1 /* 2 * gendisk handling 3 */ 4 5 #include <linux/module.h> 6 #include <linux/fs.h> 7 #include <linux/genhd.h> 8 #include <linux/kdev_t.h> 9 #include <linux/kernel.h> 10 #include <linux/blkdev.h> 11 #include <linux/backing-dev.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/proc_fs.h> 15 #include <linux/seq_file.h> 16 #include <linux/slab.h> 17 #include <linux/kmod.h> 18 #include <linux/kobj_map.h> 19 #include <linux/mutex.h> 20 #include <linux/idr.h> 21 #include <linux/log2.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/badblocks.h> 24 25 #include "blk.h" 26 27 static DEFINE_MUTEX(block_class_lock); 28 struct kobject *block_depr; 29 30 /* for extended dynamic devt allocation, currently only one major is used */ 31 #define NR_EXT_DEVT (1 << MINORBITS) 32 33 /* For extended devt allocation. ext_devt_lock prevents look up 34 * results from going away underneath its user. 35 */ 36 static DEFINE_SPINLOCK(ext_devt_lock); 37 static DEFINE_IDR(ext_devt_idr); 38 39 static struct device_type disk_type; 40 41 static void disk_check_events(struct disk_events *ev, 42 unsigned int *clearing_ptr); 43 static void disk_alloc_events(struct gendisk *disk); 44 static void disk_add_events(struct gendisk *disk); 45 static void disk_del_events(struct gendisk *disk); 46 static void disk_release_events(struct gendisk *disk); 47 48 /** 49 * disk_get_part - get partition 50 * @disk: disk to look partition from 51 * @partno: partition number 52 * 53 * Look for partition @partno from @disk. If found, increment 54 * reference count and return it. 55 * 56 * CONTEXT: 57 * Don't care. 58 * 59 * RETURNS: 60 * Pointer to the found partition on success, NULL if not found. 61 */ 62 struct hd_struct *disk_get_part(struct gendisk *disk, int partno) 63 { 64 struct hd_struct *part = NULL; 65 struct disk_part_tbl *ptbl; 66 67 if (unlikely(partno < 0)) 68 return NULL; 69 70 rcu_read_lock(); 71 72 ptbl = rcu_dereference(disk->part_tbl); 73 if (likely(partno < ptbl->len)) { 74 part = rcu_dereference(ptbl->part[partno]); 75 if (part) 76 get_device(part_to_dev(part)); 77 } 78 79 rcu_read_unlock(); 80 81 return part; 82 } 83 EXPORT_SYMBOL_GPL(disk_get_part); 84 85 /** 86 * disk_part_iter_init - initialize partition iterator 87 * @piter: iterator to initialize 88 * @disk: disk to iterate over 89 * @flags: DISK_PITER_* flags 90 * 91 * Initialize @piter so that it iterates over partitions of @disk. 92 * 93 * CONTEXT: 94 * Don't care. 95 */ 96 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, 97 unsigned int flags) 98 { 99 struct disk_part_tbl *ptbl; 100 101 rcu_read_lock(); 102 ptbl = rcu_dereference(disk->part_tbl); 103 104 piter->disk = disk; 105 piter->part = NULL; 106 107 if (flags & DISK_PITER_REVERSE) 108 piter->idx = ptbl->len - 1; 109 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0)) 110 piter->idx = 0; 111 else 112 piter->idx = 1; 113 114 piter->flags = flags; 115 116 rcu_read_unlock(); 117 } 118 EXPORT_SYMBOL_GPL(disk_part_iter_init); 119 120 /** 121 * disk_part_iter_next - proceed iterator to the next partition and return it 122 * @piter: iterator of interest 123 * 124 * Proceed @piter to the next partition and return it. 125 * 126 * CONTEXT: 127 * Don't care. 128 */ 129 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter) 130 { 131 struct disk_part_tbl *ptbl; 132 int inc, end; 133 134 /* put the last partition */ 135 disk_put_part(piter->part); 136 piter->part = NULL; 137 138 /* get part_tbl */ 139 rcu_read_lock(); 140 ptbl = rcu_dereference(piter->disk->part_tbl); 141 142 /* determine iteration parameters */ 143 if (piter->flags & DISK_PITER_REVERSE) { 144 inc = -1; 145 if (piter->flags & (DISK_PITER_INCL_PART0 | 146 DISK_PITER_INCL_EMPTY_PART0)) 147 end = -1; 148 else 149 end = 0; 150 } else { 151 inc = 1; 152 end = ptbl->len; 153 } 154 155 /* iterate to the next partition */ 156 for (; piter->idx != end; piter->idx += inc) { 157 struct hd_struct *part; 158 159 part = rcu_dereference(ptbl->part[piter->idx]); 160 if (!part) 161 continue; 162 if (!part_nr_sects_read(part) && 163 !(piter->flags & DISK_PITER_INCL_EMPTY) && 164 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 && 165 piter->idx == 0)) 166 continue; 167 168 get_device(part_to_dev(part)); 169 piter->part = part; 170 piter->idx += inc; 171 break; 172 } 173 174 rcu_read_unlock(); 175 176 return piter->part; 177 } 178 EXPORT_SYMBOL_GPL(disk_part_iter_next); 179 180 /** 181 * disk_part_iter_exit - finish up partition iteration 182 * @piter: iter of interest 183 * 184 * Called when iteration is over. Cleans up @piter. 185 * 186 * CONTEXT: 187 * Don't care. 188 */ 189 void disk_part_iter_exit(struct disk_part_iter *piter) 190 { 191 disk_put_part(piter->part); 192 piter->part = NULL; 193 } 194 EXPORT_SYMBOL_GPL(disk_part_iter_exit); 195 196 static inline int sector_in_part(struct hd_struct *part, sector_t sector) 197 { 198 return part->start_sect <= sector && 199 sector < part->start_sect + part_nr_sects_read(part); 200 } 201 202 /** 203 * disk_map_sector_rcu - map sector to partition 204 * @disk: gendisk of interest 205 * @sector: sector to map 206 * 207 * Find out which partition @sector maps to on @disk. This is 208 * primarily used for stats accounting. 209 * 210 * CONTEXT: 211 * RCU read locked. The returned partition pointer is valid only 212 * while preemption is disabled. 213 * 214 * RETURNS: 215 * Found partition on success, part0 is returned if no partition matches 216 */ 217 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector) 218 { 219 struct disk_part_tbl *ptbl; 220 struct hd_struct *part; 221 int i; 222 223 ptbl = rcu_dereference(disk->part_tbl); 224 225 part = rcu_dereference(ptbl->last_lookup); 226 if (part && sector_in_part(part, sector)) 227 return part; 228 229 for (i = 1; i < ptbl->len; i++) { 230 part = rcu_dereference(ptbl->part[i]); 231 232 if (part && sector_in_part(part, sector)) { 233 rcu_assign_pointer(ptbl->last_lookup, part); 234 return part; 235 } 236 } 237 return &disk->part0; 238 } 239 EXPORT_SYMBOL_GPL(disk_map_sector_rcu); 240 241 /* 242 * Can be deleted altogether. Later. 243 * 244 */ 245 static struct blk_major_name { 246 struct blk_major_name *next; 247 int major; 248 char name[16]; 249 } *major_names[BLKDEV_MAJOR_HASH_SIZE]; 250 251 /* index in the above - for now: assume no multimajor ranges */ 252 static inline int major_to_index(unsigned major) 253 { 254 return major % BLKDEV_MAJOR_HASH_SIZE; 255 } 256 257 #ifdef CONFIG_PROC_FS 258 void blkdev_show(struct seq_file *seqf, off_t offset) 259 { 260 struct blk_major_name *dp; 261 262 if (offset < BLKDEV_MAJOR_HASH_SIZE) { 263 mutex_lock(&block_class_lock); 264 for (dp = major_names[offset]; dp; dp = dp->next) 265 seq_printf(seqf, "%3d %s\n", dp->major, dp->name); 266 mutex_unlock(&block_class_lock); 267 } 268 } 269 #endif /* CONFIG_PROC_FS */ 270 271 /** 272 * register_blkdev - register a new block device 273 * 274 * @major: the requested major device number [1..255]. If @major=0, try to 275 * allocate any unused major number. 276 * @name: the name of the new block device as a zero terminated string 277 * 278 * The @name must be unique within the system. 279 * 280 * The return value depends on the @major input parameter. 281 * - if a major device number was requested in range [1..255] then the 282 * function returns zero on success, or a negative error code 283 * - if any unused major number was requested with @major=0 parameter 284 * then the return value is the allocated major number in range 285 * [1..255] or a negative error code otherwise 286 */ 287 int register_blkdev(unsigned int major, const char *name) 288 { 289 struct blk_major_name **n, *p; 290 int index, ret = 0; 291 292 mutex_lock(&block_class_lock); 293 294 /* temporary */ 295 if (major == 0) { 296 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { 297 if (major_names[index] == NULL) 298 break; 299 } 300 301 if (index == 0) { 302 printk("register_blkdev: failed to get major for %s\n", 303 name); 304 ret = -EBUSY; 305 goto out; 306 } 307 major = index; 308 ret = major; 309 } 310 311 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); 312 if (p == NULL) { 313 ret = -ENOMEM; 314 goto out; 315 } 316 317 p->major = major; 318 strlcpy(p->name, name, sizeof(p->name)); 319 p->next = NULL; 320 index = major_to_index(major); 321 322 for (n = &major_names[index]; *n; n = &(*n)->next) { 323 if ((*n)->major == major) 324 break; 325 } 326 if (!*n) 327 *n = p; 328 else 329 ret = -EBUSY; 330 331 if (ret < 0) { 332 printk("register_blkdev: cannot get major %d for %s\n", 333 major, name); 334 kfree(p); 335 } 336 out: 337 mutex_unlock(&block_class_lock); 338 return ret; 339 } 340 341 EXPORT_SYMBOL(register_blkdev); 342 343 void unregister_blkdev(unsigned int major, const char *name) 344 { 345 struct blk_major_name **n; 346 struct blk_major_name *p = NULL; 347 int index = major_to_index(major); 348 349 mutex_lock(&block_class_lock); 350 for (n = &major_names[index]; *n; n = &(*n)->next) 351 if ((*n)->major == major) 352 break; 353 if (!*n || strcmp((*n)->name, name)) { 354 WARN_ON(1); 355 } else { 356 p = *n; 357 *n = p->next; 358 } 359 mutex_unlock(&block_class_lock); 360 kfree(p); 361 } 362 363 EXPORT_SYMBOL(unregister_blkdev); 364 365 static struct kobj_map *bdev_map; 366 367 /** 368 * blk_mangle_minor - scatter minor numbers apart 369 * @minor: minor number to mangle 370 * 371 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT 372 * is enabled. Mangling twice gives the original value. 373 * 374 * RETURNS: 375 * Mangled value. 376 * 377 * CONTEXT: 378 * Don't care. 379 */ 380 static int blk_mangle_minor(int minor) 381 { 382 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT 383 int i; 384 385 for (i = 0; i < MINORBITS / 2; i++) { 386 int low = minor & (1 << i); 387 int high = minor & (1 << (MINORBITS - 1 - i)); 388 int distance = MINORBITS - 1 - 2 * i; 389 390 minor ^= low | high; /* clear both bits */ 391 low <<= distance; /* swap the positions */ 392 high >>= distance; 393 minor |= low | high; /* and set */ 394 } 395 #endif 396 return minor; 397 } 398 399 /** 400 * blk_alloc_devt - allocate a dev_t for a partition 401 * @part: partition to allocate dev_t for 402 * @devt: out parameter for resulting dev_t 403 * 404 * Allocate a dev_t for block device. 405 * 406 * RETURNS: 407 * 0 on success, allocated dev_t is returned in *@devt. -errno on 408 * failure. 409 * 410 * CONTEXT: 411 * Might sleep. 412 */ 413 int blk_alloc_devt(struct hd_struct *part, dev_t *devt) 414 { 415 struct gendisk *disk = part_to_disk(part); 416 int idx; 417 418 /* in consecutive minor range? */ 419 if (part->partno < disk->minors) { 420 *devt = MKDEV(disk->major, disk->first_minor + part->partno); 421 return 0; 422 } 423 424 /* allocate ext devt */ 425 idr_preload(GFP_KERNEL); 426 427 spin_lock_bh(&ext_devt_lock); 428 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT); 429 spin_unlock_bh(&ext_devt_lock); 430 431 idr_preload_end(); 432 if (idx < 0) 433 return idx == -ENOSPC ? -EBUSY : idx; 434 435 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx)); 436 return 0; 437 } 438 439 /** 440 * blk_free_devt - free a dev_t 441 * @devt: dev_t to free 442 * 443 * Free @devt which was allocated using blk_alloc_devt(). 444 * 445 * CONTEXT: 446 * Might sleep. 447 */ 448 void blk_free_devt(dev_t devt) 449 { 450 if (devt == MKDEV(0, 0)) 451 return; 452 453 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 454 spin_lock_bh(&ext_devt_lock); 455 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 456 spin_unlock_bh(&ext_devt_lock); 457 } 458 } 459 460 static char *bdevt_str(dev_t devt, char *buf) 461 { 462 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { 463 char tbuf[BDEVT_SIZE]; 464 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); 465 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); 466 } else 467 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); 468 469 return buf; 470 } 471 472 /* 473 * Register device numbers dev..(dev+range-1) 474 * range must be nonzero 475 * The hash chain is sorted on range, so that subranges can override. 476 */ 477 void blk_register_region(dev_t devt, unsigned long range, struct module *module, 478 struct kobject *(*probe)(dev_t, int *, void *), 479 int (*lock)(dev_t, void *), void *data) 480 { 481 kobj_map(bdev_map, devt, range, module, probe, lock, data); 482 } 483 484 EXPORT_SYMBOL(blk_register_region); 485 486 void blk_unregister_region(dev_t devt, unsigned long range) 487 { 488 kobj_unmap(bdev_map, devt, range); 489 } 490 491 EXPORT_SYMBOL(blk_unregister_region); 492 493 static struct kobject *exact_match(dev_t devt, int *partno, void *data) 494 { 495 struct gendisk *p = data; 496 497 return &disk_to_dev(p)->kobj; 498 } 499 500 static int exact_lock(dev_t devt, void *data) 501 { 502 struct gendisk *p = data; 503 504 if (!get_disk(p)) 505 return -1; 506 return 0; 507 } 508 509 static void register_disk(struct device *parent, struct gendisk *disk) 510 { 511 struct device *ddev = disk_to_dev(disk); 512 struct block_device *bdev; 513 struct disk_part_iter piter; 514 struct hd_struct *part; 515 int err; 516 517 ddev->parent = parent; 518 519 dev_set_name(ddev, "%s", disk->disk_name); 520 521 /* delay uevents, until we scanned partition table */ 522 dev_set_uevent_suppress(ddev, 1); 523 524 if (device_add(ddev)) 525 return; 526 if (!sysfs_deprecated) { 527 err = sysfs_create_link(block_depr, &ddev->kobj, 528 kobject_name(&ddev->kobj)); 529 if (err) { 530 device_del(ddev); 531 return; 532 } 533 } 534 535 /* 536 * avoid probable deadlock caused by allocating memory with 537 * GFP_KERNEL in runtime_resume callback of its all ancestor 538 * devices 539 */ 540 pm_runtime_set_memalloc_noio(ddev, true); 541 542 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj); 543 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); 544 545 /* No minors to use for partitions */ 546 if (!disk_part_scan_enabled(disk)) 547 goto exit; 548 549 /* No such device (e.g., media were just removed) */ 550 if (!get_capacity(disk)) 551 goto exit; 552 553 bdev = bdget_disk(disk, 0); 554 if (!bdev) 555 goto exit; 556 557 bdev->bd_invalidated = 1; 558 err = blkdev_get(bdev, FMODE_READ, NULL); 559 if (err < 0) 560 goto exit; 561 blkdev_put(bdev, FMODE_READ); 562 563 exit: 564 /* announce disk after possible partitions are created */ 565 dev_set_uevent_suppress(ddev, 0); 566 kobject_uevent(&ddev->kobj, KOBJ_ADD); 567 568 /* announce possible partitions */ 569 disk_part_iter_init(&piter, disk, 0); 570 while ((part = disk_part_iter_next(&piter))) 571 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD); 572 disk_part_iter_exit(&piter); 573 } 574 575 /** 576 * device_add_disk - add partitioning information to kernel list 577 * @parent: parent device for the disk 578 * @disk: per-device partitioning information 579 * 580 * This function registers the partitioning information in @disk 581 * with the kernel. 582 * 583 * FIXME: error handling 584 */ 585 void device_add_disk(struct device *parent, struct gendisk *disk) 586 { 587 struct backing_dev_info *bdi; 588 dev_t devt; 589 int retval; 590 591 /* minors == 0 indicates to use ext devt from part0 and should 592 * be accompanied with EXT_DEVT flag. Make sure all 593 * parameters make sense. 594 */ 595 WARN_ON(disk->minors && !(disk->major || disk->first_minor)); 596 WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT)); 597 598 disk->flags |= GENHD_FL_UP; 599 600 retval = blk_alloc_devt(&disk->part0, &devt); 601 if (retval) { 602 WARN_ON(1); 603 return; 604 } 605 disk_to_dev(disk)->devt = devt; 606 607 /* ->major and ->first_minor aren't supposed to be 608 * dereferenced from here on, but set them just in case. 609 */ 610 disk->major = MAJOR(devt); 611 disk->first_minor = MINOR(devt); 612 613 disk_alloc_events(disk); 614 615 /* Register BDI before referencing it from bdev */ 616 bdi = disk->queue->backing_dev_info; 617 bdi_register_owner(bdi, disk_to_dev(disk)); 618 619 blk_register_region(disk_devt(disk), disk->minors, NULL, 620 exact_match, exact_lock, disk); 621 register_disk(parent, disk); 622 blk_register_queue(disk); 623 624 /* 625 * Take an extra ref on queue which will be put on disk_release() 626 * so that it sticks around as long as @disk is there. 627 */ 628 WARN_ON_ONCE(!blk_get_queue(disk->queue)); 629 630 retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj, 631 "bdi"); 632 WARN_ON(retval); 633 634 disk_add_events(disk); 635 blk_integrity_add(disk); 636 } 637 EXPORT_SYMBOL(device_add_disk); 638 639 void del_gendisk(struct gendisk *disk) 640 { 641 struct disk_part_iter piter; 642 struct hd_struct *part; 643 644 blk_integrity_del(disk); 645 disk_del_events(disk); 646 647 /* invalidate stuff */ 648 disk_part_iter_init(&piter, disk, 649 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE); 650 while ((part = disk_part_iter_next(&piter))) { 651 invalidate_partition(disk, part->partno); 652 bdev_unhash_inode(part_devt(part)); 653 delete_partition(disk, part->partno); 654 } 655 disk_part_iter_exit(&piter); 656 657 invalidate_partition(disk, 0); 658 bdev_unhash_inode(disk_devt(disk)); 659 set_capacity(disk, 0); 660 disk->flags &= ~GENHD_FL_UP; 661 662 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); 663 if (disk->queue) { 664 /* 665 * Unregister bdi before releasing device numbers (as they can 666 * get reused and we'd get clashes in sysfs). 667 */ 668 bdi_unregister(disk->queue->backing_dev_info); 669 blk_unregister_queue(disk); 670 } else { 671 WARN_ON(1); 672 } 673 blk_unregister_region(disk_devt(disk), disk->minors); 674 675 part_stat_set_all(&disk->part0, 0); 676 disk->part0.stamp = 0; 677 678 kobject_put(disk->part0.holder_dir); 679 kobject_put(disk->slave_dir); 680 if (!sysfs_deprecated) 681 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); 682 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false); 683 device_del(disk_to_dev(disk)); 684 } 685 EXPORT_SYMBOL(del_gendisk); 686 687 /* sysfs access to bad-blocks list. */ 688 static ssize_t disk_badblocks_show(struct device *dev, 689 struct device_attribute *attr, 690 char *page) 691 { 692 struct gendisk *disk = dev_to_disk(dev); 693 694 if (!disk->bb) 695 return sprintf(page, "\n"); 696 697 return badblocks_show(disk->bb, page, 0); 698 } 699 700 static ssize_t disk_badblocks_store(struct device *dev, 701 struct device_attribute *attr, 702 const char *page, size_t len) 703 { 704 struct gendisk *disk = dev_to_disk(dev); 705 706 if (!disk->bb) 707 return -ENXIO; 708 709 return badblocks_store(disk->bb, page, len, 0); 710 } 711 712 /** 713 * get_gendisk - get partitioning information for a given device 714 * @devt: device to get partitioning information for 715 * @partno: returned partition index 716 * 717 * This function gets the structure containing partitioning 718 * information for the given device @devt. 719 */ 720 struct gendisk *get_gendisk(dev_t devt, int *partno) 721 { 722 struct gendisk *disk = NULL; 723 724 if (MAJOR(devt) != BLOCK_EXT_MAJOR) { 725 struct kobject *kobj; 726 727 kobj = kobj_lookup(bdev_map, devt, partno); 728 if (kobj) 729 disk = dev_to_disk(kobj_to_dev(kobj)); 730 } else { 731 struct hd_struct *part; 732 733 spin_lock_bh(&ext_devt_lock); 734 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 735 if (part && get_disk(part_to_disk(part))) { 736 *partno = part->partno; 737 disk = part_to_disk(part); 738 } 739 spin_unlock_bh(&ext_devt_lock); 740 } 741 742 return disk; 743 } 744 EXPORT_SYMBOL(get_gendisk); 745 746 /** 747 * bdget_disk - do bdget() by gendisk and partition number 748 * @disk: gendisk of interest 749 * @partno: partition number 750 * 751 * Find partition @partno from @disk, do bdget() on it. 752 * 753 * CONTEXT: 754 * Don't care. 755 * 756 * RETURNS: 757 * Resulting block_device on success, NULL on failure. 758 */ 759 struct block_device *bdget_disk(struct gendisk *disk, int partno) 760 { 761 struct hd_struct *part; 762 struct block_device *bdev = NULL; 763 764 part = disk_get_part(disk, partno); 765 if (part) 766 bdev = bdget(part_devt(part)); 767 disk_put_part(part); 768 769 return bdev; 770 } 771 EXPORT_SYMBOL(bdget_disk); 772 773 /* 774 * print a full list of all partitions - intended for places where the root 775 * filesystem can't be mounted and thus to give the victim some idea of what 776 * went wrong 777 */ 778 void __init printk_all_partitions(void) 779 { 780 struct class_dev_iter iter; 781 struct device *dev; 782 783 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 784 while ((dev = class_dev_iter_next(&iter))) { 785 struct gendisk *disk = dev_to_disk(dev); 786 struct disk_part_iter piter; 787 struct hd_struct *part; 788 char name_buf[BDEVNAME_SIZE]; 789 char devt_buf[BDEVT_SIZE]; 790 791 /* 792 * Don't show empty devices or things that have been 793 * suppressed 794 */ 795 if (get_capacity(disk) == 0 || 796 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) 797 continue; 798 799 /* 800 * Note, unlike /proc/partitions, I am showing the 801 * numbers in hex - the same format as the root= 802 * option takes. 803 */ 804 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); 805 while ((part = disk_part_iter_next(&piter))) { 806 bool is_part0 = part == &disk->part0; 807 808 printk("%s%s %10llu %s %s", is_part0 ? "" : " ", 809 bdevt_str(part_devt(part), devt_buf), 810 (unsigned long long)part_nr_sects_read(part) >> 1 811 , disk_name(disk, part->partno, name_buf), 812 part->info ? part->info->uuid : ""); 813 if (is_part0) { 814 if (dev->parent && dev->parent->driver) 815 printk(" driver: %s\n", 816 dev->parent->driver->name); 817 else 818 printk(" (driver?)\n"); 819 } else 820 printk("\n"); 821 } 822 disk_part_iter_exit(&piter); 823 } 824 class_dev_iter_exit(&iter); 825 } 826 827 #ifdef CONFIG_PROC_FS 828 /* iterator */ 829 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) 830 { 831 loff_t skip = *pos; 832 struct class_dev_iter *iter; 833 struct device *dev; 834 835 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 836 if (!iter) 837 return ERR_PTR(-ENOMEM); 838 839 seqf->private = iter; 840 class_dev_iter_init(iter, &block_class, NULL, &disk_type); 841 do { 842 dev = class_dev_iter_next(iter); 843 if (!dev) 844 return NULL; 845 } while (skip--); 846 847 return dev_to_disk(dev); 848 } 849 850 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) 851 { 852 struct device *dev; 853 854 (*pos)++; 855 dev = class_dev_iter_next(seqf->private); 856 if (dev) 857 return dev_to_disk(dev); 858 859 return NULL; 860 } 861 862 static void disk_seqf_stop(struct seq_file *seqf, void *v) 863 { 864 struct class_dev_iter *iter = seqf->private; 865 866 /* stop is called even after start failed :-( */ 867 if (iter) { 868 class_dev_iter_exit(iter); 869 kfree(iter); 870 seqf->private = NULL; 871 } 872 } 873 874 static void *show_partition_start(struct seq_file *seqf, loff_t *pos) 875 { 876 void *p; 877 878 p = disk_seqf_start(seqf, pos); 879 if (!IS_ERR_OR_NULL(p) && !*pos) 880 seq_puts(seqf, "major minor #blocks name\n\n"); 881 return p; 882 } 883 884 static int show_partition(struct seq_file *seqf, void *v) 885 { 886 struct gendisk *sgp = v; 887 struct disk_part_iter piter; 888 struct hd_struct *part; 889 char buf[BDEVNAME_SIZE]; 890 891 /* Don't show non-partitionable removeable devices or empty devices */ 892 if (!get_capacity(sgp) || (!disk_max_parts(sgp) && 893 (sgp->flags & GENHD_FL_REMOVABLE))) 894 return 0; 895 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) 896 return 0; 897 898 /* show the full disk and all non-0 size partitions of it */ 899 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0); 900 while ((part = disk_part_iter_next(&piter))) 901 seq_printf(seqf, "%4d %7d %10llu %s\n", 902 MAJOR(part_devt(part)), MINOR(part_devt(part)), 903 (unsigned long long)part_nr_sects_read(part) >> 1, 904 disk_name(sgp, part->partno, buf)); 905 disk_part_iter_exit(&piter); 906 907 return 0; 908 } 909 910 static const struct seq_operations partitions_op = { 911 .start = show_partition_start, 912 .next = disk_seqf_next, 913 .stop = disk_seqf_stop, 914 .show = show_partition 915 }; 916 917 static int partitions_open(struct inode *inode, struct file *file) 918 { 919 return seq_open(file, &partitions_op); 920 } 921 922 static const struct file_operations proc_partitions_operations = { 923 .open = partitions_open, 924 .read = seq_read, 925 .llseek = seq_lseek, 926 .release = seq_release, 927 }; 928 #endif 929 930 931 static struct kobject *base_probe(dev_t devt, int *partno, void *data) 932 { 933 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) 934 /* Make old-style 2.4 aliases work */ 935 request_module("block-major-%d", MAJOR(devt)); 936 return NULL; 937 } 938 939 static int __init genhd_device_init(void) 940 { 941 int error; 942 943 block_class.dev_kobj = sysfs_dev_block_kobj; 944 error = class_register(&block_class); 945 if (unlikely(error)) 946 return error; 947 bdev_map = kobj_map_init(base_probe, &block_class_lock); 948 blk_dev_init(); 949 950 register_blkdev(BLOCK_EXT_MAJOR, "blkext"); 951 952 /* create top-level block dir */ 953 if (!sysfs_deprecated) 954 block_depr = kobject_create_and_add("block", NULL); 955 return 0; 956 } 957 958 subsys_initcall(genhd_device_init); 959 960 static ssize_t disk_range_show(struct device *dev, 961 struct device_attribute *attr, char *buf) 962 { 963 struct gendisk *disk = dev_to_disk(dev); 964 965 return sprintf(buf, "%d\n", disk->minors); 966 } 967 968 static ssize_t disk_ext_range_show(struct device *dev, 969 struct device_attribute *attr, char *buf) 970 { 971 struct gendisk *disk = dev_to_disk(dev); 972 973 return sprintf(buf, "%d\n", disk_max_parts(disk)); 974 } 975 976 static ssize_t disk_removable_show(struct device *dev, 977 struct device_attribute *attr, char *buf) 978 { 979 struct gendisk *disk = dev_to_disk(dev); 980 981 return sprintf(buf, "%d\n", 982 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); 983 } 984 985 static ssize_t disk_ro_show(struct device *dev, 986 struct device_attribute *attr, char *buf) 987 { 988 struct gendisk *disk = dev_to_disk(dev); 989 990 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); 991 } 992 993 static ssize_t disk_capability_show(struct device *dev, 994 struct device_attribute *attr, char *buf) 995 { 996 struct gendisk *disk = dev_to_disk(dev); 997 998 return sprintf(buf, "%x\n", disk->flags); 999 } 1000 1001 static ssize_t disk_alignment_offset_show(struct device *dev, 1002 struct device_attribute *attr, 1003 char *buf) 1004 { 1005 struct gendisk *disk = dev_to_disk(dev); 1006 1007 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); 1008 } 1009 1010 static ssize_t disk_discard_alignment_show(struct device *dev, 1011 struct device_attribute *attr, 1012 char *buf) 1013 { 1014 struct gendisk *disk = dev_to_disk(dev); 1015 1016 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); 1017 } 1018 1019 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL); 1020 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL); 1021 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL); 1022 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL); 1023 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL); 1024 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL); 1025 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show, 1026 NULL); 1027 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL); 1028 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL); 1029 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL); 1030 static DEVICE_ATTR(badblocks, S_IRUGO | S_IWUSR, disk_badblocks_show, 1031 disk_badblocks_store); 1032 #ifdef CONFIG_FAIL_MAKE_REQUEST 1033 static struct device_attribute dev_attr_fail = 1034 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store); 1035 #endif 1036 #ifdef CONFIG_FAIL_IO_TIMEOUT 1037 static struct device_attribute dev_attr_fail_timeout = 1038 __ATTR(io-timeout-fail, S_IRUGO|S_IWUSR, part_timeout_show, 1039 part_timeout_store); 1040 #endif 1041 1042 static struct attribute *disk_attrs[] = { 1043 &dev_attr_range.attr, 1044 &dev_attr_ext_range.attr, 1045 &dev_attr_removable.attr, 1046 &dev_attr_ro.attr, 1047 &dev_attr_size.attr, 1048 &dev_attr_alignment_offset.attr, 1049 &dev_attr_discard_alignment.attr, 1050 &dev_attr_capability.attr, 1051 &dev_attr_stat.attr, 1052 &dev_attr_inflight.attr, 1053 &dev_attr_badblocks.attr, 1054 #ifdef CONFIG_FAIL_MAKE_REQUEST 1055 &dev_attr_fail.attr, 1056 #endif 1057 #ifdef CONFIG_FAIL_IO_TIMEOUT 1058 &dev_attr_fail_timeout.attr, 1059 #endif 1060 NULL 1061 }; 1062 1063 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n) 1064 { 1065 struct device *dev = container_of(kobj, typeof(*dev), kobj); 1066 struct gendisk *disk = dev_to_disk(dev); 1067 1068 if (a == &dev_attr_badblocks.attr && !disk->bb) 1069 return 0; 1070 return a->mode; 1071 } 1072 1073 static struct attribute_group disk_attr_group = { 1074 .attrs = disk_attrs, 1075 .is_visible = disk_visible, 1076 }; 1077 1078 static const struct attribute_group *disk_attr_groups[] = { 1079 &disk_attr_group, 1080 NULL 1081 }; 1082 1083 /** 1084 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way 1085 * @disk: disk to replace part_tbl for 1086 * @new_ptbl: new part_tbl to install 1087 * 1088 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The 1089 * original ptbl is freed using RCU callback. 1090 * 1091 * LOCKING: 1092 * Matching bd_mutx locked. 1093 */ 1094 static void disk_replace_part_tbl(struct gendisk *disk, 1095 struct disk_part_tbl *new_ptbl) 1096 { 1097 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1098 1099 rcu_assign_pointer(disk->part_tbl, new_ptbl); 1100 1101 if (old_ptbl) { 1102 rcu_assign_pointer(old_ptbl->last_lookup, NULL); 1103 kfree_rcu(old_ptbl, rcu_head); 1104 } 1105 } 1106 1107 /** 1108 * disk_expand_part_tbl - expand disk->part_tbl 1109 * @disk: disk to expand part_tbl for 1110 * @partno: expand such that this partno can fit in 1111 * 1112 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl 1113 * uses RCU to allow unlocked dereferencing for stats and other stuff. 1114 * 1115 * LOCKING: 1116 * Matching bd_mutex locked, might sleep. 1117 * 1118 * RETURNS: 1119 * 0 on success, -errno on failure. 1120 */ 1121 int disk_expand_part_tbl(struct gendisk *disk, int partno) 1122 { 1123 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1124 struct disk_part_tbl *new_ptbl; 1125 int len = old_ptbl ? old_ptbl->len : 0; 1126 int i, target; 1127 size_t size; 1128 1129 /* 1130 * check for int overflow, since we can get here from blkpg_ioctl() 1131 * with a user passed 'partno'. 1132 */ 1133 target = partno + 1; 1134 if (target < 0) 1135 return -EINVAL; 1136 1137 /* disk_max_parts() is zero during initialization, ignore if so */ 1138 if (disk_max_parts(disk) && target > disk_max_parts(disk)) 1139 return -EINVAL; 1140 1141 if (target <= len) 1142 return 0; 1143 1144 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]); 1145 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id); 1146 if (!new_ptbl) 1147 return -ENOMEM; 1148 1149 new_ptbl->len = target; 1150 1151 for (i = 0; i < len; i++) 1152 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]); 1153 1154 disk_replace_part_tbl(disk, new_ptbl); 1155 return 0; 1156 } 1157 1158 static void disk_release(struct device *dev) 1159 { 1160 struct gendisk *disk = dev_to_disk(dev); 1161 1162 blk_free_devt(dev->devt); 1163 disk_release_events(disk); 1164 kfree(disk->random); 1165 disk_replace_part_tbl(disk, NULL); 1166 hd_free_part(&disk->part0); 1167 if (disk->queue) 1168 blk_put_queue(disk->queue); 1169 kfree(disk); 1170 } 1171 struct class block_class = { 1172 .name = "block", 1173 }; 1174 1175 static char *block_devnode(struct device *dev, umode_t *mode, 1176 kuid_t *uid, kgid_t *gid) 1177 { 1178 struct gendisk *disk = dev_to_disk(dev); 1179 1180 if (disk->devnode) 1181 return disk->devnode(disk, mode); 1182 return NULL; 1183 } 1184 1185 static struct device_type disk_type = { 1186 .name = "disk", 1187 .groups = disk_attr_groups, 1188 .release = disk_release, 1189 .devnode = block_devnode, 1190 }; 1191 1192 #ifdef CONFIG_PROC_FS 1193 /* 1194 * aggregate disk stat collector. Uses the same stats that the sysfs 1195 * entries do, above, but makes them available through one seq_file. 1196 * 1197 * The output looks suspiciously like /proc/partitions with a bunch of 1198 * extra fields. 1199 */ 1200 static int diskstats_show(struct seq_file *seqf, void *v) 1201 { 1202 struct gendisk *gp = v; 1203 struct disk_part_iter piter; 1204 struct hd_struct *hd; 1205 char buf[BDEVNAME_SIZE]; 1206 int cpu; 1207 1208 /* 1209 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) 1210 seq_puts(seqf, "major minor name" 1211 " rio rmerge rsect ruse wio wmerge " 1212 "wsect wuse running use aveq" 1213 "\n\n"); 1214 */ 1215 1216 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0); 1217 while ((hd = disk_part_iter_next(&piter))) { 1218 cpu = part_stat_lock(); 1219 part_round_stats(cpu, hd); 1220 part_stat_unlock(); 1221 seq_printf(seqf, "%4d %7d %s %lu %lu %lu " 1222 "%u %lu %lu %lu %u %u %u %u\n", 1223 MAJOR(part_devt(hd)), MINOR(part_devt(hd)), 1224 disk_name(gp, hd->partno, buf), 1225 part_stat_read(hd, ios[READ]), 1226 part_stat_read(hd, merges[READ]), 1227 part_stat_read(hd, sectors[READ]), 1228 jiffies_to_msecs(part_stat_read(hd, ticks[READ])), 1229 part_stat_read(hd, ios[WRITE]), 1230 part_stat_read(hd, merges[WRITE]), 1231 part_stat_read(hd, sectors[WRITE]), 1232 jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])), 1233 part_in_flight(hd), 1234 jiffies_to_msecs(part_stat_read(hd, io_ticks)), 1235 jiffies_to_msecs(part_stat_read(hd, time_in_queue)) 1236 ); 1237 } 1238 disk_part_iter_exit(&piter); 1239 1240 return 0; 1241 } 1242 1243 static const struct seq_operations diskstats_op = { 1244 .start = disk_seqf_start, 1245 .next = disk_seqf_next, 1246 .stop = disk_seqf_stop, 1247 .show = diskstats_show 1248 }; 1249 1250 static int diskstats_open(struct inode *inode, struct file *file) 1251 { 1252 return seq_open(file, &diskstats_op); 1253 } 1254 1255 static const struct file_operations proc_diskstats_operations = { 1256 .open = diskstats_open, 1257 .read = seq_read, 1258 .llseek = seq_lseek, 1259 .release = seq_release, 1260 }; 1261 1262 static int __init proc_genhd_init(void) 1263 { 1264 proc_create("diskstats", 0, NULL, &proc_diskstats_operations); 1265 proc_create("partitions", 0, NULL, &proc_partitions_operations); 1266 return 0; 1267 } 1268 module_init(proc_genhd_init); 1269 #endif /* CONFIG_PROC_FS */ 1270 1271 dev_t blk_lookup_devt(const char *name, int partno) 1272 { 1273 dev_t devt = MKDEV(0, 0); 1274 struct class_dev_iter iter; 1275 struct device *dev; 1276 1277 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1278 while ((dev = class_dev_iter_next(&iter))) { 1279 struct gendisk *disk = dev_to_disk(dev); 1280 struct hd_struct *part; 1281 1282 if (strcmp(dev_name(dev), name)) 1283 continue; 1284 1285 if (partno < disk->minors) { 1286 /* We need to return the right devno, even 1287 * if the partition doesn't exist yet. 1288 */ 1289 devt = MKDEV(MAJOR(dev->devt), 1290 MINOR(dev->devt) + partno); 1291 break; 1292 } 1293 part = disk_get_part(disk, partno); 1294 if (part) { 1295 devt = part_devt(part); 1296 disk_put_part(part); 1297 break; 1298 } 1299 disk_put_part(part); 1300 } 1301 class_dev_iter_exit(&iter); 1302 return devt; 1303 } 1304 EXPORT_SYMBOL(blk_lookup_devt); 1305 1306 struct gendisk *alloc_disk(int minors) 1307 { 1308 return alloc_disk_node(minors, NUMA_NO_NODE); 1309 } 1310 EXPORT_SYMBOL(alloc_disk); 1311 1312 struct gendisk *alloc_disk_node(int minors, int node_id) 1313 { 1314 struct gendisk *disk; 1315 1316 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); 1317 if (disk) { 1318 if (!init_part_stats(&disk->part0)) { 1319 kfree(disk); 1320 return NULL; 1321 } 1322 disk->node_id = node_id; 1323 if (disk_expand_part_tbl(disk, 0)) { 1324 free_part_stats(&disk->part0); 1325 kfree(disk); 1326 return NULL; 1327 } 1328 disk->part_tbl->part[0] = &disk->part0; 1329 1330 /* 1331 * set_capacity() and get_capacity() currently don't use 1332 * seqcounter to read/update the part0->nr_sects. Still init 1333 * the counter as we can read the sectors in IO submission 1334 * patch using seqence counters. 1335 * 1336 * TODO: Ideally set_capacity() and get_capacity() should be 1337 * converted to make use of bd_mutex and sequence counters. 1338 */ 1339 seqcount_init(&disk->part0.nr_sects_seq); 1340 if (hd_ref_init(&disk->part0)) { 1341 hd_free_part(&disk->part0); 1342 kfree(disk); 1343 return NULL; 1344 } 1345 1346 disk->minors = minors; 1347 rand_initialize_disk(disk); 1348 disk_to_dev(disk)->class = &block_class; 1349 disk_to_dev(disk)->type = &disk_type; 1350 device_initialize(disk_to_dev(disk)); 1351 } 1352 return disk; 1353 } 1354 EXPORT_SYMBOL(alloc_disk_node); 1355 1356 struct kobject *get_disk(struct gendisk *disk) 1357 { 1358 struct module *owner; 1359 struct kobject *kobj; 1360 1361 if (!disk->fops) 1362 return NULL; 1363 owner = disk->fops->owner; 1364 if (owner && !try_module_get(owner)) 1365 return NULL; 1366 kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj); 1367 if (kobj == NULL) { 1368 module_put(owner); 1369 return NULL; 1370 } 1371 return kobj; 1372 1373 } 1374 1375 EXPORT_SYMBOL(get_disk); 1376 1377 void put_disk(struct gendisk *disk) 1378 { 1379 if (disk) 1380 kobject_put(&disk_to_dev(disk)->kobj); 1381 } 1382 1383 EXPORT_SYMBOL(put_disk); 1384 1385 static void set_disk_ro_uevent(struct gendisk *gd, int ro) 1386 { 1387 char event[] = "DISK_RO=1"; 1388 char *envp[] = { event, NULL }; 1389 1390 if (!ro) 1391 event[8] = '0'; 1392 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); 1393 } 1394 1395 void set_device_ro(struct block_device *bdev, int flag) 1396 { 1397 bdev->bd_part->policy = flag; 1398 } 1399 1400 EXPORT_SYMBOL(set_device_ro); 1401 1402 void set_disk_ro(struct gendisk *disk, int flag) 1403 { 1404 struct disk_part_iter piter; 1405 struct hd_struct *part; 1406 1407 if (disk->part0.policy != flag) { 1408 set_disk_ro_uevent(disk, flag); 1409 disk->part0.policy = flag; 1410 } 1411 1412 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 1413 while ((part = disk_part_iter_next(&piter))) 1414 part->policy = flag; 1415 disk_part_iter_exit(&piter); 1416 } 1417 1418 EXPORT_SYMBOL(set_disk_ro); 1419 1420 int bdev_read_only(struct block_device *bdev) 1421 { 1422 if (!bdev) 1423 return 0; 1424 return bdev->bd_part->policy; 1425 } 1426 1427 EXPORT_SYMBOL(bdev_read_only); 1428 1429 int invalidate_partition(struct gendisk *disk, int partno) 1430 { 1431 int res = 0; 1432 struct block_device *bdev = bdget_disk(disk, partno); 1433 if (bdev) { 1434 fsync_bdev(bdev); 1435 res = __invalidate_device(bdev, true); 1436 bdput(bdev); 1437 } 1438 return res; 1439 } 1440 1441 EXPORT_SYMBOL(invalidate_partition); 1442 1443 /* 1444 * Disk events - monitor disk events like media change and eject request. 1445 */ 1446 struct disk_events { 1447 struct list_head node; /* all disk_event's */ 1448 struct gendisk *disk; /* the associated disk */ 1449 spinlock_t lock; 1450 1451 struct mutex block_mutex; /* protects blocking */ 1452 int block; /* event blocking depth */ 1453 unsigned int pending; /* events already sent out */ 1454 unsigned int clearing; /* events being cleared */ 1455 1456 long poll_msecs; /* interval, -1 for default */ 1457 struct delayed_work dwork; 1458 }; 1459 1460 static const char *disk_events_strs[] = { 1461 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change", 1462 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request", 1463 }; 1464 1465 static char *disk_uevents[] = { 1466 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1", 1467 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1", 1468 }; 1469 1470 /* list of all disk_events */ 1471 static DEFINE_MUTEX(disk_events_mutex); 1472 static LIST_HEAD(disk_events); 1473 1474 /* disable in-kernel polling by default */ 1475 static unsigned long disk_events_dfl_poll_msecs; 1476 1477 static unsigned long disk_events_poll_jiffies(struct gendisk *disk) 1478 { 1479 struct disk_events *ev = disk->ev; 1480 long intv_msecs = 0; 1481 1482 /* 1483 * If device-specific poll interval is set, always use it. If 1484 * the default is being used, poll iff there are events which 1485 * can't be monitored asynchronously. 1486 */ 1487 if (ev->poll_msecs >= 0) 1488 intv_msecs = ev->poll_msecs; 1489 else if (disk->events & ~disk->async_events) 1490 intv_msecs = disk_events_dfl_poll_msecs; 1491 1492 return msecs_to_jiffies(intv_msecs); 1493 } 1494 1495 /** 1496 * disk_block_events - block and flush disk event checking 1497 * @disk: disk to block events for 1498 * 1499 * On return from this function, it is guaranteed that event checking 1500 * isn't in progress and won't happen until unblocked by 1501 * disk_unblock_events(). Events blocking is counted and the actual 1502 * unblocking happens after the matching number of unblocks are done. 1503 * 1504 * Note that this intentionally does not block event checking from 1505 * disk_clear_events(). 1506 * 1507 * CONTEXT: 1508 * Might sleep. 1509 */ 1510 void disk_block_events(struct gendisk *disk) 1511 { 1512 struct disk_events *ev = disk->ev; 1513 unsigned long flags; 1514 bool cancel; 1515 1516 if (!ev) 1517 return; 1518 1519 /* 1520 * Outer mutex ensures that the first blocker completes canceling 1521 * the event work before further blockers are allowed to finish. 1522 */ 1523 mutex_lock(&ev->block_mutex); 1524 1525 spin_lock_irqsave(&ev->lock, flags); 1526 cancel = !ev->block++; 1527 spin_unlock_irqrestore(&ev->lock, flags); 1528 1529 if (cancel) 1530 cancel_delayed_work_sync(&disk->ev->dwork); 1531 1532 mutex_unlock(&ev->block_mutex); 1533 } 1534 1535 static void __disk_unblock_events(struct gendisk *disk, bool check_now) 1536 { 1537 struct disk_events *ev = disk->ev; 1538 unsigned long intv; 1539 unsigned long flags; 1540 1541 spin_lock_irqsave(&ev->lock, flags); 1542 1543 if (WARN_ON_ONCE(ev->block <= 0)) 1544 goto out_unlock; 1545 1546 if (--ev->block) 1547 goto out_unlock; 1548 1549 intv = disk_events_poll_jiffies(disk); 1550 if (check_now) 1551 queue_delayed_work(system_freezable_power_efficient_wq, 1552 &ev->dwork, 0); 1553 else if (intv) 1554 queue_delayed_work(system_freezable_power_efficient_wq, 1555 &ev->dwork, intv); 1556 out_unlock: 1557 spin_unlock_irqrestore(&ev->lock, flags); 1558 } 1559 1560 /** 1561 * disk_unblock_events - unblock disk event checking 1562 * @disk: disk to unblock events for 1563 * 1564 * Undo disk_block_events(). When the block count reaches zero, it 1565 * starts events polling if configured. 1566 * 1567 * CONTEXT: 1568 * Don't care. Safe to call from irq context. 1569 */ 1570 void disk_unblock_events(struct gendisk *disk) 1571 { 1572 if (disk->ev) 1573 __disk_unblock_events(disk, false); 1574 } 1575 1576 /** 1577 * disk_flush_events - schedule immediate event checking and flushing 1578 * @disk: disk to check and flush events for 1579 * @mask: events to flush 1580 * 1581 * Schedule immediate event checking on @disk if not blocked. Events in 1582 * @mask are scheduled to be cleared from the driver. Note that this 1583 * doesn't clear the events from @disk->ev. 1584 * 1585 * CONTEXT: 1586 * If @mask is non-zero must be called with bdev->bd_mutex held. 1587 */ 1588 void disk_flush_events(struct gendisk *disk, unsigned int mask) 1589 { 1590 struct disk_events *ev = disk->ev; 1591 1592 if (!ev) 1593 return; 1594 1595 spin_lock_irq(&ev->lock); 1596 ev->clearing |= mask; 1597 if (!ev->block) 1598 mod_delayed_work(system_freezable_power_efficient_wq, 1599 &ev->dwork, 0); 1600 spin_unlock_irq(&ev->lock); 1601 } 1602 1603 /** 1604 * disk_clear_events - synchronously check, clear and return pending events 1605 * @disk: disk to fetch and clear events from 1606 * @mask: mask of events to be fetched and cleared 1607 * 1608 * Disk events are synchronously checked and pending events in @mask 1609 * are cleared and returned. This ignores the block count. 1610 * 1611 * CONTEXT: 1612 * Might sleep. 1613 */ 1614 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask) 1615 { 1616 const struct block_device_operations *bdops = disk->fops; 1617 struct disk_events *ev = disk->ev; 1618 unsigned int pending; 1619 unsigned int clearing = mask; 1620 1621 if (!ev) { 1622 /* for drivers still using the old ->media_changed method */ 1623 if ((mask & DISK_EVENT_MEDIA_CHANGE) && 1624 bdops->media_changed && bdops->media_changed(disk)) 1625 return DISK_EVENT_MEDIA_CHANGE; 1626 return 0; 1627 } 1628 1629 disk_block_events(disk); 1630 1631 /* 1632 * store the union of mask and ev->clearing on the stack so that the 1633 * race with disk_flush_events does not cause ambiguity (ev->clearing 1634 * can still be modified even if events are blocked). 1635 */ 1636 spin_lock_irq(&ev->lock); 1637 clearing |= ev->clearing; 1638 ev->clearing = 0; 1639 spin_unlock_irq(&ev->lock); 1640 1641 disk_check_events(ev, &clearing); 1642 /* 1643 * if ev->clearing is not 0, the disk_flush_events got called in the 1644 * middle of this function, so we want to run the workfn without delay. 1645 */ 1646 __disk_unblock_events(disk, ev->clearing ? true : false); 1647 1648 /* then, fetch and clear pending events */ 1649 spin_lock_irq(&ev->lock); 1650 pending = ev->pending & mask; 1651 ev->pending &= ~mask; 1652 spin_unlock_irq(&ev->lock); 1653 WARN_ON_ONCE(clearing & mask); 1654 1655 return pending; 1656 } 1657 1658 /* 1659 * Separate this part out so that a different pointer for clearing_ptr can be 1660 * passed in for disk_clear_events. 1661 */ 1662 static void disk_events_workfn(struct work_struct *work) 1663 { 1664 struct delayed_work *dwork = to_delayed_work(work); 1665 struct disk_events *ev = container_of(dwork, struct disk_events, dwork); 1666 1667 disk_check_events(ev, &ev->clearing); 1668 } 1669 1670 static void disk_check_events(struct disk_events *ev, 1671 unsigned int *clearing_ptr) 1672 { 1673 struct gendisk *disk = ev->disk; 1674 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { }; 1675 unsigned int clearing = *clearing_ptr; 1676 unsigned int events; 1677 unsigned long intv; 1678 int nr_events = 0, i; 1679 1680 /* check events */ 1681 events = disk->fops->check_events(disk, clearing); 1682 1683 /* accumulate pending events and schedule next poll if necessary */ 1684 spin_lock_irq(&ev->lock); 1685 1686 events &= ~ev->pending; 1687 ev->pending |= events; 1688 *clearing_ptr &= ~clearing; 1689 1690 intv = disk_events_poll_jiffies(disk); 1691 if (!ev->block && intv) 1692 queue_delayed_work(system_freezable_power_efficient_wq, 1693 &ev->dwork, intv); 1694 1695 spin_unlock_irq(&ev->lock); 1696 1697 /* 1698 * Tell userland about new events. Only the events listed in 1699 * @disk->events are reported. Unlisted events are processed the 1700 * same internally but never get reported to userland. 1701 */ 1702 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++) 1703 if (events & disk->events & (1 << i)) 1704 envp[nr_events++] = disk_uevents[i]; 1705 1706 if (nr_events) 1707 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 1708 } 1709 1710 /* 1711 * A disk events enabled device has the following sysfs nodes under 1712 * its /sys/block/X/ directory. 1713 * 1714 * events : list of all supported events 1715 * events_async : list of events which can be detected w/o polling 1716 * events_poll_msecs : polling interval, 0: disable, -1: system default 1717 */ 1718 static ssize_t __disk_events_show(unsigned int events, char *buf) 1719 { 1720 const char *delim = ""; 1721 ssize_t pos = 0; 1722 int i; 1723 1724 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++) 1725 if (events & (1 << i)) { 1726 pos += sprintf(buf + pos, "%s%s", 1727 delim, disk_events_strs[i]); 1728 delim = " "; 1729 } 1730 if (pos) 1731 pos += sprintf(buf + pos, "\n"); 1732 return pos; 1733 } 1734 1735 static ssize_t disk_events_show(struct device *dev, 1736 struct device_attribute *attr, char *buf) 1737 { 1738 struct gendisk *disk = dev_to_disk(dev); 1739 1740 return __disk_events_show(disk->events, buf); 1741 } 1742 1743 static ssize_t disk_events_async_show(struct device *dev, 1744 struct device_attribute *attr, char *buf) 1745 { 1746 struct gendisk *disk = dev_to_disk(dev); 1747 1748 return __disk_events_show(disk->async_events, buf); 1749 } 1750 1751 static ssize_t disk_events_poll_msecs_show(struct device *dev, 1752 struct device_attribute *attr, 1753 char *buf) 1754 { 1755 struct gendisk *disk = dev_to_disk(dev); 1756 1757 return sprintf(buf, "%ld\n", disk->ev->poll_msecs); 1758 } 1759 1760 static ssize_t disk_events_poll_msecs_store(struct device *dev, 1761 struct device_attribute *attr, 1762 const char *buf, size_t count) 1763 { 1764 struct gendisk *disk = dev_to_disk(dev); 1765 long intv; 1766 1767 if (!count || !sscanf(buf, "%ld", &intv)) 1768 return -EINVAL; 1769 1770 if (intv < 0 && intv != -1) 1771 return -EINVAL; 1772 1773 disk_block_events(disk); 1774 disk->ev->poll_msecs = intv; 1775 __disk_unblock_events(disk, true); 1776 1777 return count; 1778 } 1779 1780 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL); 1781 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL); 1782 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR, 1783 disk_events_poll_msecs_show, 1784 disk_events_poll_msecs_store); 1785 1786 static const struct attribute *disk_events_attrs[] = { 1787 &dev_attr_events.attr, 1788 &dev_attr_events_async.attr, 1789 &dev_attr_events_poll_msecs.attr, 1790 NULL, 1791 }; 1792 1793 /* 1794 * The default polling interval can be specified by the kernel 1795 * parameter block.events_dfl_poll_msecs which defaults to 0 1796 * (disable). This can also be modified runtime by writing to 1797 * /sys/module/block/events_dfl_poll_msecs. 1798 */ 1799 static int disk_events_set_dfl_poll_msecs(const char *val, 1800 const struct kernel_param *kp) 1801 { 1802 struct disk_events *ev; 1803 int ret; 1804 1805 ret = param_set_ulong(val, kp); 1806 if (ret < 0) 1807 return ret; 1808 1809 mutex_lock(&disk_events_mutex); 1810 1811 list_for_each_entry(ev, &disk_events, node) 1812 disk_flush_events(ev->disk, 0); 1813 1814 mutex_unlock(&disk_events_mutex); 1815 1816 return 0; 1817 } 1818 1819 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = { 1820 .set = disk_events_set_dfl_poll_msecs, 1821 .get = param_get_ulong, 1822 }; 1823 1824 #undef MODULE_PARAM_PREFIX 1825 #define MODULE_PARAM_PREFIX "block." 1826 1827 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops, 1828 &disk_events_dfl_poll_msecs, 0644); 1829 1830 /* 1831 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events. 1832 */ 1833 static void disk_alloc_events(struct gendisk *disk) 1834 { 1835 struct disk_events *ev; 1836 1837 if (!disk->fops->check_events) 1838 return; 1839 1840 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1841 if (!ev) { 1842 pr_warn("%s: failed to initialize events\n", disk->disk_name); 1843 return; 1844 } 1845 1846 INIT_LIST_HEAD(&ev->node); 1847 ev->disk = disk; 1848 spin_lock_init(&ev->lock); 1849 mutex_init(&ev->block_mutex); 1850 ev->block = 1; 1851 ev->poll_msecs = -1; 1852 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn); 1853 1854 disk->ev = ev; 1855 } 1856 1857 static void disk_add_events(struct gendisk *disk) 1858 { 1859 if (!disk->ev) 1860 return; 1861 1862 /* FIXME: error handling */ 1863 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0) 1864 pr_warn("%s: failed to create sysfs files for events\n", 1865 disk->disk_name); 1866 1867 mutex_lock(&disk_events_mutex); 1868 list_add_tail(&disk->ev->node, &disk_events); 1869 mutex_unlock(&disk_events_mutex); 1870 1871 /* 1872 * Block count is initialized to 1 and the following initial 1873 * unblock kicks it into action. 1874 */ 1875 __disk_unblock_events(disk, true); 1876 } 1877 1878 static void disk_del_events(struct gendisk *disk) 1879 { 1880 if (!disk->ev) 1881 return; 1882 1883 disk_block_events(disk); 1884 1885 mutex_lock(&disk_events_mutex); 1886 list_del_init(&disk->ev->node); 1887 mutex_unlock(&disk_events_mutex); 1888 1889 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs); 1890 } 1891 1892 static void disk_release_events(struct gendisk *disk) 1893 { 1894 /* the block count should be 1 from disk_del_events() */ 1895 WARN_ON_ONCE(disk->ev && disk->ev->block != 1); 1896 kfree(disk->ev); 1897 } 1898