089 static struct attribute_group disk_attr_group = { 1090 .attrs = disk_attrs, 1091 }; 1092 1093 static const struct attribute_group *disk_attr_groups[] = { 1094 &disk_attr_group, 1095 NULL 1096 }; 1097 1098 /** 1099 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way 1100 * @disk: disk to replace part_tbl for 1101 * @new_ptbl: new part_tbl to install 1102 * 1103 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The 1104 * original ptbl is freed using RCU callback. 1105 * 1106 * LOCKING: 1107 * Matching bd_mutx locked. 1108 */ 1109 static void disk_replace_part_tbl(struct gendisk *disk, 1110 struct disk_part_tbl *new_ptbl) 1111 { 1112 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1113 1114 rcu_assign_pointer(disk->part_tbl, new_ptbl); 1115 1116 if (old_ptbl) { 1117 rcu_assign_pointer(old_ptbl->last_lookup, NULL); 1118 kfree_rcu(old_ptbl, rcu_head); 1119 } 1120 } 1121 1122 /** 1123 * disk_expand_part_tbl - expand disk->part_tbl 1124 * @disk: disk to expand part_tbl for 1125 * @partno: expand such that this partno can fit in 1126 * 1127 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl 1128 * uses RCU to allow unlocked dereferencing for stats and other stuff. 1129 * 1130 * LOCKING: 1131 * Matching bd_mutex locked, might sleep. 1132 * 1133 * RETURNS: 1134 * 0 on success, -errno on failure. 1135 */ 1136 int disk_expand_part_tbl(struct gendisk *disk, int partno) 1137 { 1138 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1139 struct disk_part_tbl *new_ptbl; 1140 int len = old_ptbl ? old_ptbl->len : 0; 1141 int target = partno + 1; 1142 size_t size; 1143 int i; 1144 1145 /* disk_max_parts() is zero during initialization, ignore if so */ 1146 if (disk_max_parts(disk) && target > disk_max_parts(disk)) 1147 return -EINVAL; 1148 1149 if (target <= len) 1150 return 0; 1151 1152 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]); 1153 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id); 1154 if (!new_ptbl) 1155 return -ENOMEM; 1156 1157 new_ptbl->len = target; 1158 1159 for (i = 0; i < len; i++) 1160 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]); 1161 1162 disk_replace_part_tbl(disk, new_ptbl); 1163 return 0; 1164 } 1165 1166 static void disk_release(struct device *dev) 1167 { 1168 struct gendisk *disk = dev_to_disk(dev); 1169 1170 disk_release_events(disk); 1171 kfree(disk->random); 1172 disk_replace_part_tbl(disk, NULL); 1173 free_part_stats(&disk->part0); 1174 free_part_info(&disk->part0); 1175 if (disk->queue) 1176 blk_put_queue(disk->queue); 1177 kfree(disk); 1178 } 1179 struct class block_class = { 1180 .name = "block", 1181 }; 1182 1183 static char *block_devnode(struct device *dev, mode_t *mode) 1184 { 1185 struct gendisk *disk = dev_to_disk(dev); 1186 1187 if (disk->devnode) 1188 return disk->devnode(disk, mode); 1189 return NULL; 1190 } 1191 1192 static struct device_type disk_type = { 1193 .name = "disk", 1194 .groups = disk_attr_groups, 1195 .release = disk_release, 1196 .devnode = block_devnode, 1197 }; 1198 1199 #ifdef CONFIG_PROC_FS 1200 /* 1201 * aggregate disk stat collector. Uses the same stats that the sysfs 1202 * entries do, above, but makes them available through one seq_file. 1203 * 1204 * The output looks suspiciously like /proc/partitions with a bunch of 1205 * extra fields. 1206 */ 1207 static int diskstats_show(struct seq_file *seqf, void *v) 1208 { 1209 struct gendisk *gp = v; 1210 struct disk_part_iter piter; 1211 struct hd_struct *hd; 1212 char buf[BDEVNAME_SIZE]; 1213 int cpu; 1214 1215 /* 1216 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) 1217 seq_puts(seqf, "major minor name" 1218 " rio rmerge rsect ruse wio wmerge " 1219 "wsect wuse running use aveq" 1220 "\n\n"); 1221 */ 1222 1223 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0); 1224 while ((hd = disk_part_iter_next(&piter))) { 1225 cpu = part_stat_lock(); 1226 part_round_stats(cpu, hd); 1227 part_stat_unlock(); 1228 seq_printf(seqf, "%4d %7d %s %lu %lu %lu " 1229 "%u %lu %lu %lu %u %u %u %u\n", 1230 MAJOR(part_devt(hd)), MINOR(part_devt(hd)), 1231 disk_name(gp, hd->partno, buf), 1232 part_stat_read(hd, ios[READ]), 1233 part_stat_read(hd, merges[READ]), 1234 part_stat_read(hd, sectors[READ]), 1235 jiffies_to_msecs(part_stat_read(hd, ticks[READ])), 1236 part_stat_read(hd, ios[WRITE]), 1237 part_stat_read(hd, merges[WRITE]), 1238 part_stat_read(hd, sectors[WRITE]), 1239 jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])), 1240 part_in_flight(hd), 1241 jiffies_to_msecs(part_stat_read(hd, io_ticks)), 1242 jiffies_to_msecs(part_stat_read(hd, time_in_queue)) 1243 ); 1244 } 1245 disk_part_iter_exit(&piter); 1246 1247 return 0; 1248 } 1249 1250 static const struct seq_operations diskstats_op = { 1251 .start = disk_seqf_start, 1252 .next = disk_seqf_next, 1253 .stop = disk_seqf_stop, 1254 .show = diskstats_show 1255 }; 1256 1257 static int diskstats_open(struct inode *inode, struct file *file) 1258 { 1259 return seq_open(file, &diskstats_op); 1260 } 1261 1262 static const struct file_operations proc_diskstats_operations = { 1263 .open = diskstats_open, 1264 .read = seq_read, 1265 .llseek = seq_lseek, 1266 .release = seq_release, 1267 }; 1268 1269 static int __init proc_genhd_init(void) 1270 { 1271 proc_create("diskstats", 0, NULL, &proc_diskstats_operations); 1272 proc_create("partitions", 0, NULL, &proc_partitions_operations); 1273 return 0; 1274 } 1275 module_init(proc_genhd_init); 1276 #endif /* CONFIG_PROC_FS */ 1277 1278 dev_t blk_lookup_devt(const char *name, int partno) 1279 { 1280 dev_t devt = MKDEV(0, 0); 1281 struct class_dev_iter iter; 1282 struct device *dev; 1283 1284 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1285 while ((dev = class_dev_iter_next(&iter))) { 1286 struct gendisk *disk = dev_to_disk(dev); 1287 struct hd_struct *part; 1288 1289 if (strcmp(dev_name(dev), name)) 1290 continue; 1291 1292 if (partno < disk->minors) { 1293 /* We need to return the right devno, even 1294 * if the partition doesn't exist yet. 1295 */ 1296 devt = MKDEV(MAJOR(dev->devt), 1297 MINOR(dev->devt) + partno); 1298 break; 1299 } 1300 part = disk_get_part(disk, partno); 1301 if (part) { 1302 devt = part_devt(part); 1303 disk_put_part(part); 1304 break; 1305 } 1306 disk_put_part(part); 1307 } 1308 class_dev_iter_exit(&iter); 1309 return devt; 1310 } 1311 EXPORT_SYMBOL(blk_lookup_devt); 1312 1313 struct gendisk *alloc_disk(int minors) 1314 { 1315 return alloc_disk_node(minors, -1); 1316 } 1317 EXPORT_SYMBOL(alloc_disk); 1318 1319 struct gendisk *alloc_disk_node(int minors, int node_id) 1320 { 1321 struct gendisk *disk; 1322 1323 disk = kmalloc_node(sizeof(struct gendisk), 1324 GFP_KERNEL | __GFP_ZERO, node_id); 1325 if (disk) { 1326 if (!init_part_stats(&disk->part0)) { 1327 kfree(disk); 1328 return NULL; 1329 } 1330 disk->node_id = node_id; 1331 if (disk_expand_part_tbl(disk, 0)) { 1332 free_part_stats(&disk->part0); 1333 kfree(disk); 1334 return NULL; 1335 } 1336 disk->part_tbl->part[0] = &disk->part0; 1337 1338 hd_ref_init(&disk->part0); 1339 1340 disk->minors = minors; 1341 rand_initialize_disk(disk); 1342 disk_to_dev(disk)->class = &block_class; 1343 disk_to_dev(disk)->type = &disk_type; 1344 device_initialize(disk_to_dev(disk)); 1345 } 1346 return disk; 1347 } 1348 EXPORT_SYMBOL(alloc_disk_node); 1349 1350 struct kobject *get_disk(struct gendisk *disk) 1351 { 1352 struct module *owner; 1353 struct kobject *kobj; 1354 1355 if (!disk->fops) 1356 return NULL; 1357 owner = disk->fops->owner; 1358 if (owner && !try_module_get(owner)) 1359 return NULL; 1360 kobj = kobject_get(&disk_to_dev(disk)->kobj); 1361 if (kobj == NULL) { 1362 module_put(owner); 1363 return NULL; 1364 } 1365 return kobj; 1366 1367 } 1368 1369 EXPORT_SYMBOL(get_disk); 1370 1371 void put_disk(struct gendisk *disk) 1372 { 1373 if (disk) 1374 kobject_put(&disk_to_dev(disk)->kobj); 1375 } 1376 1377 EXPORT_SYMBOL(put_disk); 1378 1379 static void set_disk_ro_uevent(struct gendisk *gd, int ro) 1380 { 1381 char event[] = "DISK_RO=1"; 1382 char *envp[] = { event, NULL }; 1383 1384 if (!ro) 1385 event[8] = '0'; 1386 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); 1387 } 1388 1389 void set_device_ro(struct block_device *bdev, int flag) 1390 { 1391 bdev->bd_part->policy = flag; 1392 } 1393 1394 EXPORT_SYMBOL(set_device_ro); 1395 1396 void set_disk_ro(struct gendisk *disk, int flag) 1397 { 1398 struct disk_part_iter piter; 1399 struct hd_struct *part; 1400 1401 if (disk->part0.policy != flag) { 1402 set_disk_ro_uevent(disk, flag); 1403 disk->part0.policy = flag; 1404 } 1405 1406 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 1407 while ((part = disk_part_iter_next(&piter))) 1408 part->policy = flag; 1409 disk_part_iter_exit(&piter); 1410 } 1411 1412 EXPORT_SYMBOL(set_disk_ro); 1413 1414 int bdev_read_only(struct block_device *bdev) 1415 { 1416 if (!bdev) 1417 return 0; 1418 return bdev->bd_part->policy; 1419 } 1420 1421 EXPORT_SYMBOL(bdev_read_only); 1422 1423 int invalidate_partition(struct gendisk *disk, int partno) 1424 { 1425 int res = 0; 1426 struct block_device *bdev = bdget_disk(disk, partno); 1427 if (bdev) { 1428 fsync_bdev(bdev); 1429 res = __invalidate_device(bdev, true); 1430 bdput(bdev); 1431 } 1432 return res; 1433 } 1434 1435 EXPORT_SYMBOL(invalidate_partition); 1436 1437 /* 1438 * Disk events - monitor disk events like media change and eject request. 1439 */ 1440 struct disk_events { 1441 struct list_head node; /* all disk_event's */ 1442 struct gendisk *disk; /* the associated disk */ 1443 spinlock_t lock; 1444 1445 struct mutex block_mutex; /* protects blocking */ 1446 int block; /* event blocking depth */ 1447 unsigned int pending; /* events already sent out */ 1448 unsigned int clearing; /* events being cleared */ 1449 1450 long poll_msecs; /* interval, -1 for default */ 1451 struct delayed_work dwork; 1452 }; 1453 1454 static const char *disk_events_strs[] = { 1455 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change", 1456 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request", 1457 }; 1458 1459 static char *disk_uevents[] = { 1460 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1", 1461 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1", 1462 }; 1463 1464 /* list of all disk_events */ 1465 static DEFINE_MUTEX(disk_events_mutex); 1466 static LIST_HEAD(disk_events); 1467 1468 /* disable in-kernel polling by default */ 1469 static unsigned long disk_events_dfl_poll_msecs = 0; 1470 1471 static unsigned long disk_events_poll_jiffies(struct gendisk *disk) 1472 { 1473 struct disk_events *ev = disk->ev; 1474 long intv_msecs = 0; 1475 1476 /* 1477 * If device-specific poll interval is set, always use it. If 1478 * the default is being used, poll iff there are events which 1479 * can't be monitored asynchronously. 1480 */ 1481 if (ev->poll_msecs >= 0) 1482 intv_msecs = ev->poll_msecs; 1483 else if (disk->events & ~disk->async_events) 1484 intv_msecs = disk_events_dfl_poll_msecs; 1485 1486 return msecs_to_jiffies(intv_msecs); 1487 } 1488 1489 /** 1490 * disk_block_events - block and flush disk event checking 1491 * @disk: disk to block events for 1492 * 1493 * On return from this function, it is guaranteed that event checking 1494 * isn't in progress and won't happen until unblocked by 1495 * disk_unblock_events(). Events blocking is counted and the actual 1496 * unblocking happens after the matching number of unblocks are done. 1497 * 1498 * Note that this intentionally does not block event checking from 1499 * disk_clear_events(). 1500 * 1501 * CONTEXT: 1502 * Might sleep. 1503 */ 1504 void disk_block_events(struct gendisk *disk) 1505 { 1506 struct disk_events *ev = disk->ev; 1507 unsigned long flags; 1508 bool cancel; 1509 1510 if (!ev) 1511 return; 1512 1513 /* 1514 * Outer mutex ensures that the first blocker completes canceling 1515 * the event work before further blockers are allowed to finish. 1516 */ 1517 mutex_lock(&ev->block_mutex); 1518 1519 spin_lock_irqsave(&ev->lock, flags); 1520 cancel = !ev->block++; 1521 spin_unlock_irqrestore(&ev->lock, flags); 1522 1523 if (cancel) 1524 cancel_delayed_work_sync(&disk->ev->dwork); 1525 1526 mutex_unlock(&ev->block_mutex); 1527 } 1528 1529 static void __disk_unblock_events(struct gendisk *disk, bool check_now) 1530 { 1531 struct disk_events *ev = disk->ev; 1532 unsigned long intv; 1533 unsigned long flags; 1534 1535 spin_lock_irqsave(&ev->lock, flags); 1536 1537 if (WARN_ON_ONCE(ev->block <= 0)) 1538 goto out_unlock; 1539 1540 if (--ev->block) 1541 goto out_unlock; 1542 1543 /* 1544 * Not exactly a latency critical operation, set poll timer 1545 * slack to 25% and kick event check. 1546 */ 1547 intv = disk_events_poll_jiffies(disk); 1548 set_timer_slack(&ev->dwork.timer, intv / 4); 1549 if (check_now) 1550 queue_delayed_work(system_nrt_wq, &ev->dwork, 0); 1551 else if (intv) 1552 queue_delayed_work(system_nrt_wq, &ev->dwork, intv); 1553 out_unlock: 1554 spin_unlock_irqrestore(&ev->lock, flags); 1555 } 1556 1557 /** 1558 * disk_unblock_events - unblock disk event checking 1559 * @disk: disk to unblock events for 1560 * 1561 * Undo disk_block_events(). When the block count reaches zero, it 1562 * starts events polling if configured. 1563 * 1564 * CONTEXT: 1565 * Don't care. Safe to call from irq context. 1566 */ 1567 void disk_unblock_events(struct gendisk *disk) 1568 { 1569 if (disk->ev) 1570 __disk_unblock_events(disk, false); 1571 } 1572 1573 /** 1574 * disk_flush_events - schedule immediate event checking and flushing 1575 * @disk: disk to check and flush events for 1576 * @mask: events to flush 1577 * 1578 * Schedule immediate event checking on @disk if not blocked. Events in 1579 * @mask are scheduled to be cleared from the driver. Note that this 1580 * doesn't clear the events from @disk->ev. 1581 * 1582 * CONTEXT: 1583 * If @mask is non-zero must be called with bdev->bd_mutex held. 1584 */ 1585 void disk_flush_events(struct gendisk *disk, unsigned int mask) 1586 { 1587 struct disk_events *ev = disk->ev; 1588 1589 if (!ev) 1590 return; 1591 1592 spin_lock_irq(&ev->lock); 1593 ev->clearing |= mask; 1594 if (!ev->block) { 1595 cancel_delayed_work(&ev->dwork); 1596 queue_delayed_work(system_nrt_wq, &ev->dwork, 0); 1597 } 1598 spin_unlock_irq(&ev->lock); 1599 } 1600 1601 /** 1602 * disk_clear_events - synchronously check, clear and return pending events 1603 * @disk: disk to fetch and clear events from 1604 * @mask: mask of events to be fetched and clearted 1605 * 1606 * Disk events are synchronously checked and pending events in @mask 1607 * are cleared and returned. This ignores the block count. 1608 * 1609 * CONTEXT: 1610 * Might sleep. 1611 */ 1612 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask) 1613 { 1614 const struct block_device_operations *bdops = disk->fops; 1615 struct disk_events *ev = disk->ev; 1616 unsigned int pending; 1617 1618 if (!ev) { 1619 /* for drivers still using the old ->media_changed method */ 1620 if ((mask & DISK_EVENT_MEDIA_CHANGE) && 1621 bdops->media_changed && bdops->media_changed(disk)) 1622 return DISK_EVENT_MEDIA_CHANGE; 1623 return 0; 1624 } 1625 1626 /* tell the workfn about the events being cleared */ 1627 spin_lock_irq(&ev->lock); 1628 ev->clearing |= mask; 1629 spin_unlock_irq(&ev->lock); 1630 1631 /* uncondtionally schedule event check and wait for it to finish */ 1632 disk_block_events(disk); 1633 queue_delayed_work(system_nrt_wq, &ev->dwork, 0); 1634 flush_delayed_work(&ev->dwork); 1635 __disk_unblock_events(disk, false); 1636 1637 /* then, fetch and clear pending events */ 1638 spin_lock_irq(&ev->lock); 1639 WARN_ON_ONCE(ev->clearing & mask); /* cleared by workfn */ 1640 pending = ev->pending & mask; 1641 ev->pending &= ~mask; 1642 spin_unlock_irq(&ev->lock); 1643 1644 return pending; 1645 } 1646 1647 static void disk_events_workfn(struct work_struct *work) 1648 { 1649 struct delayed_work *dwork = to_delayed_work(work); 1650 struct disk_events *ev = container_of(dwork, struct disk_events, dwork); 1651 struct gendisk *disk = ev->disk; 1652 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { }; 1653 unsigned int clearing = ev->clearing; 1654 unsigned int events; 1655 unsigned long intv; 1656 int nr_events = 0, i; 1657 1658 /* check events */ 1659 events = disk->fops->check_events(disk, clearing); 1660 1661 /* accumulate pending events and schedule next poll if necessary */ 1662 spin_lock_irq(&ev->lock); 1663 1664 events &= ~ev->pending; 1665 ev->pending |= events; 1666 ev->clearing &= ~clearing; 1667 1668 intv = disk_events_poll_jiffies(disk); 1669 if (!ev->block && intv) 1670 queue_delayed_work(system_nrt_wq, &ev->dwork, intv); 1671 1672 spin_unlock_irq(&ev->lock); 1673 1674 /* 1675 * Tell userland about new events. Only the events listed in 1676 * @disk->events are reported. Unlisted events are processed the 1677 * same internally but never get reported to userland. 1678 */ 1679 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++) 1680 if (events & disk->events & (1 << i)) 1681 envp[nr_events++] = disk_uevents[i]; 1682 1683 if (nr_events) 1684 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 1685 } 1686 1687 /* 1688 * A disk events enabled device has the following sysfs nodes under 1689 * its /sys/block/X/ directory. 1690 * 1691 * events : list of all supported events 1692 * events_async : list of events which can be detected w/o polling 1693 * events_poll_msecs : polling interval, 0: disable, -1: system default 1694 */ 1695 static ssize_t __disk_events_show(unsigned int events, char *buf) 1696 { 1697 const char *delim = ""; 1698 ssize_t pos = 0; 1699 int i; 1700 1701 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++) 1702 if (events & (1 << i)) { 1703 pos += sprintf(buf + pos, "%s%s", 1704 delim, disk_events_strs[i]); 1705 delim = " "; 1706 } 1707 if (pos) 1708 pos += sprintf(buf + pos, "\n"); 1709 return pos; 1710 } 1711 1712 static ssize_t disk_events_show(struct device *dev, 1713 struct device_attribute *attr, char *buf) 1714 { 1715 struct gendisk *disk = dev_to_disk(dev); 1716 1717 return __disk_events_show(disk->events, buf); 1718 } 1719 1720 static ssize_t disk_events_async_show(struct device *dev, 1721 struct device_attribute *attr, char *buf) 1722 { 1723 struct gendisk *disk = dev_to_disk(dev); 1724 1725 return __disk_events_show(disk->async_events, buf); 1726 } 1727 1728 static ssize_t disk_events_poll_msecs_show(struct device *dev, 1729 struct device_attribute *attr, 1730 char *buf) 1731 { 1732 struct gendisk *disk = dev_to_disk(dev); 1733 1734 return sprintf(buf, "%ld\n", disk->ev->poll_msecs); 1735 } 1736 1737 static ssize_t disk_events_poll_msecs_store(struct device *dev, 1738 struct device_attribute *attr, 1739 const char *buf, size_t count) 1740 { 1741 struct gendisk *disk = dev_to_disk(dev); 1742 long intv; 1743 1744 if (!count || !sscanf(buf, "%ld", &intv)) 1745 return -EINVAL; 1746 1747 if (intv < 0 && intv != -1) 1748 return -EINVAL; 1749 1750 disk_block_events(disk); 1751 disk->ev->poll_msecs = intv; 1752 __disk_unblock_events(disk, true); 1753 1754 return count; 1755 } 1756 1757 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL); 1758 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL); 1759 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR, 1760 disk_events_poll_msecs_show, 1761 disk_events_poll_msecs_store); 1762 1763 static const struct attribute *disk_events_attrs[] = { 1764 &dev_attr_events.attr, 1765 &dev_attr_events_async.attr, 1766 &dev_attr_events_poll_msecs.attr, 1767 NULL, 1768 }; 1769 1770 /* 1771 * The default polling interval can be specified by the kernel 1772 * parameter block.events_dfl_poll_msecs which defaults to 0 1773 * (disable). This can also be modified runtime by writing to 1774 * /sys/module/block/events_dfl_poll_msecs. 1775 */ 1776 static int disk_events_set_dfl_poll_msecs(const char *val, 1777 const struct kernel_param *kp) 1778 { 1779 struct disk_events *ev; 1780 int ret; 1781 1782 ret = param_set_ulong(val, kp); 1783 if (ret < 0) 1784 return ret; 1785 1786 mutex_lock(&disk_events_mutex); 1787 1788 list_for_each_entry(ev, &disk_events, node) 1789 disk_flush_events(ev->disk, 0); 1790 1791 mutex_unlock(&disk_events_mutex); 1792 1793 return 0; 1794 } 1795 1796 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = { 1797 .set = disk_events_set_dfl_poll_msecs, 1798 .get = param_get_ulong, 1799 }; 1800 1801 #undef MODULE_PARAM_PREFIX 1802 #define MODULE_PARAM_PREFIX "block." 1803 1804 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops, 1805 &disk_events_dfl_poll_msecs, 0644); 1806 1807 /* 1808 * disk_{add|del|release}_events - initialize and destroy disk_events. 1809 */ 1810 static void disk_add_events(struct gendisk *disk) 1811 { 1812 struct disk_events *ev; 1813 1814 if (!disk->fops->check_events) 1815 return; 1816 1817 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1818 if (!ev) { 1819 pr_warn("%s: failed to initialize events\n", disk->disk_name); 1820 return; 1821 } 1822 1823 if (sysfs_create_files(&disk_to_dev(disk)->kobj, 1824 disk_events_attrs) < 0) { 1825 pr_warn("%s: failed to create sysfs files for events\n", 1826 disk->disk_name); 1827 kfree(ev); 1828 return; 1829 } 1830 1831 disk->ev = ev; 1832 1833 INIT_LIST_HEAD(&ev->node); 1834 ev->disk = disk; 1835 spin_lock_init(&ev->lock); 1836 mutex_init(&ev->block_mutex); 1837 ev->block = 1; 1838 ev->poll_msecs = -1; 1839 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn); 1840 1841 mutex_lock(&disk_events_mutex); 1842 list_add_tail(&ev->node, &disk_events); 1843 mutex_unlock(&disk_events_mutex); 1844 1845 /* 1846 * Block count is initialized to 1 and the following initial 1847 * unblock kicks it into action. 1848 */ 1849 __disk_unblock_events(disk, true); 1850 } 1851 1852 static void disk_del_events(struct gendisk *disk) 1853 { 1854 if (!disk->ev) 1855 return; 1856 1857 disk_block_events(disk); 1858 1859 mutex_lock(&disk_events_mutex); 1860 list_del_init(&disk->ev->node); 1861 mutex_unlock(&disk_events_mutex); 1862 1863 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs); 1864 } 1865 1866 static void disk_release_events(struct gendisk *disk) 1867 { 1868 /* the block count should be 1 from disk_del_events() */ 1869 WARN_ON_ONCE(disk->ev && disk->ev->block != 1); 1870 kfree(disk->ev); 1871 } 1872