xref: /linux/block/genhd.c (revision 6084a6e23c971ef703229ee1aec68d01688578d6)
1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/init.h>
12 #include <linux/spinlock.h>
13 #include <linux/proc_fs.h>
14 #include <linux/seq_file.h>
15 #include <linux/slab.h>
16 #include <linux/kmod.h>
17 #include <linux/kobj_map.h>
18 #include <linux/mutex.h>
19 #include <linux/idr.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 
23 #include "blk.h"
24 
25 static DEFINE_MUTEX(block_class_lock);
26 struct kobject *block_depr;
27 
28 /* for extended dynamic devt allocation, currently only one major is used */
29 #define NR_EXT_DEVT		(1 << MINORBITS)
30 
31 /* For extended devt allocation.  ext_devt_mutex prevents look up
32  * results from going away underneath its user.
33  */
34 static DEFINE_MUTEX(ext_devt_mutex);
35 static DEFINE_IDR(ext_devt_idr);
36 
37 static struct device_type disk_type;
38 
39 static void disk_check_events(struct disk_events *ev,
40 			      unsigned int *clearing_ptr);
41 static void disk_alloc_events(struct gendisk *disk);
42 static void disk_add_events(struct gendisk *disk);
43 static void disk_del_events(struct gendisk *disk);
44 static void disk_release_events(struct gendisk *disk);
45 
46 /**
47  * disk_get_part - get partition
48  * @disk: disk to look partition from
49  * @partno: partition number
50  *
51  * Look for partition @partno from @disk.  If found, increment
52  * reference count and return it.
53  *
54  * CONTEXT:
55  * Don't care.
56  *
57  * RETURNS:
58  * Pointer to the found partition on success, NULL if not found.
59  */
60 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
61 {
62 	struct hd_struct *part = NULL;
63 	struct disk_part_tbl *ptbl;
64 
65 	if (unlikely(partno < 0))
66 		return NULL;
67 
68 	rcu_read_lock();
69 
70 	ptbl = rcu_dereference(disk->part_tbl);
71 	if (likely(partno < ptbl->len)) {
72 		part = rcu_dereference(ptbl->part[partno]);
73 		if (part)
74 			get_device(part_to_dev(part));
75 	}
76 
77 	rcu_read_unlock();
78 
79 	return part;
80 }
81 EXPORT_SYMBOL_GPL(disk_get_part);
82 
83 /**
84  * disk_part_iter_init - initialize partition iterator
85  * @piter: iterator to initialize
86  * @disk: disk to iterate over
87  * @flags: DISK_PITER_* flags
88  *
89  * Initialize @piter so that it iterates over partitions of @disk.
90  *
91  * CONTEXT:
92  * Don't care.
93  */
94 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
95 			  unsigned int flags)
96 {
97 	struct disk_part_tbl *ptbl;
98 
99 	rcu_read_lock();
100 	ptbl = rcu_dereference(disk->part_tbl);
101 
102 	piter->disk = disk;
103 	piter->part = NULL;
104 
105 	if (flags & DISK_PITER_REVERSE)
106 		piter->idx = ptbl->len - 1;
107 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
108 		piter->idx = 0;
109 	else
110 		piter->idx = 1;
111 
112 	piter->flags = flags;
113 
114 	rcu_read_unlock();
115 }
116 EXPORT_SYMBOL_GPL(disk_part_iter_init);
117 
118 /**
119  * disk_part_iter_next - proceed iterator to the next partition and return it
120  * @piter: iterator of interest
121  *
122  * Proceed @piter to the next partition and return it.
123  *
124  * CONTEXT:
125  * Don't care.
126  */
127 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
128 {
129 	struct disk_part_tbl *ptbl;
130 	int inc, end;
131 
132 	/* put the last partition */
133 	disk_put_part(piter->part);
134 	piter->part = NULL;
135 
136 	/* get part_tbl */
137 	rcu_read_lock();
138 	ptbl = rcu_dereference(piter->disk->part_tbl);
139 
140 	/* determine iteration parameters */
141 	if (piter->flags & DISK_PITER_REVERSE) {
142 		inc = -1;
143 		if (piter->flags & (DISK_PITER_INCL_PART0 |
144 				    DISK_PITER_INCL_EMPTY_PART0))
145 			end = -1;
146 		else
147 			end = 0;
148 	} else {
149 		inc = 1;
150 		end = ptbl->len;
151 	}
152 
153 	/* iterate to the next partition */
154 	for (; piter->idx != end; piter->idx += inc) {
155 		struct hd_struct *part;
156 
157 		part = rcu_dereference(ptbl->part[piter->idx]);
158 		if (!part)
159 			continue;
160 		if (!part_nr_sects_read(part) &&
161 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
162 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
163 		      piter->idx == 0))
164 			continue;
165 
166 		get_device(part_to_dev(part));
167 		piter->part = part;
168 		piter->idx += inc;
169 		break;
170 	}
171 
172 	rcu_read_unlock();
173 
174 	return piter->part;
175 }
176 EXPORT_SYMBOL_GPL(disk_part_iter_next);
177 
178 /**
179  * disk_part_iter_exit - finish up partition iteration
180  * @piter: iter of interest
181  *
182  * Called when iteration is over.  Cleans up @piter.
183  *
184  * CONTEXT:
185  * Don't care.
186  */
187 void disk_part_iter_exit(struct disk_part_iter *piter)
188 {
189 	disk_put_part(piter->part);
190 	piter->part = NULL;
191 }
192 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
193 
194 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
195 {
196 	return part->start_sect <= sector &&
197 		sector < part->start_sect + part_nr_sects_read(part);
198 }
199 
200 /**
201  * disk_map_sector_rcu - map sector to partition
202  * @disk: gendisk of interest
203  * @sector: sector to map
204  *
205  * Find out which partition @sector maps to on @disk.  This is
206  * primarily used for stats accounting.
207  *
208  * CONTEXT:
209  * RCU read locked.  The returned partition pointer is valid only
210  * while preemption is disabled.
211  *
212  * RETURNS:
213  * Found partition on success, part0 is returned if no partition matches
214  */
215 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
216 {
217 	struct disk_part_tbl *ptbl;
218 	struct hd_struct *part;
219 	int i;
220 
221 	ptbl = rcu_dereference(disk->part_tbl);
222 
223 	part = rcu_dereference(ptbl->last_lookup);
224 	if (part && sector_in_part(part, sector))
225 		return part;
226 
227 	for (i = 1; i < ptbl->len; i++) {
228 		part = rcu_dereference(ptbl->part[i]);
229 
230 		if (part && sector_in_part(part, sector)) {
231 			rcu_assign_pointer(ptbl->last_lookup, part);
232 			return part;
233 		}
234 	}
235 	return &disk->part0;
236 }
237 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
238 
239 /*
240  * Can be deleted altogether. Later.
241  *
242  */
243 static struct blk_major_name {
244 	struct blk_major_name *next;
245 	int major;
246 	char name[16];
247 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
248 
249 /* index in the above - for now: assume no multimajor ranges */
250 static inline int major_to_index(unsigned major)
251 {
252 	return major % BLKDEV_MAJOR_HASH_SIZE;
253 }
254 
255 #ifdef CONFIG_PROC_FS
256 void blkdev_show(struct seq_file *seqf, off_t offset)
257 {
258 	struct blk_major_name *dp;
259 
260 	if (offset < BLKDEV_MAJOR_HASH_SIZE) {
261 		mutex_lock(&block_class_lock);
262 		for (dp = major_names[offset]; dp; dp = dp->next)
263 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
264 		mutex_unlock(&block_class_lock);
265 	}
266 }
267 #endif /* CONFIG_PROC_FS */
268 
269 /**
270  * register_blkdev - register a new block device
271  *
272  * @major: the requested major device number [1..255]. If @major=0, try to
273  *         allocate any unused major number.
274  * @name: the name of the new block device as a zero terminated string
275  *
276  * The @name must be unique within the system.
277  *
278  * The return value depends on the @major input parameter.
279  *  - if a major device number was requested in range [1..255] then the
280  *    function returns zero on success, or a negative error code
281  *  - if any unused major number was requested with @major=0 parameter
282  *    then the return value is the allocated major number in range
283  *    [1..255] or a negative error code otherwise
284  */
285 int register_blkdev(unsigned int major, const char *name)
286 {
287 	struct blk_major_name **n, *p;
288 	int index, ret = 0;
289 
290 	mutex_lock(&block_class_lock);
291 
292 	/* temporary */
293 	if (major == 0) {
294 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
295 			if (major_names[index] == NULL)
296 				break;
297 		}
298 
299 		if (index == 0) {
300 			printk("register_blkdev: failed to get major for %s\n",
301 			       name);
302 			ret = -EBUSY;
303 			goto out;
304 		}
305 		major = index;
306 		ret = major;
307 	}
308 
309 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
310 	if (p == NULL) {
311 		ret = -ENOMEM;
312 		goto out;
313 	}
314 
315 	p->major = major;
316 	strlcpy(p->name, name, sizeof(p->name));
317 	p->next = NULL;
318 	index = major_to_index(major);
319 
320 	for (n = &major_names[index]; *n; n = &(*n)->next) {
321 		if ((*n)->major == major)
322 			break;
323 	}
324 	if (!*n)
325 		*n = p;
326 	else
327 		ret = -EBUSY;
328 
329 	if (ret < 0) {
330 		printk("register_blkdev: cannot get major %d for %s\n",
331 		       major, name);
332 		kfree(p);
333 	}
334 out:
335 	mutex_unlock(&block_class_lock);
336 	return ret;
337 }
338 
339 EXPORT_SYMBOL(register_blkdev);
340 
341 void unregister_blkdev(unsigned int major, const char *name)
342 {
343 	struct blk_major_name **n;
344 	struct blk_major_name *p = NULL;
345 	int index = major_to_index(major);
346 
347 	mutex_lock(&block_class_lock);
348 	for (n = &major_names[index]; *n; n = &(*n)->next)
349 		if ((*n)->major == major)
350 			break;
351 	if (!*n || strcmp((*n)->name, name)) {
352 		WARN_ON(1);
353 	} else {
354 		p = *n;
355 		*n = p->next;
356 	}
357 	mutex_unlock(&block_class_lock);
358 	kfree(p);
359 }
360 
361 EXPORT_SYMBOL(unregister_blkdev);
362 
363 static struct kobj_map *bdev_map;
364 
365 /**
366  * blk_mangle_minor - scatter minor numbers apart
367  * @minor: minor number to mangle
368  *
369  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
370  * is enabled.  Mangling twice gives the original value.
371  *
372  * RETURNS:
373  * Mangled value.
374  *
375  * CONTEXT:
376  * Don't care.
377  */
378 static int blk_mangle_minor(int minor)
379 {
380 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
381 	int i;
382 
383 	for (i = 0; i < MINORBITS / 2; i++) {
384 		int low = minor & (1 << i);
385 		int high = minor & (1 << (MINORBITS - 1 - i));
386 		int distance = MINORBITS - 1 - 2 * i;
387 
388 		minor ^= low | high;	/* clear both bits */
389 		low <<= distance;	/* swap the positions */
390 		high >>= distance;
391 		minor |= low | high;	/* and set */
392 	}
393 #endif
394 	return minor;
395 }
396 
397 /**
398  * blk_alloc_devt - allocate a dev_t for a partition
399  * @part: partition to allocate dev_t for
400  * @devt: out parameter for resulting dev_t
401  *
402  * Allocate a dev_t for block device.
403  *
404  * RETURNS:
405  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
406  * failure.
407  *
408  * CONTEXT:
409  * Might sleep.
410  */
411 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
412 {
413 	struct gendisk *disk = part_to_disk(part);
414 	int idx;
415 
416 	/* in consecutive minor range? */
417 	if (part->partno < disk->minors) {
418 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
419 		return 0;
420 	}
421 
422 	/* allocate ext devt */
423 	mutex_lock(&ext_devt_mutex);
424 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_KERNEL);
425 	mutex_unlock(&ext_devt_mutex);
426 	if (idx < 0)
427 		return idx == -ENOSPC ? -EBUSY : idx;
428 
429 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
430 	return 0;
431 }
432 
433 /**
434  * blk_free_devt - free a dev_t
435  * @devt: dev_t to free
436  *
437  * Free @devt which was allocated using blk_alloc_devt().
438  *
439  * CONTEXT:
440  * Might sleep.
441  */
442 void blk_free_devt(dev_t devt)
443 {
444 	might_sleep();
445 
446 	if (devt == MKDEV(0, 0))
447 		return;
448 
449 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
450 		mutex_lock(&ext_devt_mutex);
451 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
452 		mutex_unlock(&ext_devt_mutex);
453 	}
454 }
455 
456 static char *bdevt_str(dev_t devt, char *buf)
457 {
458 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
459 		char tbuf[BDEVT_SIZE];
460 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
461 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
462 	} else
463 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
464 
465 	return buf;
466 }
467 
468 /*
469  * Register device numbers dev..(dev+range-1)
470  * range must be nonzero
471  * The hash chain is sorted on range, so that subranges can override.
472  */
473 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
474 			 struct kobject *(*probe)(dev_t, int *, void *),
475 			 int (*lock)(dev_t, void *), void *data)
476 {
477 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
478 }
479 
480 EXPORT_SYMBOL(blk_register_region);
481 
482 void blk_unregister_region(dev_t devt, unsigned long range)
483 {
484 	kobj_unmap(bdev_map, devt, range);
485 }
486 
487 EXPORT_SYMBOL(blk_unregister_region);
488 
489 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
490 {
491 	struct gendisk *p = data;
492 
493 	return &disk_to_dev(p)->kobj;
494 }
495 
496 static int exact_lock(dev_t devt, void *data)
497 {
498 	struct gendisk *p = data;
499 
500 	if (!get_disk(p))
501 		return -1;
502 	return 0;
503 }
504 
505 static void register_disk(struct gendisk *disk)
506 {
507 	struct device *ddev = disk_to_dev(disk);
508 	struct block_device *bdev;
509 	struct disk_part_iter piter;
510 	struct hd_struct *part;
511 	int err;
512 
513 	ddev->parent = disk->driverfs_dev;
514 
515 	dev_set_name(ddev, "%s", disk->disk_name);
516 
517 	/* delay uevents, until we scanned partition table */
518 	dev_set_uevent_suppress(ddev, 1);
519 
520 	if (device_add(ddev))
521 		return;
522 	if (!sysfs_deprecated) {
523 		err = sysfs_create_link(block_depr, &ddev->kobj,
524 					kobject_name(&ddev->kobj));
525 		if (err) {
526 			device_del(ddev);
527 			return;
528 		}
529 	}
530 
531 	/*
532 	 * avoid probable deadlock caused by allocating memory with
533 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
534 	 * devices
535 	 */
536 	pm_runtime_set_memalloc_noio(ddev, true);
537 
538 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
539 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
540 
541 	/* No minors to use for partitions */
542 	if (!disk_part_scan_enabled(disk))
543 		goto exit;
544 
545 	/* No such device (e.g., media were just removed) */
546 	if (!get_capacity(disk))
547 		goto exit;
548 
549 	bdev = bdget_disk(disk, 0);
550 	if (!bdev)
551 		goto exit;
552 
553 	bdev->bd_invalidated = 1;
554 	err = blkdev_get(bdev, FMODE_READ, NULL);
555 	if (err < 0)
556 		goto exit;
557 	blkdev_put(bdev, FMODE_READ);
558 
559 exit:
560 	/* announce disk after possible partitions are created */
561 	dev_set_uevent_suppress(ddev, 0);
562 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
563 
564 	/* announce possible partitions */
565 	disk_part_iter_init(&piter, disk, 0);
566 	while ((part = disk_part_iter_next(&piter)))
567 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
568 	disk_part_iter_exit(&piter);
569 }
570 
571 /**
572  * add_disk - add partitioning information to kernel list
573  * @disk: per-device partitioning information
574  *
575  * This function registers the partitioning information in @disk
576  * with the kernel.
577  *
578  * FIXME: error handling
579  */
580 void add_disk(struct gendisk *disk)
581 {
582 	struct backing_dev_info *bdi;
583 	dev_t devt;
584 	int retval;
585 
586 	/* minors == 0 indicates to use ext devt from part0 and should
587 	 * be accompanied with EXT_DEVT flag.  Make sure all
588 	 * parameters make sense.
589 	 */
590 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
591 	WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
592 
593 	disk->flags |= GENHD_FL_UP;
594 
595 	retval = blk_alloc_devt(&disk->part0, &devt);
596 	if (retval) {
597 		WARN_ON(1);
598 		return;
599 	}
600 	disk_to_dev(disk)->devt = devt;
601 
602 	/* ->major and ->first_minor aren't supposed to be
603 	 * dereferenced from here on, but set them just in case.
604 	 */
605 	disk->major = MAJOR(devt);
606 	disk->first_minor = MINOR(devt);
607 
608 	disk_alloc_events(disk);
609 
610 	/* Register BDI before referencing it from bdev */
611 	bdi = &disk->queue->backing_dev_info;
612 	bdi_register_dev(bdi, disk_devt(disk));
613 
614 	blk_register_region(disk_devt(disk), disk->minors, NULL,
615 			    exact_match, exact_lock, disk);
616 	register_disk(disk);
617 	blk_register_queue(disk);
618 
619 	/*
620 	 * Take an extra ref on queue which will be put on disk_release()
621 	 * so that it sticks around as long as @disk is there.
622 	 */
623 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
624 
625 	retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
626 				   "bdi");
627 	WARN_ON(retval);
628 
629 	disk_add_events(disk);
630 }
631 EXPORT_SYMBOL(add_disk);
632 
633 void del_gendisk(struct gendisk *disk)
634 {
635 	struct disk_part_iter piter;
636 	struct hd_struct *part;
637 
638 	disk_del_events(disk);
639 
640 	/* invalidate stuff */
641 	disk_part_iter_init(&piter, disk,
642 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
643 	while ((part = disk_part_iter_next(&piter))) {
644 		invalidate_partition(disk, part->partno);
645 		delete_partition(disk, part->partno);
646 	}
647 	disk_part_iter_exit(&piter);
648 
649 	invalidate_partition(disk, 0);
650 	set_capacity(disk, 0);
651 	disk->flags &= ~GENHD_FL_UP;
652 
653 	sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
654 	bdi_unregister(&disk->queue->backing_dev_info);
655 	blk_unregister_queue(disk);
656 	blk_unregister_region(disk_devt(disk), disk->minors);
657 
658 	part_stat_set_all(&disk->part0, 0);
659 	disk->part0.stamp = 0;
660 
661 	kobject_put(disk->part0.holder_dir);
662 	kobject_put(disk->slave_dir);
663 	disk->driverfs_dev = NULL;
664 	if (!sysfs_deprecated)
665 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
666 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
667 	device_del(disk_to_dev(disk));
668 	blk_free_devt(disk_to_dev(disk)->devt);
669 }
670 EXPORT_SYMBOL(del_gendisk);
671 
672 /**
673  * get_gendisk - get partitioning information for a given device
674  * @devt: device to get partitioning information for
675  * @partno: returned partition index
676  *
677  * This function gets the structure containing partitioning
678  * information for the given device @devt.
679  */
680 struct gendisk *get_gendisk(dev_t devt, int *partno)
681 {
682 	struct gendisk *disk = NULL;
683 
684 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
685 		struct kobject *kobj;
686 
687 		kobj = kobj_lookup(bdev_map, devt, partno);
688 		if (kobj)
689 			disk = dev_to_disk(kobj_to_dev(kobj));
690 	} else {
691 		struct hd_struct *part;
692 
693 		mutex_lock(&ext_devt_mutex);
694 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
695 		if (part && get_disk(part_to_disk(part))) {
696 			*partno = part->partno;
697 			disk = part_to_disk(part);
698 		}
699 		mutex_unlock(&ext_devt_mutex);
700 	}
701 
702 	return disk;
703 }
704 EXPORT_SYMBOL(get_gendisk);
705 
706 /**
707  * bdget_disk - do bdget() by gendisk and partition number
708  * @disk: gendisk of interest
709  * @partno: partition number
710  *
711  * Find partition @partno from @disk, do bdget() on it.
712  *
713  * CONTEXT:
714  * Don't care.
715  *
716  * RETURNS:
717  * Resulting block_device on success, NULL on failure.
718  */
719 struct block_device *bdget_disk(struct gendisk *disk, int partno)
720 {
721 	struct hd_struct *part;
722 	struct block_device *bdev = NULL;
723 
724 	part = disk_get_part(disk, partno);
725 	if (part)
726 		bdev = bdget(part_devt(part));
727 	disk_put_part(part);
728 
729 	return bdev;
730 }
731 EXPORT_SYMBOL(bdget_disk);
732 
733 /*
734  * print a full list of all partitions - intended for places where the root
735  * filesystem can't be mounted and thus to give the victim some idea of what
736  * went wrong
737  */
738 void __init printk_all_partitions(void)
739 {
740 	struct class_dev_iter iter;
741 	struct device *dev;
742 
743 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
744 	while ((dev = class_dev_iter_next(&iter))) {
745 		struct gendisk *disk = dev_to_disk(dev);
746 		struct disk_part_iter piter;
747 		struct hd_struct *part;
748 		char name_buf[BDEVNAME_SIZE];
749 		char devt_buf[BDEVT_SIZE];
750 
751 		/*
752 		 * Don't show empty devices or things that have been
753 		 * suppressed
754 		 */
755 		if (get_capacity(disk) == 0 ||
756 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
757 			continue;
758 
759 		/*
760 		 * Note, unlike /proc/partitions, I am showing the
761 		 * numbers in hex - the same format as the root=
762 		 * option takes.
763 		 */
764 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
765 		while ((part = disk_part_iter_next(&piter))) {
766 			bool is_part0 = part == &disk->part0;
767 
768 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
769 			       bdevt_str(part_devt(part), devt_buf),
770 			       (unsigned long long)part_nr_sects_read(part) >> 1
771 			       , disk_name(disk, part->partno, name_buf),
772 			       part->info ? part->info->uuid : "");
773 			if (is_part0) {
774 				if (disk->driverfs_dev != NULL &&
775 				    disk->driverfs_dev->driver != NULL)
776 					printk(" driver: %s\n",
777 					      disk->driverfs_dev->driver->name);
778 				else
779 					printk(" (driver?)\n");
780 			} else
781 				printk("\n");
782 		}
783 		disk_part_iter_exit(&piter);
784 	}
785 	class_dev_iter_exit(&iter);
786 }
787 
788 #ifdef CONFIG_PROC_FS
789 /* iterator */
790 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
791 {
792 	loff_t skip = *pos;
793 	struct class_dev_iter *iter;
794 	struct device *dev;
795 
796 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
797 	if (!iter)
798 		return ERR_PTR(-ENOMEM);
799 
800 	seqf->private = iter;
801 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
802 	do {
803 		dev = class_dev_iter_next(iter);
804 		if (!dev)
805 			return NULL;
806 	} while (skip--);
807 
808 	return dev_to_disk(dev);
809 }
810 
811 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
812 {
813 	struct device *dev;
814 
815 	(*pos)++;
816 	dev = class_dev_iter_next(seqf->private);
817 	if (dev)
818 		return dev_to_disk(dev);
819 
820 	return NULL;
821 }
822 
823 static void disk_seqf_stop(struct seq_file *seqf, void *v)
824 {
825 	struct class_dev_iter *iter = seqf->private;
826 
827 	/* stop is called even after start failed :-( */
828 	if (iter) {
829 		class_dev_iter_exit(iter);
830 		kfree(iter);
831 	}
832 }
833 
834 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
835 {
836 	void *p;
837 
838 	p = disk_seqf_start(seqf, pos);
839 	if (!IS_ERR_OR_NULL(p) && !*pos)
840 		seq_puts(seqf, "major minor  #blocks  name\n\n");
841 	return p;
842 }
843 
844 static int show_partition(struct seq_file *seqf, void *v)
845 {
846 	struct gendisk *sgp = v;
847 	struct disk_part_iter piter;
848 	struct hd_struct *part;
849 	char buf[BDEVNAME_SIZE];
850 
851 	/* Don't show non-partitionable removeable devices or empty devices */
852 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
853 				   (sgp->flags & GENHD_FL_REMOVABLE)))
854 		return 0;
855 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
856 		return 0;
857 
858 	/* show the full disk and all non-0 size partitions of it */
859 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
860 	while ((part = disk_part_iter_next(&piter)))
861 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
862 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
863 			   (unsigned long long)part_nr_sects_read(part) >> 1,
864 			   disk_name(sgp, part->partno, buf));
865 	disk_part_iter_exit(&piter);
866 
867 	return 0;
868 }
869 
870 static const struct seq_operations partitions_op = {
871 	.start	= show_partition_start,
872 	.next	= disk_seqf_next,
873 	.stop	= disk_seqf_stop,
874 	.show	= show_partition
875 };
876 
877 static int partitions_open(struct inode *inode, struct file *file)
878 {
879 	return seq_open(file, &partitions_op);
880 }
881 
882 static const struct file_operations proc_partitions_operations = {
883 	.open		= partitions_open,
884 	.read		= seq_read,
885 	.llseek		= seq_lseek,
886 	.release	= seq_release,
887 };
888 #endif
889 
890 
891 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
892 {
893 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
894 		/* Make old-style 2.4 aliases work */
895 		request_module("block-major-%d", MAJOR(devt));
896 	return NULL;
897 }
898 
899 static int __init genhd_device_init(void)
900 {
901 	int error;
902 
903 	block_class.dev_kobj = sysfs_dev_block_kobj;
904 	error = class_register(&block_class);
905 	if (unlikely(error))
906 		return error;
907 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
908 	blk_dev_init();
909 
910 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
911 
912 	/* create top-level block dir */
913 	if (!sysfs_deprecated)
914 		block_depr = kobject_create_and_add("block", NULL);
915 	return 0;
916 }
917 
918 subsys_initcall(genhd_device_init);
919 
920 static ssize_t disk_range_show(struct device *dev,
921 			       struct device_attribute *attr, char *buf)
922 {
923 	struct gendisk *disk = dev_to_disk(dev);
924 
925 	return sprintf(buf, "%d\n", disk->minors);
926 }
927 
928 static ssize_t disk_ext_range_show(struct device *dev,
929 				   struct device_attribute *attr, char *buf)
930 {
931 	struct gendisk *disk = dev_to_disk(dev);
932 
933 	return sprintf(buf, "%d\n", disk_max_parts(disk));
934 }
935 
936 static ssize_t disk_removable_show(struct device *dev,
937 				   struct device_attribute *attr, char *buf)
938 {
939 	struct gendisk *disk = dev_to_disk(dev);
940 
941 	return sprintf(buf, "%d\n",
942 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
943 }
944 
945 static ssize_t disk_ro_show(struct device *dev,
946 				   struct device_attribute *attr, char *buf)
947 {
948 	struct gendisk *disk = dev_to_disk(dev);
949 
950 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
951 }
952 
953 static ssize_t disk_capability_show(struct device *dev,
954 				    struct device_attribute *attr, char *buf)
955 {
956 	struct gendisk *disk = dev_to_disk(dev);
957 
958 	return sprintf(buf, "%x\n", disk->flags);
959 }
960 
961 static ssize_t disk_alignment_offset_show(struct device *dev,
962 					  struct device_attribute *attr,
963 					  char *buf)
964 {
965 	struct gendisk *disk = dev_to_disk(dev);
966 
967 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
968 }
969 
970 static ssize_t disk_discard_alignment_show(struct device *dev,
971 					   struct device_attribute *attr,
972 					   char *buf)
973 {
974 	struct gendisk *disk = dev_to_disk(dev);
975 
976 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
977 }
978 
979 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
980 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
981 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
982 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
983 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
984 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
985 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
986 		   NULL);
987 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
988 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
989 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
990 #ifdef CONFIG_FAIL_MAKE_REQUEST
991 static struct device_attribute dev_attr_fail =
992 	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
993 #endif
994 #ifdef CONFIG_FAIL_IO_TIMEOUT
995 static struct device_attribute dev_attr_fail_timeout =
996 	__ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
997 		part_timeout_store);
998 #endif
999 
1000 static struct attribute *disk_attrs[] = {
1001 	&dev_attr_range.attr,
1002 	&dev_attr_ext_range.attr,
1003 	&dev_attr_removable.attr,
1004 	&dev_attr_ro.attr,
1005 	&dev_attr_size.attr,
1006 	&dev_attr_alignment_offset.attr,
1007 	&dev_attr_discard_alignment.attr,
1008 	&dev_attr_capability.attr,
1009 	&dev_attr_stat.attr,
1010 	&dev_attr_inflight.attr,
1011 #ifdef CONFIG_FAIL_MAKE_REQUEST
1012 	&dev_attr_fail.attr,
1013 #endif
1014 #ifdef CONFIG_FAIL_IO_TIMEOUT
1015 	&dev_attr_fail_timeout.attr,
1016 #endif
1017 	NULL
1018 };
1019 
1020 static struct attribute_group disk_attr_group = {
1021 	.attrs = disk_attrs,
1022 };
1023 
1024 static const struct attribute_group *disk_attr_groups[] = {
1025 	&disk_attr_group,
1026 	NULL
1027 };
1028 
1029 /**
1030  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1031  * @disk: disk to replace part_tbl for
1032  * @new_ptbl: new part_tbl to install
1033  *
1034  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1035  * original ptbl is freed using RCU callback.
1036  *
1037  * LOCKING:
1038  * Matching bd_mutx locked.
1039  */
1040 static void disk_replace_part_tbl(struct gendisk *disk,
1041 				  struct disk_part_tbl *new_ptbl)
1042 {
1043 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1044 
1045 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1046 
1047 	if (old_ptbl) {
1048 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1049 		kfree_rcu(old_ptbl, rcu_head);
1050 	}
1051 }
1052 
1053 /**
1054  * disk_expand_part_tbl - expand disk->part_tbl
1055  * @disk: disk to expand part_tbl for
1056  * @partno: expand such that this partno can fit in
1057  *
1058  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1059  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1060  *
1061  * LOCKING:
1062  * Matching bd_mutex locked, might sleep.
1063  *
1064  * RETURNS:
1065  * 0 on success, -errno on failure.
1066  */
1067 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1068 {
1069 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1070 	struct disk_part_tbl *new_ptbl;
1071 	int len = old_ptbl ? old_ptbl->len : 0;
1072 	int target = partno + 1;
1073 	size_t size;
1074 	int i;
1075 
1076 	/* disk_max_parts() is zero during initialization, ignore if so */
1077 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1078 		return -EINVAL;
1079 
1080 	if (target <= len)
1081 		return 0;
1082 
1083 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1084 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1085 	if (!new_ptbl)
1086 		return -ENOMEM;
1087 
1088 	new_ptbl->len = target;
1089 
1090 	for (i = 0; i < len; i++)
1091 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1092 
1093 	disk_replace_part_tbl(disk, new_ptbl);
1094 	return 0;
1095 }
1096 
1097 static void disk_release(struct device *dev)
1098 {
1099 	struct gendisk *disk = dev_to_disk(dev);
1100 
1101 	disk_release_events(disk);
1102 	kfree(disk->random);
1103 	disk_replace_part_tbl(disk, NULL);
1104 	free_part_stats(&disk->part0);
1105 	free_part_info(&disk->part0);
1106 	if (disk->queue)
1107 		blk_put_queue(disk->queue);
1108 	kfree(disk);
1109 }
1110 struct class block_class = {
1111 	.name		= "block",
1112 };
1113 
1114 static char *block_devnode(struct device *dev, umode_t *mode,
1115 			   kuid_t *uid, kgid_t *gid)
1116 {
1117 	struct gendisk *disk = dev_to_disk(dev);
1118 
1119 	if (disk->devnode)
1120 		return disk->devnode(disk, mode);
1121 	return NULL;
1122 }
1123 
1124 static struct device_type disk_type = {
1125 	.name		= "disk",
1126 	.groups		= disk_attr_groups,
1127 	.release	= disk_release,
1128 	.devnode	= block_devnode,
1129 };
1130 
1131 #ifdef CONFIG_PROC_FS
1132 /*
1133  * aggregate disk stat collector.  Uses the same stats that the sysfs
1134  * entries do, above, but makes them available through one seq_file.
1135  *
1136  * The output looks suspiciously like /proc/partitions with a bunch of
1137  * extra fields.
1138  */
1139 static int diskstats_show(struct seq_file *seqf, void *v)
1140 {
1141 	struct gendisk *gp = v;
1142 	struct disk_part_iter piter;
1143 	struct hd_struct *hd;
1144 	char buf[BDEVNAME_SIZE];
1145 	int cpu;
1146 
1147 	/*
1148 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1149 		seq_puts(seqf,	"major minor name"
1150 				"     rio rmerge rsect ruse wio wmerge "
1151 				"wsect wuse running use aveq"
1152 				"\n\n");
1153 	*/
1154 
1155 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1156 	while ((hd = disk_part_iter_next(&piter))) {
1157 		cpu = part_stat_lock();
1158 		part_round_stats(cpu, hd);
1159 		part_stat_unlock();
1160 		seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1161 			   "%u %lu %lu %lu %u %u %u %u\n",
1162 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1163 			   disk_name(gp, hd->partno, buf),
1164 			   part_stat_read(hd, ios[READ]),
1165 			   part_stat_read(hd, merges[READ]),
1166 			   part_stat_read(hd, sectors[READ]),
1167 			   jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1168 			   part_stat_read(hd, ios[WRITE]),
1169 			   part_stat_read(hd, merges[WRITE]),
1170 			   part_stat_read(hd, sectors[WRITE]),
1171 			   jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1172 			   part_in_flight(hd),
1173 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1174 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1175 			);
1176 	}
1177 	disk_part_iter_exit(&piter);
1178 
1179 	return 0;
1180 }
1181 
1182 static const struct seq_operations diskstats_op = {
1183 	.start	= disk_seqf_start,
1184 	.next	= disk_seqf_next,
1185 	.stop	= disk_seqf_stop,
1186 	.show	= diskstats_show
1187 };
1188 
1189 static int diskstats_open(struct inode *inode, struct file *file)
1190 {
1191 	return seq_open(file, &diskstats_op);
1192 }
1193 
1194 static const struct file_operations proc_diskstats_operations = {
1195 	.open		= diskstats_open,
1196 	.read		= seq_read,
1197 	.llseek		= seq_lseek,
1198 	.release	= seq_release,
1199 };
1200 
1201 static int __init proc_genhd_init(void)
1202 {
1203 	proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1204 	proc_create("partitions", 0, NULL, &proc_partitions_operations);
1205 	return 0;
1206 }
1207 module_init(proc_genhd_init);
1208 #endif /* CONFIG_PROC_FS */
1209 
1210 dev_t blk_lookup_devt(const char *name, int partno)
1211 {
1212 	dev_t devt = MKDEV(0, 0);
1213 	struct class_dev_iter iter;
1214 	struct device *dev;
1215 
1216 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1217 	while ((dev = class_dev_iter_next(&iter))) {
1218 		struct gendisk *disk = dev_to_disk(dev);
1219 		struct hd_struct *part;
1220 
1221 		if (strcmp(dev_name(dev), name))
1222 			continue;
1223 
1224 		if (partno < disk->minors) {
1225 			/* We need to return the right devno, even
1226 			 * if the partition doesn't exist yet.
1227 			 */
1228 			devt = MKDEV(MAJOR(dev->devt),
1229 				     MINOR(dev->devt) + partno);
1230 			break;
1231 		}
1232 		part = disk_get_part(disk, partno);
1233 		if (part) {
1234 			devt = part_devt(part);
1235 			disk_put_part(part);
1236 			break;
1237 		}
1238 		disk_put_part(part);
1239 	}
1240 	class_dev_iter_exit(&iter);
1241 	return devt;
1242 }
1243 EXPORT_SYMBOL(blk_lookup_devt);
1244 
1245 struct gendisk *alloc_disk(int minors)
1246 {
1247 	return alloc_disk_node(minors, NUMA_NO_NODE);
1248 }
1249 EXPORT_SYMBOL(alloc_disk);
1250 
1251 struct gendisk *alloc_disk_node(int minors, int node_id)
1252 {
1253 	struct gendisk *disk;
1254 
1255 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1256 	if (disk) {
1257 		if (!init_part_stats(&disk->part0)) {
1258 			kfree(disk);
1259 			return NULL;
1260 		}
1261 		disk->node_id = node_id;
1262 		if (disk_expand_part_tbl(disk, 0)) {
1263 			free_part_stats(&disk->part0);
1264 			kfree(disk);
1265 			return NULL;
1266 		}
1267 		disk->part_tbl->part[0] = &disk->part0;
1268 
1269 		/*
1270 		 * set_capacity() and get_capacity() currently don't use
1271 		 * seqcounter to read/update the part0->nr_sects. Still init
1272 		 * the counter as we can read the sectors in IO submission
1273 		 * patch using seqence counters.
1274 		 *
1275 		 * TODO: Ideally set_capacity() and get_capacity() should be
1276 		 * converted to make use of bd_mutex and sequence counters.
1277 		 */
1278 		seqcount_init(&disk->part0.nr_sects_seq);
1279 		hd_ref_init(&disk->part0);
1280 
1281 		disk->minors = minors;
1282 		rand_initialize_disk(disk);
1283 		disk_to_dev(disk)->class = &block_class;
1284 		disk_to_dev(disk)->type = &disk_type;
1285 		device_initialize(disk_to_dev(disk));
1286 	}
1287 	return disk;
1288 }
1289 EXPORT_SYMBOL(alloc_disk_node);
1290 
1291 struct kobject *get_disk(struct gendisk *disk)
1292 {
1293 	struct module *owner;
1294 	struct kobject *kobj;
1295 
1296 	if (!disk->fops)
1297 		return NULL;
1298 	owner = disk->fops->owner;
1299 	if (owner && !try_module_get(owner))
1300 		return NULL;
1301 	kobj = kobject_get(&disk_to_dev(disk)->kobj);
1302 	if (kobj == NULL) {
1303 		module_put(owner);
1304 		return NULL;
1305 	}
1306 	return kobj;
1307 
1308 }
1309 
1310 EXPORT_SYMBOL(get_disk);
1311 
1312 void put_disk(struct gendisk *disk)
1313 {
1314 	if (disk)
1315 		kobject_put(&disk_to_dev(disk)->kobj);
1316 }
1317 
1318 EXPORT_SYMBOL(put_disk);
1319 
1320 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1321 {
1322 	char event[] = "DISK_RO=1";
1323 	char *envp[] = { event, NULL };
1324 
1325 	if (!ro)
1326 		event[8] = '0';
1327 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1328 }
1329 
1330 void set_device_ro(struct block_device *bdev, int flag)
1331 {
1332 	bdev->bd_part->policy = flag;
1333 }
1334 
1335 EXPORT_SYMBOL(set_device_ro);
1336 
1337 void set_disk_ro(struct gendisk *disk, int flag)
1338 {
1339 	struct disk_part_iter piter;
1340 	struct hd_struct *part;
1341 
1342 	if (disk->part0.policy != flag) {
1343 		set_disk_ro_uevent(disk, flag);
1344 		disk->part0.policy = flag;
1345 	}
1346 
1347 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1348 	while ((part = disk_part_iter_next(&piter)))
1349 		part->policy = flag;
1350 	disk_part_iter_exit(&piter);
1351 }
1352 
1353 EXPORT_SYMBOL(set_disk_ro);
1354 
1355 int bdev_read_only(struct block_device *bdev)
1356 {
1357 	if (!bdev)
1358 		return 0;
1359 	return bdev->bd_part->policy;
1360 }
1361 
1362 EXPORT_SYMBOL(bdev_read_only);
1363 
1364 int invalidate_partition(struct gendisk *disk, int partno)
1365 {
1366 	int res = 0;
1367 	struct block_device *bdev = bdget_disk(disk, partno);
1368 	if (bdev) {
1369 		fsync_bdev(bdev);
1370 		res = __invalidate_device(bdev, true);
1371 		bdput(bdev);
1372 	}
1373 	return res;
1374 }
1375 
1376 EXPORT_SYMBOL(invalidate_partition);
1377 
1378 /*
1379  * Disk events - monitor disk events like media change and eject request.
1380  */
1381 struct disk_events {
1382 	struct list_head	node;		/* all disk_event's */
1383 	struct gendisk		*disk;		/* the associated disk */
1384 	spinlock_t		lock;
1385 
1386 	struct mutex		block_mutex;	/* protects blocking */
1387 	int			block;		/* event blocking depth */
1388 	unsigned int		pending;	/* events already sent out */
1389 	unsigned int		clearing;	/* events being cleared */
1390 
1391 	long			poll_msecs;	/* interval, -1 for default */
1392 	struct delayed_work	dwork;
1393 };
1394 
1395 static const char *disk_events_strs[] = {
1396 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1397 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1398 };
1399 
1400 static char *disk_uevents[] = {
1401 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1402 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1403 };
1404 
1405 /* list of all disk_events */
1406 static DEFINE_MUTEX(disk_events_mutex);
1407 static LIST_HEAD(disk_events);
1408 
1409 /* disable in-kernel polling by default */
1410 static unsigned long disk_events_dfl_poll_msecs	= 0;
1411 
1412 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1413 {
1414 	struct disk_events *ev = disk->ev;
1415 	long intv_msecs = 0;
1416 
1417 	/*
1418 	 * If device-specific poll interval is set, always use it.  If
1419 	 * the default is being used, poll iff there are events which
1420 	 * can't be monitored asynchronously.
1421 	 */
1422 	if (ev->poll_msecs >= 0)
1423 		intv_msecs = ev->poll_msecs;
1424 	else if (disk->events & ~disk->async_events)
1425 		intv_msecs = disk_events_dfl_poll_msecs;
1426 
1427 	return msecs_to_jiffies(intv_msecs);
1428 }
1429 
1430 /**
1431  * disk_block_events - block and flush disk event checking
1432  * @disk: disk to block events for
1433  *
1434  * On return from this function, it is guaranteed that event checking
1435  * isn't in progress and won't happen until unblocked by
1436  * disk_unblock_events().  Events blocking is counted and the actual
1437  * unblocking happens after the matching number of unblocks are done.
1438  *
1439  * Note that this intentionally does not block event checking from
1440  * disk_clear_events().
1441  *
1442  * CONTEXT:
1443  * Might sleep.
1444  */
1445 void disk_block_events(struct gendisk *disk)
1446 {
1447 	struct disk_events *ev = disk->ev;
1448 	unsigned long flags;
1449 	bool cancel;
1450 
1451 	if (!ev)
1452 		return;
1453 
1454 	/*
1455 	 * Outer mutex ensures that the first blocker completes canceling
1456 	 * the event work before further blockers are allowed to finish.
1457 	 */
1458 	mutex_lock(&ev->block_mutex);
1459 
1460 	spin_lock_irqsave(&ev->lock, flags);
1461 	cancel = !ev->block++;
1462 	spin_unlock_irqrestore(&ev->lock, flags);
1463 
1464 	if (cancel)
1465 		cancel_delayed_work_sync(&disk->ev->dwork);
1466 
1467 	mutex_unlock(&ev->block_mutex);
1468 }
1469 
1470 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1471 {
1472 	struct disk_events *ev = disk->ev;
1473 	unsigned long intv;
1474 	unsigned long flags;
1475 
1476 	spin_lock_irqsave(&ev->lock, flags);
1477 
1478 	if (WARN_ON_ONCE(ev->block <= 0))
1479 		goto out_unlock;
1480 
1481 	if (--ev->block)
1482 		goto out_unlock;
1483 
1484 	/*
1485 	 * Not exactly a latency critical operation, set poll timer
1486 	 * slack to 25% and kick event check.
1487 	 */
1488 	intv = disk_events_poll_jiffies(disk);
1489 	set_timer_slack(&ev->dwork.timer, intv / 4);
1490 	if (check_now)
1491 		queue_delayed_work(system_freezable_power_efficient_wq,
1492 				&ev->dwork, 0);
1493 	else if (intv)
1494 		queue_delayed_work(system_freezable_power_efficient_wq,
1495 				&ev->dwork, intv);
1496 out_unlock:
1497 	spin_unlock_irqrestore(&ev->lock, flags);
1498 }
1499 
1500 /**
1501  * disk_unblock_events - unblock disk event checking
1502  * @disk: disk to unblock events for
1503  *
1504  * Undo disk_block_events().  When the block count reaches zero, it
1505  * starts events polling if configured.
1506  *
1507  * CONTEXT:
1508  * Don't care.  Safe to call from irq context.
1509  */
1510 void disk_unblock_events(struct gendisk *disk)
1511 {
1512 	if (disk->ev)
1513 		__disk_unblock_events(disk, false);
1514 }
1515 
1516 /**
1517  * disk_flush_events - schedule immediate event checking and flushing
1518  * @disk: disk to check and flush events for
1519  * @mask: events to flush
1520  *
1521  * Schedule immediate event checking on @disk if not blocked.  Events in
1522  * @mask are scheduled to be cleared from the driver.  Note that this
1523  * doesn't clear the events from @disk->ev.
1524  *
1525  * CONTEXT:
1526  * If @mask is non-zero must be called with bdev->bd_mutex held.
1527  */
1528 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1529 {
1530 	struct disk_events *ev = disk->ev;
1531 
1532 	if (!ev)
1533 		return;
1534 
1535 	spin_lock_irq(&ev->lock);
1536 	ev->clearing |= mask;
1537 	if (!ev->block)
1538 		mod_delayed_work(system_freezable_power_efficient_wq,
1539 				&ev->dwork, 0);
1540 	spin_unlock_irq(&ev->lock);
1541 }
1542 
1543 /**
1544  * disk_clear_events - synchronously check, clear and return pending events
1545  * @disk: disk to fetch and clear events from
1546  * @mask: mask of events to be fetched and clearted
1547  *
1548  * Disk events are synchronously checked and pending events in @mask
1549  * are cleared and returned.  This ignores the block count.
1550  *
1551  * CONTEXT:
1552  * Might sleep.
1553  */
1554 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1555 {
1556 	const struct block_device_operations *bdops = disk->fops;
1557 	struct disk_events *ev = disk->ev;
1558 	unsigned int pending;
1559 	unsigned int clearing = mask;
1560 
1561 	if (!ev) {
1562 		/* for drivers still using the old ->media_changed method */
1563 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1564 		    bdops->media_changed && bdops->media_changed(disk))
1565 			return DISK_EVENT_MEDIA_CHANGE;
1566 		return 0;
1567 	}
1568 
1569 	disk_block_events(disk);
1570 
1571 	/*
1572 	 * store the union of mask and ev->clearing on the stack so that the
1573 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1574 	 * can still be modified even if events are blocked).
1575 	 */
1576 	spin_lock_irq(&ev->lock);
1577 	clearing |= ev->clearing;
1578 	ev->clearing = 0;
1579 	spin_unlock_irq(&ev->lock);
1580 
1581 	disk_check_events(ev, &clearing);
1582 	/*
1583 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1584 	 * middle of this function, so we want to run the workfn without delay.
1585 	 */
1586 	__disk_unblock_events(disk, ev->clearing ? true : false);
1587 
1588 	/* then, fetch and clear pending events */
1589 	spin_lock_irq(&ev->lock);
1590 	pending = ev->pending & mask;
1591 	ev->pending &= ~mask;
1592 	spin_unlock_irq(&ev->lock);
1593 	WARN_ON_ONCE(clearing & mask);
1594 
1595 	return pending;
1596 }
1597 
1598 /*
1599  * Separate this part out so that a different pointer for clearing_ptr can be
1600  * passed in for disk_clear_events.
1601  */
1602 static void disk_events_workfn(struct work_struct *work)
1603 {
1604 	struct delayed_work *dwork = to_delayed_work(work);
1605 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1606 
1607 	disk_check_events(ev, &ev->clearing);
1608 }
1609 
1610 static void disk_check_events(struct disk_events *ev,
1611 			      unsigned int *clearing_ptr)
1612 {
1613 	struct gendisk *disk = ev->disk;
1614 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1615 	unsigned int clearing = *clearing_ptr;
1616 	unsigned int events;
1617 	unsigned long intv;
1618 	int nr_events = 0, i;
1619 
1620 	/* check events */
1621 	events = disk->fops->check_events(disk, clearing);
1622 
1623 	/* accumulate pending events and schedule next poll if necessary */
1624 	spin_lock_irq(&ev->lock);
1625 
1626 	events &= ~ev->pending;
1627 	ev->pending |= events;
1628 	*clearing_ptr &= ~clearing;
1629 
1630 	intv = disk_events_poll_jiffies(disk);
1631 	if (!ev->block && intv)
1632 		queue_delayed_work(system_freezable_power_efficient_wq,
1633 				&ev->dwork, intv);
1634 
1635 	spin_unlock_irq(&ev->lock);
1636 
1637 	/*
1638 	 * Tell userland about new events.  Only the events listed in
1639 	 * @disk->events are reported.  Unlisted events are processed the
1640 	 * same internally but never get reported to userland.
1641 	 */
1642 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1643 		if (events & disk->events & (1 << i))
1644 			envp[nr_events++] = disk_uevents[i];
1645 
1646 	if (nr_events)
1647 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1648 }
1649 
1650 /*
1651  * A disk events enabled device has the following sysfs nodes under
1652  * its /sys/block/X/ directory.
1653  *
1654  * events		: list of all supported events
1655  * events_async		: list of events which can be detected w/o polling
1656  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1657  */
1658 static ssize_t __disk_events_show(unsigned int events, char *buf)
1659 {
1660 	const char *delim = "";
1661 	ssize_t pos = 0;
1662 	int i;
1663 
1664 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1665 		if (events & (1 << i)) {
1666 			pos += sprintf(buf + pos, "%s%s",
1667 				       delim, disk_events_strs[i]);
1668 			delim = " ";
1669 		}
1670 	if (pos)
1671 		pos += sprintf(buf + pos, "\n");
1672 	return pos;
1673 }
1674 
1675 static ssize_t disk_events_show(struct device *dev,
1676 				struct device_attribute *attr, char *buf)
1677 {
1678 	struct gendisk *disk = dev_to_disk(dev);
1679 
1680 	return __disk_events_show(disk->events, buf);
1681 }
1682 
1683 static ssize_t disk_events_async_show(struct device *dev,
1684 				      struct device_attribute *attr, char *buf)
1685 {
1686 	struct gendisk *disk = dev_to_disk(dev);
1687 
1688 	return __disk_events_show(disk->async_events, buf);
1689 }
1690 
1691 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1692 					   struct device_attribute *attr,
1693 					   char *buf)
1694 {
1695 	struct gendisk *disk = dev_to_disk(dev);
1696 
1697 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1698 }
1699 
1700 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1701 					    struct device_attribute *attr,
1702 					    const char *buf, size_t count)
1703 {
1704 	struct gendisk *disk = dev_to_disk(dev);
1705 	long intv;
1706 
1707 	if (!count || !sscanf(buf, "%ld", &intv))
1708 		return -EINVAL;
1709 
1710 	if (intv < 0 && intv != -1)
1711 		return -EINVAL;
1712 
1713 	disk_block_events(disk);
1714 	disk->ev->poll_msecs = intv;
1715 	__disk_unblock_events(disk, true);
1716 
1717 	return count;
1718 }
1719 
1720 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1721 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1722 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1723 			 disk_events_poll_msecs_show,
1724 			 disk_events_poll_msecs_store);
1725 
1726 static const struct attribute *disk_events_attrs[] = {
1727 	&dev_attr_events.attr,
1728 	&dev_attr_events_async.attr,
1729 	&dev_attr_events_poll_msecs.attr,
1730 	NULL,
1731 };
1732 
1733 /*
1734  * The default polling interval can be specified by the kernel
1735  * parameter block.events_dfl_poll_msecs which defaults to 0
1736  * (disable).  This can also be modified runtime by writing to
1737  * /sys/module/block/events_dfl_poll_msecs.
1738  */
1739 static int disk_events_set_dfl_poll_msecs(const char *val,
1740 					  const struct kernel_param *kp)
1741 {
1742 	struct disk_events *ev;
1743 	int ret;
1744 
1745 	ret = param_set_ulong(val, kp);
1746 	if (ret < 0)
1747 		return ret;
1748 
1749 	mutex_lock(&disk_events_mutex);
1750 
1751 	list_for_each_entry(ev, &disk_events, node)
1752 		disk_flush_events(ev->disk, 0);
1753 
1754 	mutex_unlock(&disk_events_mutex);
1755 
1756 	return 0;
1757 }
1758 
1759 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1760 	.set	= disk_events_set_dfl_poll_msecs,
1761 	.get	= param_get_ulong,
1762 };
1763 
1764 #undef MODULE_PARAM_PREFIX
1765 #define MODULE_PARAM_PREFIX	"block."
1766 
1767 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1768 		&disk_events_dfl_poll_msecs, 0644);
1769 
1770 /*
1771  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1772  */
1773 static void disk_alloc_events(struct gendisk *disk)
1774 {
1775 	struct disk_events *ev;
1776 
1777 	if (!disk->fops->check_events)
1778 		return;
1779 
1780 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1781 	if (!ev) {
1782 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1783 		return;
1784 	}
1785 
1786 	INIT_LIST_HEAD(&ev->node);
1787 	ev->disk = disk;
1788 	spin_lock_init(&ev->lock);
1789 	mutex_init(&ev->block_mutex);
1790 	ev->block = 1;
1791 	ev->poll_msecs = -1;
1792 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1793 
1794 	disk->ev = ev;
1795 }
1796 
1797 static void disk_add_events(struct gendisk *disk)
1798 {
1799 	if (!disk->ev)
1800 		return;
1801 
1802 	/* FIXME: error handling */
1803 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1804 		pr_warn("%s: failed to create sysfs files for events\n",
1805 			disk->disk_name);
1806 
1807 	mutex_lock(&disk_events_mutex);
1808 	list_add_tail(&disk->ev->node, &disk_events);
1809 	mutex_unlock(&disk_events_mutex);
1810 
1811 	/*
1812 	 * Block count is initialized to 1 and the following initial
1813 	 * unblock kicks it into action.
1814 	 */
1815 	__disk_unblock_events(disk, true);
1816 }
1817 
1818 static void disk_del_events(struct gendisk *disk)
1819 {
1820 	if (!disk->ev)
1821 		return;
1822 
1823 	disk_block_events(disk);
1824 
1825 	mutex_lock(&disk_events_mutex);
1826 	list_del_init(&disk->ev->node);
1827 	mutex_unlock(&disk_events_mutex);
1828 
1829 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1830 }
1831 
1832 static void disk_release_events(struct gendisk *disk)
1833 {
1834 	/* the block count should be 1 from disk_del_events() */
1835 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1836 	kfree(disk->ev);
1837 }
1838