1 /* 2 * gendisk handling 3 */ 4 5 #include <linux/module.h> 6 #include <linux/fs.h> 7 #include <linux/genhd.h> 8 #include <linux/kdev_t.h> 9 #include <linux/kernel.h> 10 #include <linux/blkdev.h> 11 #include <linux/init.h> 12 #include <linux/spinlock.h> 13 #include <linux/proc_fs.h> 14 #include <linux/seq_file.h> 15 #include <linux/slab.h> 16 #include <linux/kmod.h> 17 #include <linux/kobj_map.h> 18 #include <linux/mutex.h> 19 #include <linux/idr.h> 20 #include <linux/log2.h> 21 22 #include "blk.h" 23 24 static DEFINE_MUTEX(block_class_lock); 25 struct kobject *block_depr; 26 27 /* for extended dynamic devt allocation, currently only one major is used */ 28 #define MAX_EXT_DEVT (1 << MINORBITS) 29 30 /* For extended devt allocation. ext_devt_mutex prevents look up 31 * results from going away underneath its user. 32 */ 33 static DEFINE_MUTEX(ext_devt_mutex); 34 static DEFINE_IDR(ext_devt_idr); 35 36 static struct device_type disk_type; 37 38 static void disk_add_events(struct gendisk *disk); 39 static void disk_del_events(struct gendisk *disk); 40 static void disk_release_events(struct gendisk *disk); 41 42 /** 43 * disk_get_part - get partition 44 * @disk: disk to look partition from 45 * @partno: partition number 46 * 47 * Look for partition @partno from @disk. If found, increment 48 * reference count and return it. 49 * 50 * CONTEXT: 51 * Don't care. 52 * 53 * RETURNS: 54 * Pointer to the found partition on success, NULL if not found. 55 */ 56 struct hd_struct *disk_get_part(struct gendisk *disk, int partno) 57 { 58 struct hd_struct *part = NULL; 59 struct disk_part_tbl *ptbl; 60 61 if (unlikely(partno < 0)) 62 return NULL; 63 64 rcu_read_lock(); 65 66 ptbl = rcu_dereference(disk->part_tbl); 67 if (likely(partno < ptbl->len)) { 68 part = rcu_dereference(ptbl->part[partno]); 69 if (part) 70 get_device(part_to_dev(part)); 71 } 72 73 rcu_read_unlock(); 74 75 return part; 76 } 77 EXPORT_SYMBOL_GPL(disk_get_part); 78 79 /** 80 * disk_part_iter_init - initialize partition iterator 81 * @piter: iterator to initialize 82 * @disk: disk to iterate over 83 * @flags: DISK_PITER_* flags 84 * 85 * Initialize @piter so that it iterates over partitions of @disk. 86 * 87 * CONTEXT: 88 * Don't care. 89 */ 90 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, 91 unsigned int flags) 92 { 93 struct disk_part_tbl *ptbl; 94 95 rcu_read_lock(); 96 ptbl = rcu_dereference(disk->part_tbl); 97 98 piter->disk = disk; 99 piter->part = NULL; 100 101 if (flags & DISK_PITER_REVERSE) 102 piter->idx = ptbl->len - 1; 103 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0)) 104 piter->idx = 0; 105 else 106 piter->idx = 1; 107 108 piter->flags = flags; 109 110 rcu_read_unlock(); 111 } 112 EXPORT_SYMBOL_GPL(disk_part_iter_init); 113 114 /** 115 * disk_part_iter_next - proceed iterator to the next partition and return it 116 * @piter: iterator of interest 117 * 118 * Proceed @piter to the next partition and return it. 119 * 120 * CONTEXT: 121 * Don't care. 122 */ 123 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter) 124 { 125 struct disk_part_tbl *ptbl; 126 int inc, end; 127 128 /* put the last partition */ 129 disk_put_part(piter->part); 130 piter->part = NULL; 131 132 /* get part_tbl */ 133 rcu_read_lock(); 134 ptbl = rcu_dereference(piter->disk->part_tbl); 135 136 /* determine iteration parameters */ 137 if (piter->flags & DISK_PITER_REVERSE) { 138 inc = -1; 139 if (piter->flags & (DISK_PITER_INCL_PART0 | 140 DISK_PITER_INCL_EMPTY_PART0)) 141 end = -1; 142 else 143 end = 0; 144 } else { 145 inc = 1; 146 end = ptbl->len; 147 } 148 149 /* iterate to the next partition */ 150 for (; piter->idx != end; piter->idx += inc) { 151 struct hd_struct *part; 152 153 part = rcu_dereference(ptbl->part[piter->idx]); 154 if (!part) 155 continue; 156 if (!part->nr_sects && 157 !(piter->flags & DISK_PITER_INCL_EMPTY) && 158 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 && 159 piter->idx == 0)) 160 continue; 161 162 get_device(part_to_dev(part)); 163 piter->part = part; 164 piter->idx += inc; 165 break; 166 } 167 168 rcu_read_unlock(); 169 170 return piter->part; 171 } 172 EXPORT_SYMBOL_GPL(disk_part_iter_next); 173 174 /** 175 * disk_part_iter_exit - finish up partition iteration 176 * @piter: iter of interest 177 * 178 * Called when iteration is over. Cleans up @piter. 179 * 180 * CONTEXT: 181 * Don't care. 182 */ 183 void disk_part_iter_exit(struct disk_part_iter *piter) 184 { 185 disk_put_part(piter->part); 186 piter->part = NULL; 187 } 188 EXPORT_SYMBOL_GPL(disk_part_iter_exit); 189 190 static inline int sector_in_part(struct hd_struct *part, sector_t sector) 191 { 192 return part->start_sect <= sector && 193 sector < part->start_sect + part->nr_sects; 194 } 195 196 /** 197 * disk_map_sector_rcu - map sector to partition 198 * @disk: gendisk of interest 199 * @sector: sector to map 200 * 201 * Find out which partition @sector maps to on @disk. This is 202 * primarily used for stats accounting. 203 * 204 * CONTEXT: 205 * RCU read locked. The returned partition pointer is valid only 206 * while preemption is disabled. 207 * 208 * RETURNS: 209 * Found partition on success, part0 is returned if no partition matches 210 */ 211 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector) 212 { 213 struct disk_part_tbl *ptbl; 214 struct hd_struct *part; 215 int i; 216 217 ptbl = rcu_dereference(disk->part_tbl); 218 219 part = rcu_dereference(ptbl->last_lookup); 220 if (part && sector_in_part(part, sector)) 221 return part; 222 223 for (i = 1; i < ptbl->len; i++) { 224 part = rcu_dereference(ptbl->part[i]); 225 226 if (part && sector_in_part(part, sector)) { 227 rcu_assign_pointer(ptbl->last_lookup, part); 228 return part; 229 } 230 } 231 return &disk->part0; 232 } 233 EXPORT_SYMBOL_GPL(disk_map_sector_rcu); 234 235 /* 236 * Can be deleted altogether. Later. 237 * 238 */ 239 static struct blk_major_name { 240 struct blk_major_name *next; 241 int major; 242 char name[16]; 243 } *major_names[BLKDEV_MAJOR_HASH_SIZE]; 244 245 /* index in the above - for now: assume no multimajor ranges */ 246 static inline int major_to_index(unsigned major) 247 { 248 return major % BLKDEV_MAJOR_HASH_SIZE; 249 } 250 251 #ifdef CONFIG_PROC_FS 252 void blkdev_show(struct seq_file *seqf, off_t offset) 253 { 254 struct blk_major_name *dp; 255 256 if (offset < BLKDEV_MAJOR_HASH_SIZE) { 257 mutex_lock(&block_class_lock); 258 for (dp = major_names[offset]; dp; dp = dp->next) 259 seq_printf(seqf, "%3d %s\n", dp->major, dp->name); 260 mutex_unlock(&block_class_lock); 261 } 262 } 263 #endif /* CONFIG_PROC_FS */ 264 265 /** 266 * register_blkdev - register a new block device 267 * 268 * @major: the requested major device number [1..255]. If @major=0, try to 269 * allocate any unused major number. 270 * @name: the name of the new block device as a zero terminated string 271 * 272 * The @name must be unique within the system. 273 * 274 * The return value depends on the @major input parameter. 275 * - if a major device number was requested in range [1..255] then the 276 * function returns zero on success, or a negative error code 277 * - if any unused major number was requested with @major=0 parameter 278 * then the return value is the allocated major number in range 279 * [1..255] or a negative error code otherwise 280 */ 281 int register_blkdev(unsigned int major, const char *name) 282 { 283 struct blk_major_name **n, *p; 284 int index, ret = 0; 285 286 mutex_lock(&block_class_lock); 287 288 /* temporary */ 289 if (major == 0) { 290 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { 291 if (major_names[index] == NULL) 292 break; 293 } 294 295 if (index == 0) { 296 printk("register_blkdev: failed to get major for %s\n", 297 name); 298 ret = -EBUSY; 299 goto out; 300 } 301 major = index; 302 ret = major; 303 } 304 305 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); 306 if (p == NULL) { 307 ret = -ENOMEM; 308 goto out; 309 } 310 311 p->major = major; 312 strlcpy(p->name, name, sizeof(p->name)); 313 p->next = NULL; 314 index = major_to_index(major); 315 316 for (n = &major_names[index]; *n; n = &(*n)->next) { 317 if ((*n)->major == major) 318 break; 319 } 320 if (!*n) 321 *n = p; 322 else 323 ret = -EBUSY; 324 325 if (ret < 0) { 326 printk("register_blkdev: cannot get major %d for %s\n", 327 major, name); 328 kfree(p); 329 } 330 out: 331 mutex_unlock(&block_class_lock); 332 return ret; 333 } 334 335 EXPORT_SYMBOL(register_blkdev); 336 337 void unregister_blkdev(unsigned int major, const char *name) 338 { 339 struct blk_major_name **n; 340 struct blk_major_name *p = NULL; 341 int index = major_to_index(major); 342 343 mutex_lock(&block_class_lock); 344 for (n = &major_names[index]; *n; n = &(*n)->next) 345 if ((*n)->major == major) 346 break; 347 if (!*n || strcmp((*n)->name, name)) { 348 WARN_ON(1); 349 } else { 350 p = *n; 351 *n = p->next; 352 } 353 mutex_unlock(&block_class_lock); 354 kfree(p); 355 } 356 357 EXPORT_SYMBOL(unregister_blkdev); 358 359 static struct kobj_map *bdev_map; 360 361 /** 362 * blk_mangle_minor - scatter minor numbers apart 363 * @minor: minor number to mangle 364 * 365 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT 366 * is enabled. Mangling twice gives the original value. 367 * 368 * RETURNS: 369 * Mangled value. 370 * 371 * CONTEXT: 372 * Don't care. 373 */ 374 static int blk_mangle_minor(int minor) 375 { 376 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT 377 int i; 378 379 for (i = 0; i < MINORBITS / 2; i++) { 380 int low = minor & (1 << i); 381 int high = minor & (1 << (MINORBITS - 1 - i)); 382 int distance = MINORBITS - 1 - 2 * i; 383 384 minor ^= low | high; /* clear both bits */ 385 low <<= distance; /* swap the positions */ 386 high >>= distance; 387 minor |= low | high; /* and set */ 388 } 389 #endif 390 return minor; 391 } 392 393 /** 394 * blk_alloc_devt - allocate a dev_t for a partition 395 * @part: partition to allocate dev_t for 396 * @devt: out parameter for resulting dev_t 397 * 398 * Allocate a dev_t for block device. 399 * 400 * RETURNS: 401 * 0 on success, allocated dev_t is returned in *@devt. -errno on 402 * failure. 403 * 404 * CONTEXT: 405 * Might sleep. 406 */ 407 int blk_alloc_devt(struct hd_struct *part, dev_t *devt) 408 { 409 struct gendisk *disk = part_to_disk(part); 410 int idx, rc; 411 412 /* in consecutive minor range? */ 413 if (part->partno < disk->minors) { 414 *devt = MKDEV(disk->major, disk->first_minor + part->partno); 415 return 0; 416 } 417 418 /* allocate ext devt */ 419 do { 420 if (!idr_pre_get(&ext_devt_idr, GFP_KERNEL)) 421 return -ENOMEM; 422 rc = idr_get_new(&ext_devt_idr, part, &idx); 423 } while (rc == -EAGAIN); 424 425 if (rc) 426 return rc; 427 428 if (idx > MAX_EXT_DEVT) { 429 idr_remove(&ext_devt_idr, idx); 430 return -EBUSY; 431 } 432 433 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx)); 434 return 0; 435 } 436 437 /** 438 * blk_free_devt - free a dev_t 439 * @devt: dev_t to free 440 * 441 * Free @devt which was allocated using blk_alloc_devt(). 442 * 443 * CONTEXT: 444 * Might sleep. 445 */ 446 void blk_free_devt(dev_t devt) 447 { 448 might_sleep(); 449 450 if (devt == MKDEV(0, 0)) 451 return; 452 453 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 454 mutex_lock(&ext_devt_mutex); 455 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 456 mutex_unlock(&ext_devt_mutex); 457 } 458 } 459 460 static char *bdevt_str(dev_t devt, char *buf) 461 { 462 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { 463 char tbuf[BDEVT_SIZE]; 464 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); 465 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); 466 } else 467 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); 468 469 return buf; 470 } 471 472 /* 473 * Register device numbers dev..(dev+range-1) 474 * range must be nonzero 475 * The hash chain is sorted on range, so that subranges can override. 476 */ 477 void blk_register_region(dev_t devt, unsigned long range, struct module *module, 478 struct kobject *(*probe)(dev_t, int *, void *), 479 int (*lock)(dev_t, void *), void *data) 480 { 481 kobj_map(bdev_map, devt, range, module, probe, lock, data); 482 } 483 484 EXPORT_SYMBOL(blk_register_region); 485 486 void blk_unregister_region(dev_t devt, unsigned long range) 487 { 488 kobj_unmap(bdev_map, devt, range); 489 } 490 491 EXPORT_SYMBOL(blk_unregister_region); 492 493 static struct kobject *exact_match(dev_t devt, int *partno, void *data) 494 { 495 struct gendisk *p = data; 496 497 return &disk_to_dev(p)->kobj; 498 } 499 500 static int exact_lock(dev_t devt, void *data) 501 { 502 struct gendisk *p = data; 503 504 if (!get_disk(p)) 505 return -1; 506 return 0; 507 } 508 509 static void register_disk(struct gendisk *disk) 510 { 511 struct device *ddev = disk_to_dev(disk); 512 struct block_device *bdev; 513 struct disk_part_iter piter; 514 struct hd_struct *part; 515 int err; 516 517 ddev->parent = disk->driverfs_dev; 518 519 dev_set_name(ddev, disk->disk_name); 520 521 /* delay uevents, until we scanned partition table */ 522 dev_set_uevent_suppress(ddev, 1); 523 524 if (device_add(ddev)) 525 return; 526 if (!sysfs_deprecated) { 527 err = sysfs_create_link(block_depr, &ddev->kobj, 528 kobject_name(&ddev->kobj)); 529 if (err) { 530 device_del(ddev); 531 return; 532 } 533 } 534 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj); 535 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); 536 537 /* No minors to use for partitions */ 538 if (!disk_part_scan_enabled(disk)) 539 goto exit; 540 541 /* No such device (e.g., media were just removed) */ 542 if (!get_capacity(disk)) 543 goto exit; 544 545 bdev = bdget_disk(disk, 0); 546 if (!bdev) 547 goto exit; 548 549 bdev->bd_invalidated = 1; 550 err = blkdev_get(bdev, FMODE_READ, NULL); 551 if (err < 0) 552 goto exit; 553 blkdev_put(bdev, FMODE_READ); 554 555 exit: 556 /* announce disk after possible partitions are created */ 557 dev_set_uevent_suppress(ddev, 0); 558 kobject_uevent(&ddev->kobj, KOBJ_ADD); 559 560 /* announce possible partitions */ 561 disk_part_iter_init(&piter, disk, 0); 562 while ((part = disk_part_iter_next(&piter))) 563 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD); 564 disk_part_iter_exit(&piter); 565 } 566 567 /** 568 * add_disk - add partitioning information to kernel list 569 * @disk: per-device partitioning information 570 * 571 * This function registers the partitioning information in @disk 572 * with the kernel. 573 * 574 * FIXME: error handling 575 */ 576 void add_disk(struct gendisk *disk) 577 { 578 struct backing_dev_info *bdi; 579 dev_t devt; 580 int retval; 581 582 /* minors == 0 indicates to use ext devt from part0 and should 583 * be accompanied with EXT_DEVT flag. Make sure all 584 * parameters make sense. 585 */ 586 WARN_ON(disk->minors && !(disk->major || disk->first_minor)); 587 WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT)); 588 589 disk->flags |= GENHD_FL_UP; 590 591 retval = blk_alloc_devt(&disk->part0, &devt); 592 if (retval) { 593 WARN_ON(1); 594 return; 595 } 596 disk_to_dev(disk)->devt = devt; 597 598 /* ->major and ->first_minor aren't supposed to be 599 * dereferenced from here on, but set them just in case. 600 */ 601 disk->major = MAJOR(devt); 602 disk->first_minor = MINOR(devt); 603 604 /* Register BDI before referencing it from bdev */ 605 bdi = &disk->queue->backing_dev_info; 606 bdi_register_dev(bdi, disk_devt(disk)); 607 608 blk_register_region(disk_devt(disk), disk->minors, NULL, 609 exact_match, exact_lock, disk); 610 register_disk(disk); 611 blk_register_queue(disk); 612 613 /* 614 * Take an extra ref on queue which will be put on disk_release() 615 * so that it sticks around as long as @disk is there. 616 */ 617 WARN_ON_ONCE(!blk_get_queue(disk->queue)); 618 619 retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj, 620 "bdi"); 621 WARN_ON(retval); 622 623 disk_add_events(disk); 624 } 625 EXPORT_SYMBOL(add_disk); 626 627 void del_gendisk(struct gendisk *disk) 628 { 629 struct disk_part_iter piter; 630 struct hd_struct *part; 631 632 disk_del_events(disk); 633 634 /* invalidate stuff */ 635 disk_part_iter_init(&piter, disk, 636 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE); 637 while ((part = disk_part_iter_next(&piter))) { 638 invalidate_partition(disk, part->partno); 639 delete_partition(disk, part->partno); 640 } 641 disk_part_iter_exit(&piter); 642 643 invalidate_partition(disk, 0); 644 blk_free_devt(disk_to_dev(disk)->devt); 645 set_capacity(disk, 0); 646 disk->flags &= ~GENHD_FL_UP; 647 648 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); 649 bdi_unregister(&disk->queue->backing_dev_info); 650 blk_unregister_queue(disk); 651 blk_unregister_region(disk_devt(disk), disk->minors); 652 653 part_stat_set_all(&disk->part0, 0); 654 disk->part0.stamp = 0; 655 656 kobject_put(disk->part0.holder_dir); 657 kobject_put(disk->slave_dir); 658 disk->driverfs_dev = NULL; 659 if (!sysfs_deprecated) 660 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); 661 device_del(disk_to_dev(disk)); 662 } 663 EXPORT_SYMBOL(del_gendisk); 664 665 /** 666 * get_gendisk - get partitioning information for a given device 667 * @devt: device to get partitioning information for 668 * @partno: returned partition index 669 * 670 * This function gets the structure containing partitioning 671 * information for the given device @devt. 672 */ 673 struct gendisk *get_gendisk(dev_t devt, int *partno) 674 { 675 struct gendisk *disk = NULL; 676 677 if (MAJOR(devt) != BLOCK_EXT_MAJOR) { 678 struct kobject *kobj; 679 680 kobj = kobj_lookup(bdev_map, devt, partno); 681 if (kobj) 682 disk = dev_to_disk(kobj_to_dev(kobj)); 683 } else { 684 struct hd_struct *part; 685 686 mutex_lock(&ext_devt_mutex); 687 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 688 if (part && get_disk(part_to_disk(part))) { 689 *partno = part->partno; 690 disk = part_to_disk(part); 691 } 692 mutex_unlock(&ext_devt_mutex); 693 } 694 695 return disk; 696 } 697 EXPORT_SYMBOL(get_gendisk); 698 699 /** 700 * bdget_disk - do bdget() by gendisk and partition number 701 * @disk: gendisk of interest 702 * @partno: partition number 703 * 704 * Find partition @partno from @disk, do bdget() on it. 705 * 706 * CONTEXT: 707 * Don't care. 708 * 709 * RETURNS: 710 * Resulting block_device on success, NULL on failure. 711 */ 712 struct block_device *bdget_disk(struct gendisk *disk, int partno) 713 { 714 struct hd_struct *part; 715 struct block_device *bdev = NULL; 716 717 part = disk_get_part(disk, partno); 718 if (part) 719 bdev = bdget(part_devt(part)); 720 disk_put_part(part); 721 722 return bdev; 723 } 724 EXPORT_SYMBOL(bdget_disk); 725 726 /* 727 * print a full list of all partitions - intended for places where the root 728 * filesystem can't be mounted and thus to give the victim some idea of what 729 * went wrong 730 */ 731 void __init printk_all_partitions(void) 732 { 733 struct class_dev_iter iter; 734 struct device *dev; 735 736 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 737 while ((dev = class_dev_iter_next(&iter))) { 738 struct gendisk *disk = dev_to_disk(dev); 739 struct disk_part_iter piter; 740 struct hd_struct *part; 741 char name_buf[BDEVNAME_SIZE]; 742 char devt_buf[BDEVT_SIZE]; 743 u8 uuid[PARTITION_META_INFO_UUIDLTH * 2 + 1]; 744 745 /* 746 * Don't show empty devices or things that have been 747 * suppressed 748 */ 749 if (get_capacity(disk) == 0 || 750 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) 751 continue; 752 753 /* 754 * Note, unlike /proc/partitions, I am showing the 755 * numbers in hex - the same format as the root= 756 * option takes. 757 */ 758 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); 759 while ((part = disk_part_iter_next(&piter))) { 760 bool is_part0 = part == &disk->part0; 761 762 uuid[0] = 0; 763 if (part->info) 764 part_unpack_uuid(part->info->uuid, uuid); 765 766 printk("%s%s %10llu %s %s", is_part0 ? "" : " ", 767 bdevt_str(part_devt(part), devt_buf), 768 (unsigned long long)part->nr_sects >> 1, 769 disk_name(disk, part->partno, name_buf), uuid); 770 if (is_part0) { 771 if (disk->driverfs_dev != NULL && 772 disk->driverfs_dev->driver != NULL) 773 printk(" driver: %s\n", 774 disk->driverfs_dev->driver->name); 775 else 776 printk(" (driver?)\n"); 777 } else 778 printk("\n"); 779 } 780 disk_part_iter_exit(&piter); 781 } 782 class_dev_iter_exit(&iter); 783 } 784 785 #ifdef CONFIG_PROC_FS 786 /* iterator */ 787 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) 788 { 789 loff_t skip = *pos; 790 struct class_dev_iter *iter; 791 struct device *dev; 792 793 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 794 if (!iter) 795 return ERR_PTR(-ENOMEM); 796 797 seqf->private = iter; 798 class_dev_iter_init(iter, &block_class, NULL, &disk_type); 799 do { 800 dev = class_dev_iter_next(iter); 801 if (!dev) 802 return NULL; 803 } while (skip--); 804 805 return dev_to_disk(dev); 806 } 807 808 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) 809 { 810 struct device *dev; 811 812 (*pos)++; 813 dev = class_dev_iter_next(seqf->private); 814 if (dev) 815 return dev_to_disk(dev); 816 817 return NULL; 818 } 819 820 static void disk_seqf_stop(struct seq_file *seqf, void *v) 821 { 822 struct class_dev_iter *iter = seqf->private; 823 824 /* stop is called even after start failed :-( */ 825 if (iter) { 826 class_dev_iter_exit(iter); 827 kfree(iter); 828 } 829 } 830 831 static void *show_partition_start(struct seq_file *seqf, loff_t *pos) 832 { 833 static void *p; 834 835 p = disk_seqf_start(seqf, pos); 836 if (!IS_ERR_OR_NULL(p) && !*pos) 837 seq_puts(seqf, "major minor #blocks name\n\n"); 838 return p; 839 } 840 841 static int show_partition(struct seq_file *seqf, void *v) 842 { 843 struct gendisk *sgp = v; 844 struct disk_part_iter piter; 845 struct hd_struct *part; 846 char buf[BDEVNAME_SIZE]; 847 848 /* Don't show non-partitionable removeable devices or empty devices */ 849 if (!get_capacity(sgp) || (!disk_max_parts(sgp) && 850 (sgp->flags & GENHD_FL_REMOVABLE))) 851 return 0; 852 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) 853 return 0; 854 855 /* show the full disk and all non-0 size partitions of it */ 856 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0); 857 while ((part = disk_part_iter_next(&piter))) 858 seq_printf(seqf, "%4d %7d %10llu %s\n", 859 MAJOR(part_devt(part)), MINOR(part_devt(part)), 860 (unsigned long long)part->nr_sects >> 1, 861 disk_name(sgp, part->partno, buf)); 862 disk_part_iter_exit(&piter); 863 864 return 0; 865 } 866 867 static const struct seq_operations partitions_op = { 868 .start = show_partition_start, 869 .next = disk_seqf_next, 870 .stop = disk_seqf_stop, 871 .show = show_partition 872 }; 873 874 static int partitions_open(struct inode *inode, struct file *file) 875 { 876 return seq_open(file, &partitions_op); 877 } 878 879 static const struct file_operations proc_partitions_operations = { 880 .open = partitions_open, 881 .read = seq_read, 882 .llseek = seq_lseek, 883 .release = seq_release, 884 }; 885 #endif 886 887 888 static struct kobject *base_probe(dev_t devt, int *partno, void *data) 889 { 890 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) 891 /* Make old-style 2.4 aliases work */ 892 request_module("block-major-%d", MAJOR(devt)); 893 return NULL; 894 } 895 896 static int __init genhd_device_init(void) 897 { 898 int error; 899 900 block_class.dev_kobj = sysfs_dev_block_kobj; 901 error = class_register(&block_class); 902 if (unlikely(error)) 903 return error; 904 bdev_map = kobj_map_init(base_probe, &block_class_lock); 905 blk_dev_init(); 906 907 register_blkdev(BLOCK_EXT_MAJOR, "blkext"); 908 909 /* create top-level block dir */ 910 if (!sysfs_deprecated) 911 block_depr = kobject_create_and_add("block", NULL); 912 return 0; 913 } 914 915 subsys_initcall(genhd_device_init); 916 917 static ssize_t disk_range_show(struct device *dev, 918 struct device_attribute *attr, char *buf) 919 { 920 struct gendisk *disk = dev_to_disk(dev); 921 922 return sprintf(buf, "%d\n", disk->minors); 923 } 924 925 static ssize_t disk_ext_range_show(struct device *dev, 926 struct device_attribute *attr, char *buf) 927 { 928 struct gendisk *disk = dev_to_disk(dev); 929 930 return sprintf(buf, "%d\n", disk_max_parts(disk)); 931 } 932 933 static ssize_t disk_removable_show(struct device *dev, 934 struct device_attribute *attr, char *buf) 935 { 936 struct gendisk *disk = dev_to_disk(dev); 937 938 return sprintf(buf, "%d\n", 939 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); 940 } 941 942 static ssize_t disk_ro_show(struct device *dev, 943 struct device_attribute *attr, char *buf) 944 { 945 struct gendisk *disk = dev_to_disk(dev); 946 947 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); 948 } 949 950 static ssize_t disk_capability_show(struct device *dev, 951 struct device_attribute *attr, char *buf) 952 { 953 struct gendisk *disk = dev_to_disk(dev); 954 955 return sprintf(buf, "%x\n", disk->flags); 956 } 957 958 static ssize_t disk_alignment_offset_show(struct device *dev, 959 struct device_attribute *attr, 960 char *buf) 961 { 962 struct gendisk *disk = dev_to_disk(dev); 963 964 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); 965 } 966 967 static ssize_t disk_discard_alignment_show(struct device *dev, 968 struct device_attribute *attr, 969 char *buf) 970 { 971 struct gendisk *disk = dev_to_disk(dev); 972 973 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); 974 } 975 976 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL); 977 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL); 978 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL); 979 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL); 980 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL); 981 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL); 982 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show, 983 NULL); 984 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL); 985 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL); 986 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL); 987 #ifdef CONFIG_FAIL_MAKE_REQUEST 988 static struct device_attribute dev_attr_fail = 989 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store); 990 #endif 991 #ifdef CONFIG_FAIL_IO_TIMEOUT 992 static struct device_attribute dev_attr_fail_timeout = 993 __ATTR(io-timeout-fail, S_IRUGO|S_IWUSR, part_timeout_show, 994 part_timeout_store); 995 #endif 996 997 static struct attribute *disk_attrs[] = { 998 &dev_attr_range.attr, 999 &dev_attr_ext_range.attr, 1000 &dev_attr_removable.attr, 1001 &dev_attr_ro.attr, 1002 &dev_attr_size.attr, 1003 &dev_attr_alignment_offset.attr, 1004 &dev_attr_discard_alignment.attr, 1005 &dev_attr_capability.attr, 1006 &dev_attr_stat.attr, 1007 &dev_attr_inflight.attr, 1008 #ifdef CONFIG_FAIL_MAKE_REQUEST 1009 &dev_attr_fail.attr, 1010 #endif 1011 #ifdef CONFIG_FAIL_IO_TIMEOUT 1012 &dev_attr_fail_timeout.attr, 1013 #endif 1014 NULL 1015 }; 1016 1017 static struct attribute_group disk_attr_group = { 1018 .attrs = disk_attrs, 1019 }; 1020 1021 static const struct attribute_group *disk_attr_groups[] = { 1022 &disk_attr_group, 1023 NULL 1024 }; 1025 1026 /** 1027 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way 1028 * @disk: disk to replace part_tbl for 1029 * @new_ptbl: new part_tbl to install 1030 * 1031 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The 1032 * original ptbl is freed using RCU callback. 1033 * 1034 * LOCKING: 1035 * Matching bd_mutx locked. 1036 */ 1037 static void disk_replace_part_tbl(struct gendisk *disk, 1038 struct disk_part_tbl *new_ptbl) 1039 { 1040 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1041 1042 rcu_assign_pointer(disk->part_tbl, new_ptbl); 1043 1044 if (old_ptbl) { 1045 rcu_assign_pointer(old_ptbl->last_lookup, NULL); 1046 kfree_rcu(old_ptbl, rcu_head); 1047 } 1048 } 1049 1050 /** 1051 * disk_expand_part_tbl - expand disk->part_tbl 1052 * @disk: disk to expand part_tbl for 1053 * @partno: expand such that this partno can fit in 1054 * 1055 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl 1056 * uses RCU to allow unlocked dereferencing for stats and other stuff. 1057 * 1058 * LOCKING: 1059 * Matching bd_mutex locked, might sleep. 1060 * 1061 * RETURNS: 1062 * 0 on success, -errno on failure. 1063 */ 1064 int disk_expand_part_tbl(struct gendisk *disk, int partno) 1065 { 1066 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1067 struct disk_part_tbl *new_ptbl; 1068 int len = old_ptbl ? old_ptbl->len : 0; 1069 int target = partno + 1; 1070 size_t size; 1071 int i; 1072 1073 /* disk_max_parts() is zero during initialization, ignore if so */ 1074 if (disk_max_parts(disk) && target > disk_max_parts(disk)) 1075 return -EINVAL; 1076 1077 if (target <= len) 1078 return 0; 1079 1080 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]); 1081 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id); 1082 if (!new_ptbl) 1083 return -ENOMEM; 1084 1085 new_ptbl->len = target; 1086 1087 for (i = 0; i < len; i++) 1088 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]); 1089 1090 disk_replace_part_tbl(disk, new_ptbl); 1091 return 0; 1092 } 1093 1094 static void disk_release(struct device *dev) 1095 { 1096 struct gendisk *disk = dev_to_disk(dev); 1097 1098 disk_release_events(disk); 1099 kfree(disk->random); 1100 disk_replace_part_tbl(disk, NULL); 1101 free_part_stats(&disk->part0); 1102 free_part_info(&disk->part0); 1103 if (disk->queue) 1104 blk_put_queue(disk->queue); 1105 kfree(disk); 1106 } 1107 struct class block_class = { 1108 .name = "block", 1109 }; 1110 1111 static char *block_devnode(struct device *dev, umode_t *mode) 1112 { 1113 struct gendisk *disk = dev_to_disk(dev); 1114 1115 if (disk->devnode) 1116 return disk->devnode(disk, mode); 1117 return NULL; 1118 } 1119 1120 static struct device_type disk_type = { 1121 .name = "disk", 1122 .groups = disk_attr_groups, 1123 .release = disk_release, 1124 .devnode = block_devnode, 1125 }; 1126 1127 #ifdef CONFIG_PROC_FS 1128 /* 1129 * aggregate disk stat collector. Uses the same stats that the sysfs 1130 * entries do, above, but makes them available through one seq_file. 1131 * 1132 * The output looks suspiciously like /proc/partitions with a bunch of 1133 * extra fields. 1134 */ 1135 static int diskstats_show(struct seq_file *seqf, void *v) 1136 { 1137 struct gendisk *gp = v; 1138 struct disk_part_iter piter; 1139 struct hd_struct *hd; 1140 char buf[BDEVNAME_SIZE]; 1141 int cpu; 1142 1143 /* 1144 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) 1145 seq_puts(seqf, "major minor name" 1146 " rio rmerge rsect ruse wio wmerge " 1147 "wsect wuse running use aveq" 1148 "\n\n"); 1149 */ 1150 1151 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0); 1152 while ((hd = disk_part_iter_next(&piter))) { 1153 cpu = part_stat_lock(); 1154 part_round_stats(cpu, hd); 1155 part_stat_unlock(); 1156 seq_printf(seqf, "%4d %7d %s %lu %lu %lu " 1157 "%u %lu %lu %lu %u %u %u %u\n", 1158 MAJOR(part_devt(hd)), MINOR(part_devt(hd)), 1159 disk_name(gp, hd->partno, buf), 1160 part_stat_read(hd, ios[READ]), 1161 part_stat_read(hd, merges[READ]), 1162 part_stat_read(hd, sectors[READ]), 1163 jiffies_to_msecs(part_stat_read(hd, ticks[READ])), 1164 part_stat_read(hd, ios[WRITE]), 1165 part_stat_read(hd, merges[WRITE]), 1166 part_stat_read(hd, sectors[WRITE]), 1167 jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])), 1168 part_in_flight(hd), 1169 jiffies_to_msecs(part_stat_read(hd, io_ticks)), 1170 jiffies_to_msecs(part_stat_read(hd, time_in_queue)) 1171 ); 1172 } 1173 disk_part_iter_exit(&piter); 1174 1175 return 0; 1176 } 1177 1178 static const struct seq_operations diskstats_op = { 1179 .start = disk_seqf_start, 1180 .next = disk_seqf_next, 1181 .stop = disk_seqf_stop, 1182 .show = diskstats_show 1183 }; 1184 1185 static int diskstats_open(struct inode *inode, struct file *file) 1186 { 1187 return seq_open(file, &diskstats_op); 1188 } 1189 1190 static const struct file_operations proc_diskstats_operations = { 1191 .open = diskstats_open, 1192 .read = seq_read, 1193 .llseek = seq_lseek, 1194 .release = seq_release, 1195 }; 1196 1197 static int __init proc_genhd_init(void) 1198 { 1199 proc_create("diskstats", 0, NULL, &proc_diskstats_operations); 1200 proc_create("partitions", 0, NULL, &proc_partitions_operations); 1201 return 0; 1202 } 1203 module_init(proc_genhd_init); 1204 #endif /* CONFIG_PROC_FS */ 1205 1206 dev_t blk_lookup_devt(const char *name, int partno) 1207 { 1208 dev_t devt = MKDEV(0, 0); 1209 struct class_dev_iter iter; 1210 struct device *dev; 1211 1212 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1213 while ((dev = class_dev_iter_next(&iter))) { 1214 struct gendisk *disk = dev_to_disk(dev); 1215 struct hd_struct *part; 1216 1217 if (strcmp(dev_name(dev), name)) 1218 continue; 1219 1220 if (partno < disk->minors) { 1221 /* We need to return the right devno, even 1222 * if the partition doesn't exist yet. 1223 */ 1224 devt = MKDEV(MAJOR(dev->devt), 1225 MINOR(dev->devt) + partno); 1226 break; 1227 } 1228 part = disk_get_part(disk, partno); 1229 if (part) { 1230 devt = part_devt(part); 1231 disk_put_part(part); 1232 break; 1233 } 1234 disk_put_part(part); 1235 } 1236 class_dev_iter_exit(&iter); 1237 return devt; 1238 } 1239 EXPORT_SYMBOL(blk_lookup_devt); 1240 1241 struct gendisk *alloc_disk(int minors) 1242 { 1243 return alloc_disk_node(minors, -1); 1244 } 1245 EXPORT_SYMBOL(alloc_disk); 1246 1247 struct gendisk *alloc_disk_node(int minors, int node_id) 1248 { 1249 struct gendisk *disk; 1250 1251 disk = kmalloc_node(sizeof(struct gendisk), 1252 GFP_KERNEL | __GFP_ZERO, node_id); 1253 if (disk) { 1254 if (!init_part_stats(&disk->part0)) { 1255 kfree(disk); 1256 return NULL; 1257 } 1258 disk->node_id = node_id; 1259 if (disk_expand_part_tbl(disk, 0)) { 1260 free_part_stats(&disk->part0); 1261 kfree(disk); 1262 return NULL; 1263 } 1264 disk->part_tbl->part[0] = &disk->part0; 1265 1266 hd_ref_init(&disk->part0); 1267 1268 disk->minors = minors; 1269 rand_initialize_disk(disk); 1270 disk_to_dev(disk)->class = &block_class; 1271 disk_to_dev(disk)->type = &disk_type; 1272 device_initialize(disk_to_dev(disk)); 1273 } 1274 return disk; 1275 } 1276 EXPORT_SYMBOL(alloc_disk_node); 1277 1278 struct kobject *get_disk(struct gendisk *disk) 1279 { 1280 struct module *owner; 1281 struct kobject *kobj; 1282 1283 if (!disk->fops) 1284 return NULL; 1285 owner = disk->fops->owner; 1286 if (owner && !try_module_get(owner)) 1287 return NULL; 1288 kobj = kobject_get(&disk_to_dev(disk)->kobj); 1289 if (kobj == NULL) { 1290 module_put(owner); 1291 return NULL; 1292 } 1293 return kobj; 1294 1295 } 1296 1297 EXPORT_SYMBOL(get_disk); 1298 1299 void put_disk(struct gendisk *disk) 1300 { 1301 if (disk) 1302 kobject_put(&disk_to_dev(disk)->kobj); 1303 } 1304 1305 EXPORT_SYMBOL(put_disk); 1306 1307 static void set_disk_ro_uevent(struct gendisk *gd, int ro) 1308 { 1309 char event[] = "DISK_RO=1"; 1310 char *envp[] = { event, NULL }; 1311 1312 if (!ro) 1313 event[8] = '0'; 1314 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); 1315 } 1316 1317 void set_device_ro(struct block_device *bdev, int flag) 1318 { 1319 bdev->bd_part->policy = flag; 1320 } 1321 1322 EXPORT_SYMBOL(set_device_ro); 1323 1324 void set_disk_ro(struct gendisk *disk, int flag) 1325 { 1326 struct disk_part_iter piter; 1327 struct hd_struct *part; 1328 1329 if (disk->part0.policy != flag) { 1330 set_disk_ro_uevent(disk, flag); 1331 disk->part0.policy = flag; 1332 } 1333 1334 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 1335 while ((part = disk_part_iter_next(&piter))) 1336 part->policy = flag; 1337 disk_part_iter_exit(&piter); 1338 } 1339 1340 EXPORT_SYMBOL(set_disk_ro); 1341 1342 int bdev_read_only(struct block_device *bdev) 1343 { 1344 if (!bdev) 1345 return 0; 1346 return bdev->bd_part->policy; 1347 } 1348 1349 EXPORT_SYMBOL(bdev_read_only); 1350 1351 int invalidate_partition(struct gendisk *disk, int partno) 1352 { 1353 int res = 0; 1354 struct block_device *bdev = bdget_disk(disk, partno); 1355 if (bdev) { 1356 fsync_bdev(bdev); 1357 res = __invalidate_device(bdev, true); 1358 bdput(bdev); 1359 } 1360 return res; 1361 } 1362 1363 EXPORT_SYMBOL(invalidate_partition); 1364 1365 /* 1366 * Disk events - monitor disk events like media change and eject request. 1367 */ 1368 struct disk_events { 1369 struct list_head node; /* all disk_event's */ 1370 struct gendisk *disk; /* the associated disk */ 1371 spinlock_t lock; 1372 1373 struct mutex block_mutex; /* protects blocking */ 1374 int block; /* event blocking depth */ 1375 unsigned int pending; /* events already sent out */ 1376 unsigned int clearing; /* events being cleared */ 1377 1378 long poll_msecs; /* interval, -1 for default */ 1379 struct delayed_work dwork; 1380 }; 1381 1382 static const char *disk_events_strs[] = { 1383 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change", 1384 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request", 1385 }; 1386 1387 static char *disk_uevents[] = { 1388 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1", 1389 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1", 1390 }; 1391 1392 /* list of all disk_events */ 1393 static DEFINE_MUTEX(disk_events_mutex); 1394 static LIST_HEAD(disk_events); 1395 1396 /* disable in-kernel polling by default */ 1397 static unsigned long disk_events_dfl_poll_msecs = 0; 1398 1399 static unsigned long disk_events_poll_jiffies(struct gendisk *disk) 1400 { 1401 struct disk_events *ev = disk->ev; 1402 long intv_msecs = 0; 1403 1404 /* 1405 * If device-specific poll interval is set, always use it. If 1406 * the default is being used, poll iff there are events which 1407 * can't be monitored asynchronously. 1408 */ 1409 if (ev->poll_msecs >= 0) 1410 intv_msecs = ev->poll_msecs; 1411 else if (disk->events & ~disk->async_events) 1412 intv_msecs = disk_events_dfl_poll_msecs; 1413 1414 return msecs_to_jiffies(intv_msecs); 1415 } 1416 1417 /** 1418 * disk_block_events - block and flush disk event checking 1419 * @disk: disk to block events for 1420 * 1421 * On return from this function, it is guaranteed that event checking 1422 * isn't in progress and won't happen until unblocked by 1423 * disk_unblock_events(). Events blocking is counted and the actual 1424 * unblocking happens after the matching number of unblocks are done. 1425 * 1426 * Note that this intentionally does not block event checking from 1427 * disk_clear_events(). 1428 * 1429 * CONTEXT: 1430 * Might sleep. 1431 */ 1432 void disk_block_events(struct gendisk *disk) 1433 { 1434 struct disk_events *ev = disk->ev; 1435 unsigned long flags; 1436 bool cancel; 1437 1438 if (!ev) 1439 return; 1440 1441 /* 1442 * Outer mutex ensures that the first blocker completes canceling 1443 * the event work before further blockers are allowed to finish. 1444 */ 1445 mutex_lock(&ev->block_mutex); 1446 1447 spin_lock_irqsave(&ev->lock, flags); 1448 cancel = !ev->block++; 1449 spin_unlock_irqrestore(&ev->lock, flags); 1450 1451 if (cancel) 1452 cancel_delayed_work_sync(&disk->ev->dwork); 1453 1454 mutex_unlock(&ev->block_mutex); 1455 } 1456 1457 static void __disk_unblock_events(struct gendisk *disk, bool check_now) 1458 { 1459 struct disk_events *ev = disk->ev; 1460 unsigned long intv; 1461 unsigned long flags; 1462 1463 spin_lock_irqsave(&ev->lock, flags); 1464 1465 if (WARN_ON_ONCE(ev->block <= 0)) 1466 goto out_unlock; 1467 1468 if (--ev->block) 1469 goto out_unlock; 1470 1471 /* 1472 * Not exactly a latency critical operation, set poll timer 1473 * slack to 25% and kick event check. 1474 */ 1475 intv = disk_events_poll_jiffies(disk); 1476 set_timer_slack(&ev->dwork.timer, intv / 4); 1477 if (check_now) 1478 queue_delayed_work(system_nrt_wq, &ev->dwork, 0); 1479 else if (intv) 1480 queue_delayed_work(system_nrt_wq, &ev->dwork, intv); 1481 out_unlock: 1482 spin_unlock_irqrestore(&ev->lock, flags); 1483 } 1484 1485 /** 1486 * disk_unblock_events - unblock disk event checking 1487 * @disk: disk to unblock events for 1488 * 1489 * Undo disk_block_events(). When the block count reaches zero, it 1490 * starts events polling if configured. 1491 * 1492 * CONTEXT: 1493 * Don't care. Safe to call from irq context. 1494 */ 1495 void disk_unblock_events(struct gendisk *disk) 1496 { 1497 if (disk->ev) 1498 __disk_unblock_events(disk, false); 1499 } 1500 1501 /** 1502 * disk_flush_events - schedule immediate event checking and flushing 1503 * @disk: disk to check and flush events for 1504 * @mask: events to flush 1505 * 1506 * Schedule immediate event checking on @disk if not blocked. Events in 1507 * @mask are scheduled to be cleared from the driver. Note that this 1508 * doesn't clear the events from @disk->ev. 1509 * 1510 * CONTEXT: 1511 * If @mask is non-zero must be called with bdev->bd_mutex held. 1512 */ 1513 void disk_flush_events(struct gendisk *disk, unsigned int mask) 1514 { 1515 struct disk_events *ev = disk->ev; 1516 1517 if (!ev) 1518 return; 1519 1520 spin_lock_irq(&ev->lock); 1521 ev->clearing |= mask; 1522 if (!ev->block) { 1523 cancel_delayed_work(&ev->dwork); 1524 queue_delayed_work(system_nrt_wq, &ev->dwork, 0); 1525 } 1526 spin_unlock_irq(&ev->lock); 1527 } 1528 1529 /** 1530 * disk_clear_events - synchronously check, clear and return pending events 1531 * @disk: disk to fetch and clear events from 1532 * @mask: mask of events to be fetched and clearted 1533 * 1534 * Disk events are synchronously checked and pending events in @mask 1535 * are cleared and returned. This ignores the block count. 1536 * 1537 * CONTEXT: 1538 * Might sleep. 1539 */ 1540 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask) 1541 { 1542 const struct block_device_operations *bdops = disk->fops; 1543 struct disk_events *ev = disk->ev; 1544 unsigned int pending; 1545 1546 if (!ev) { 1547 /* for drivers still using the old ->media_changed method */ 1548 if ((mask & DISK_EVENT_MEDIA_CHANGE) && 1549 bdops->media_changed && bdops->media_changed(disk)) 1550 return DISK_EVENT_MEDIA_CHANGE; 1551 return 0; 1552 } 1553 1554 /* tell the workfn about the events being cleared */ 1555 spin_lock_irq(&ev->lock); 1556 ev->clearing |= mask; 1557 spin_unlock_irq(&ev->lock); 1558 1559 /* uncondtionally schedule event check and wait for it to finish */ 1560 disk_block_events(disk); 1561 queue_delayed_work(system_nrt_wq, &ev->dwork, 0); 1562 flush_delayed_work(&ev->dwork); 1563 __disk_unblock_events(disk, false); 1564 1565 /* then, fetch and clear pending events */ 1566 spin_lock_irq(&ev->lock); 1567 WARN_ON_ONCE(ev->clearing & mask); /* cleared by workfn */ 1568 pending = ev->pending & mask; 1569 ev->pending &= ~mask; 1570 spin_unlock_irq(&ev->lock); 1571 1572 return pending; 1573 } 1574 1575 static void disk_events_workfn(struct work_struct *work) 1576 { 1577 struct delayed_work *dwork = to_delayed_work(work); 1578 struct disk_events *ev = container_of(dwork, struct disk_events, dwork); 1579 struct gendisk *disk = ev->disk; 1580 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { }; 1581 unsigned int clearing = ev->clearing; 1582 unsigned int events; 1583 unsigned long intv; 1584 int nr_events = 0, i; 1585 1586 /* check events */ 1587 events = disk->fops->check_events(disk, clearing); 1588 1589 /* accumulate pending events and schedule next poll if necessary */ 1590 spin_lock_irq(&ev->lock); 1591 1592 events &= ~ev->pending; 1593 ev->pending |= events; 1594 ev->clearing &= ~clearing; 1595 1596 intv = disk_events_poll_jiffies(disk); 1597 if (!ev->block && intv) 1598 queue_delayed_work(system_nrt_wq, &ev->dwork, intv); 1599 1600 spin_unlock_irq(&ev->lock); 1601 1602 /* 1603 * Tell userland about new events. Only the events listed in 1604 * @disk->events are reported. Unlisted events are processed the 1605 * same internally but never get reported to userland. 1606 */ 1607 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++) 1608 if (events & disk->events & (1 << i)) 1609 envp[nr_events++] = disk_uevents[i]; 1610 1611 if (nr_events) 1612 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 1613 } 1614 1615 /* 1616 * A disk events enabled device has the following sysfs nodes under 1617 * its /sys/block/X/ directory. 1618 * 1619 * events : list of all supported events 1620 * events_async : list of events which can be detected w/o polling 1621 * events_poll_msecs : polling interval, 0: disable, -1: system default 1622 */ 1623 static ssize_t __disk_events_show(unsigned int events, char *buf) 1624 { 1625 const char *delim = ""; 1626 ssize_t pos = 0; 1627 int i; 1628 1629 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++) 1630 if (events & (1 << i)) { 1631 pos += sprintf(buf + pos, "%s%s", 1632 delim, disk_events_strs[i]); 1633 delim = " "; 1634 } 1635 if (pos) 1636 pos += sprintf(buf + pos, "\n"); 1637 return pos; 1638 } 1639 1640 static ssize_t disk_events_show(struct device *dev, 1641 struct device_attribute *attr, char *buf) 1642 { 1643 struct gendisk *disk = dev_to_disk(dev); 1644 1645 return __disk_events_show(disk->events, buf); 1646 } 1647 1648 static ssize_t disk_events_async_show(struct device *dev, 1649 struct device_attribute *attr, char *buf) 1650 { 1651 struct gendisk *disk = dev_to_disk(dev); 1652 1653 return __disk_events_show(disk->async_events, buf); 1654 } 1655 1656 static ssize_t disk_events_poll_msecs_show(struct device *dev, 1657 struct device_attribute *attr, 1658 char *buf) 1659 { 1660 struct gendisk *disk = dev_to_disk(dev); 1661 1662 return sprintf(buf, "%ld\n", disk->ev->poll_msecs); 1663 } 1664 1665 static ssize_t disk_events_poll_msecs_store(struct device *dev, 1666 struct device_attribute *attr, 1667 const char *buf, size_t count) 1668 { 1669 struct gendisk *disk = dev_to_disk(dev); 1670 long intv; 1671 1672 if (!count || !sscanf(buf, "%ld", &intv)) 1673 return -EINVAL; 1674 1675 if (intv < 0 && intv != -1) 1676 return -EINVAL; 1677 1678 disk_block_events(disk); 1679 disk->ev->poll_msecs = intv; 1680 __disk_unblock_events(disk, true); 1681 1682 return count; 1683 } 1684 1685 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL); 1686 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL); 1687 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR, 1688 disk_events_poll_msecs_show, 1689 disk_events_poll_msecs_store); 1690 1691 static const struct attribute *disk_events_attrs[] = { 1692 &dev_attr_events.attr, 1693 &dev_attr_events_async.attr, 1694 &dev_attr_events_poll_msecs.attr, 1695 NULL, 1696 }; 1697 1698 /* 1699 * The default polling interval can be specified by the kernel 1700 * parameter block.events_dfl_poll_msecs which defaults to 0 1701 * (disable). This can also be modified runtime by writing to 1702 * /sys/module/block/events_dfl_poll_msecs. 1703 */ 1704 static int disk_events_set_dfl_poll_msecs(const char *val, 1705 const struct kernel_param *kp) 1706 { 1707 struct disk_events *ev; 1708 int ret; 1709 1710 ret = param_set_ulong(val, kp); 1711 if (ret < 0) 1712 return ret; 1713 1714 mutex_lock(&disk_events_mutex); 1715 1716 list_for_each_entry(ev, &disk_events, node) 1717 disk_flush_events(ev->disk, 0); 1718 1719 mutex_unlock(&disk_events_mutex); 1720 1721 return 0; 1722 } 1723 1724 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = { 1725 .set = disk_events_set_dfl_poll_msecs, 1726 .get = param_get_ulong, 1727 }; 1728 1729 #undef MODULE_PARAM_PREFIX 1730 #define MODULE_PARAM_PREFIX "block." 1731 1732 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops, 1733 &disk_events_dfl_poll_msecs, 0644); 1734 1735 /* 1736 * disk_{add|del|release}_events - initialize and destroy disk_events. 1737 */ 1738 static void disk_add_events(struct gendisk *disk) 1739 { 1740 struct disk_events *ev; 1741 1742 if (!disk->fops->check_events) 1743 return; 1744 1745 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1746 if (!ev) { 1747 pr_warn("%s: failed to initialize events\n", disk->disk_name); 1748 return; 1749 } 1750 1751 if (sysfs_create_files(&disk_to_dev(disk)->kobj, 1752 disk_events_attrs) < 0) { 1753 pr_warn("%s: failed to create sysfs files for events\n", 1754 disk->disk_name); 1755 kfree(ev); 1756 return; 1757 } 1758 1759 disk->ev = ev; 1760 1761 INIT_LIST_HEAD(&ev->node); 1762 ev->disk = disk; 1763 spin_lock_init(&ev->lock); 1764 mutex_init(&ev->block_mutex); 1765 ev->block = 1; 1766 ev->poll_msecs = -1; 1767 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn); 1768 1769 mutex_lock(&disk_events_mutex); 1770 list_add_tail(&ev->node, &disk_events); 1771 mutex_unlock(&disk_events_mutex); 1772 1773 /* 1774 * Block count is initialized to 1 and the following initial 1775 * unblock kicks it into action. 1776 */ 1777 __disk_unblock_events(disk, true); 1778 } 1779 1780 static void disk_del_events(struct gendisk *disk) 1781 { 1782 if (!disk->ev) 1783 return; 1784 1785 disk_block_events(disk); 1786 1787 mutex_lock(&disk_events_mutex); 1788 list_del_init(&disk->ev->node); 1789 mutex_unlock(&disk_events_mutex); 1790 1791 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs); 1792 } 1793 1794 static void disk_release_events(struct gendisk *disk) 1795 { 1796 /* the block count should be 1 from disk_del_events() */ 1797 WARN_ON_ONCE(disk->ev && disk->ev->block != 1); 1798 kfree(disk->ev); 1799 } 1800