xref: /linux/block/genhd.c (revision 564f7dfde24a405d877168f150ae5d29d3ad99c7)
1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/kobj_map.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/badblocks.h>
24 
25 #include "blk.h"
26 
27 static DEFINE_MUTEX(block_class_lock);
28 struct kobject *block_depr;
29 
30 /* for extended dynamic devt allocation, currently only one major is used */
31 #define NR_EXT_DEVT		(1 << MINORBITS)
32 
33 /* For extended devt allocation.  ext_devt_lock prevents look up
34  * results from going away underneath its user.
35  */
36 static DEFINE_SPINLOCK(ext_devt_lock);
37 static DEFINE_IDR(ext_devt_idr);
38 
39 static struct device_type disk_type;
40 
41 static void disk_check_events(struct disk_events *ev,
42 			      unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47 
48 /**
49  * disk_get_part - get partition
50  * @disk: disk to look partition from
51  * @partno: partition number
52  *
53  * Look for partition @partno from @disk.  If found, increment
54  * reference count and return it.
55  *
56  * CONTEXT:
57  * Don't care.
58  *
59  * RETURNS:
60  * Pointer to the found partition on success, NULL if not found.
61  */
62 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
63 {
64 	struct hd_struct *part = NULL;
65 	struct disk_part_tbl *ptbl;
66 
67 	if (unlikely(partno < 0))
68 		return NULL;
69 
70 	rcu_read_lock();
71 
72 	ptbl = rcu_dereference(disk->part_tbl);
73 	if (likely(partno < ptbl->len)) {
74 		part = rcu_dereference(ptbl->part[partno]);
75 		if (part)
76 			get_device(part_to_dev(part));
77 	}
78 
79 	rcu_read_unlock();
80 
81 	return part;
82 }
83 EXPORT_SYMBOL_GPL(disk_get_part);
84 
85 /**
86  * disk_part_iter_init - initialize partition iterator
87  * @piter: iterator to initialize
88  * @disk: disk to iterate over
89  * @flags: DISK_PITER_* flags
90  *
91  * Initialize @piter so that it iterates over partitions of @disk.
92  *
93  * CONTEXT:
94  * Don't care.
95  */
96 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
97 			  unsigned int flags)
98 {
99 	struct disk_part_tbl *ptbl;
100 
101 	rcu_read_lock();
102 	ptbl = rcu_dereference(disk->part_tbl);
103 
104 	piter->disk = disk;
105 	piter->part = NULL;
106 
107 	if (flags & DISK_PITER_REVERSE)
108 		piter->idx = ptbl->len - 1;
109 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
110 		piter->idx = 0;
111 	else
112 		piter->idx = 1;
113 
114 	piter->flags = flags;
115 
116 	rcu_read_unlock();
117 }
118 EXPORT_SYMBOL_GPL(disk_part_iter_init);
119 
120 /**
121  * disk_part_iter_next - proceed iterator to the next partition and return it
122  * @piter: iterator of interest
123  *
124  * Proceed @piter to the next partition and return it.
125  *
126  * CONTEXT:
127  * Don't care.
128  */
129 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
130 {
131 	struct disk_part_tbl *ptbl;
132 	int inc, end;
133 
134 	/* put the last partition */
135 	disk_put_part(piter->part);
136 	piter->part = NULL;
137 
138 	/* get part_tbl */
139 	rcu_read_lock();
140 	ptbl = rcu_dereference(piter->disk->part_tbl);
141 
142 	/* determine iteration parameters */
143 	if (piter->flags & DISK_PITER_REVERSE) {
144 		inc = -1;
145 		if (piter->flags & (DISK_PITER_INCL_PART0 |
146 				    DISK_PITER_INCL_EMPTY_PART0))
147 			end = -1;
148 		else
149 			end = 0;
150 	} else {
151 		inc = 1;
152 		end = ptbl->len;
153 	}
154 
155 	/* iterate to the next partition */
156 	for (; piter->idx != end; piter->idx += inc) {
157 		struct hd_struct *part;
158 
159 		part = rcu_dereference(ptbl->part[piter->idx]);
160 		if (!part)
161 			continue;
162 		if (!part_nr_sects_read(part) &&
163 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
164 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
165 		      piter->idx == 0))
166 			continue;
167 
168 		get_device(part_to_dev(part));
169 		piter->part = part;
170 		piter->idx += inc;
171 		break;
172 	}
173 
174 	rcu_read_unlock();
175 
176 	return piter->part;
177 }
178 EXPORT_SYMBOL_GPL(disk_part_iter_next);
179 
180 /**
181  * disk_part_iter_exit - finish up partition iteration
182  * @piter: iter of interest
183  *
184  * Called when iteration is over.  Cleans up @piter.
185  *
186  * CONTEXT:
187  * Don't care.
188  */
189 void disk_part_iter_exit(struct disk_part_iter *piter)
190 {
191 	disk_put_part(piter->part);
192 	piter->part = NULL;
193 }
194 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
195 
196 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
197 {
198 	return part->start_sect <= sector &&
199 		sector < part->start_sect + part_nr_sects_read(part);
200 }
201 
202 /**
203  * disk_map_sector_rcu - map sector to partition
204  * @disk: gendisk of interest
205  * @sector: sector to map
206  *
207  * Find out which partition @sector maps to on @disk.  This is
208  * primarily used for stats accounting.
209  *
210  * CONTEXT:
211  * RCU read locked.  The returned partition pointer is valid only
212  * while preemption is disabled.
213  *
214  * RETURNS:
215  * Found partition on success, part0 is returned if no partition matches
216  */
217 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
218 {
219 	struct disk_part_tbl *ptbl;
220 	struct hd_struct *part;
221 	int i;
222 
223 	ptbl = rcu_dereference(disk->part_tbl);
224 
225 	part = rcu_dereference(ptbl->last_lookup);
226 	if (part && sector_in_part(part, sector))
227 		return part;
228 
229 	for (i = 1; i < ptbl->len; i++) {
230 		part = rcu_dereference(ptbl->part[i]);
231 
232 		if (part && sector_in_part(part, sector)) {
233 			rcu_assign_pointer(ptbl->last_lookup, part);
234 			return part;
235 		}
236 	}
237 	return &disk->part0;
238 }
239 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
240 
241 /*
242  * Can be deleted altogether. Later.
243  *
244  */
245 static struct blk_major_name {
246 	struct blk_major_name *next;
247 	int major;
248 	char name[16];
249 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
250 
251 /* index in the above - for now: assume no multimajor ranges */
252 static inline int major_to_index(unsigned major)
253 {
254 	return major % BLKDEV_MAJOR_HASH_SIZE;
255 }
256 
257 #ifdef CONFIG_PROC_FS
258 void blkdev_show(struct seq_file *seqf, off_t offset)
259 {
260 	struct blk_major_name *dp;
261 
262 	if (offset < BLKDEV_MAJOR_HASH_SIZE) {
263 		mutex_lock(&block_class_lock);
264 		for (dp = major_names[offset]; dp; dp = dp->next)
265 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
266 		mutex_unlock(&block_class_lock);
267 	}
268 }
269 #endif /* CONFIG_PROC_FS */
270 
271 /**
272  * register_blkdev - register a new block device
273  *
274  * @major: the requested major device number [1..255]. If @major=0, try to
275  *         allocate any unused major number.
276  * @name: the name of the new block device as a zero terminated string
277  *
278  * The @name must be unique within the system.
279  *
280  * The return value depends on the @major input parameter.
281  *  - if a major device number was requested in range [1..255] then the
282  *    function returns zero on success, or a negative error code
283  *  - if any unused major number was requested with @major=0 parameter
284  *    then the return value is the allocated major number in range
285  *    [1..255] or a negative error code otherwise
286  */
287 int register_blkdev(unsigned int major, const char *name)
288 {
289 	struct blk_major_name **n, *p;
290 	int index, ret = 0;
291 
292 	mutex_lock(&block_class_lock);
293 
294 	/* temporary */
295 	if (major == 0) {
296 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
297 			if (major_names[index] == NULL)
298 				break;
299 		}
300 
301 		if (index == 0) {
302 			printk("register_blkdev: failed to get major for %s\n",
303 			       name);
304 			ret = -EBUSY;
305 			goto out;
306 		}
307 		major = index;
308 		ret = major;
309 	}
310 
311 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
312 	if (p == NULL) {
313 		ret = -ENOMEM;
314 		goto out;
315 	}
316 
317 	p->major = major;
318 	strlcpy(p->name, name, sizeof(p->name));
319 	p->next = NULL;
320 	index = major_to_index(major);
321 
322 	for (n = &major_names[index]; *n; n = &(*n)->next) {
323 		if ((*n)->major == major)
324 			break;
325 	}
326 	if (!*n)
327 		*n = p;
328 	else
329 		ret = -EBUSY;
330 
331 	if (ret < 0) {
332 		printk("register_blkdev: cannot get major %d for %s\n",
333 		       major, name);
334 		kfree(p);
335 	}
336 out:
337 	mutex_unlock(&block_class_lock);
338 	return ret;
339 }
340 
341 EXPORT_SYMBOL(register_blkdev);
342 
343 void unregister_blkdev(unsigned int major, const char *name)
344 {
345 	struct blk_major_name **n;
346 	struct blk_major_name *p = NULL;
347 	int index = major_to_index(major);
348 
349 	mutex_lock(&block_class_lock);
350 	for (n = &major_names[index]; *n; n = &(*n)->next)
351 		if ((*n)->major == major)
352 			break;
353 	if (!*n || strcmp((*n)->name, name)) {
354 		WARN_ON(1);
355 	} else {
356 		p = *n;
357 		*n = p->next;
358 	}
359 	mutex_unlock(&block_class_lock);
360 	kfree(p);
361 }
362 
363 EXPORT_SYMBOL(unregister_blkdev);
364 
365 static struct kobj_map *bdev_map;
366 
367 /**
368  * blk_mangle_minor - scatter minor numbers apart
369  * @minor: minor number to mangle
370  *
371  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
372  * is enabled.  Mangling twice gives the original value.
373  *
374  * RETURNS:
375  * Mangled value.
376  *
377  * CONTEXT:
378  * Don't care.
379  */
380 static int blk_mangle_minor(int minor)
381 {
382 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
383 	int i;
384 
385 	for (i = 0; i < MINORBITS / 2; i++) {
386 		int low = minor & (1 << i);
387 		int high = minor & (1 << (MINORBITS - 1 - i));
388 		int distance = MINORBITS - 1 - 2 * i;
389 
390 		minor ^= low | high;	/* clear both bits */
391 		low <<= distance;	/* swap the positions */
392 		high >>= distance;
393 		minor |= low | high;	/* and set */
394 	}
395 #endif
396 	return minor;
397 }
398 
399 /**
400  * blk_alloc_devt - allocate a dev_t for a partition
401  * @part: partition to allocate dev_t for
402  * @devt: out parameter for resulting dev_t
403  *
404  * Allocate a dev_t for block device.
405  *
406  * RETURNS:
407  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
408  * failure.
409  *
410  * CONTEXT:
411  * Might sleep.
412  */
413 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
414 {
415 	struct gendisk *disk = part_to_disk(part);
416 	int idx;
417 
418 	/* in consecutive minor range? */
419 	if (part->partno < disk->minors) {
420 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
421 		return 0;
422 	}
423 
424 	/* allocate ext devt */
425 	idr_preload(GFP_KERNEL);
426 
427 	spin_lock_bh(&ext_devt_lock);
428 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
429 	spin_unlock_bh(&ext_devt_lock);
430 
431 	idr_preload_end();
432 	if (idx < 0)
433 		return idx == -ENOSPC ? -EBUSY : idx;
434 
435 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
436 	return 0;
437 }
438 
439 /**
440  * blk_free_devt - free a dev_t
441  * @devt: dev_t to free
442  *
443  * Free @devt which was allocated using blk_alloc_devt().
444  *
445  * CONTEXT:
446  * Might sleep.
447  */
448 void blk_free_devt(dev_t devt)
449 {
450 	if (devt == MKDEV(0, 0))
451 		return;
452 
453 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
454 		spin_lock_bh(&ext_devt_lock);
455 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
456 		spin_unlock_bh(&ext_devt_lock);
457 	}
458 }
459 
460 static char *bdevt_str(dev_t devt, char *buf)
461 {
462 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
463 		char tbuf[BDEVT_SIZE];
464 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
465 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
466 	} else
467 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
468 
469 	return buf;
470 }
471 
472 /*
473  * Register device numbers dev..(dev+range-1)
474  * range must be nonzero
475  * The hash chain is sorted on range, so that subranges can override.
476  */
477 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
478 			 struct kobject *(*probe)(dev_t, int *, void *),
479 			 int (*lock)(dev_t, void *), void *data)
480 {
481 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
482 }
483 
484 EXPORT_SYMBOL(blk_register_region);
485 
486 void blk_unregister_region(dev_t devt, unsigned long range)
487 {
488 	kobj_unmap(bdev_map, devt, range);
489 }
490 
491 EXPORT_SYMBOL(blk_unregister_region);
492 
493 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
494 {
495 	struct gendisk *p = data;
496 
497 	return &disk_to_dev(p)->kobj;
498 }
499 
500 static int exact_lock(dev_t devt, void *data)
501 {
502 	struct gendisk *p = data;
503 
504 	if (!get_disk(p))
505 		return -1;
506 	return 0;
507 }
508 
509 static void register_disk(struct device *parent, struct gendisk *disk)
510 {
511 	struct device *ddev = disk_to_dev(disk);
512 	struct block_device *bdev;
513 	struct disk_part_iter piter;
514 	struct hd_struct *part;
515 	int err;
516 
517 	ddev->parent = parent;
518 
519 	dev_set_name(ddev, "%s", disk->disk_name);
520 
521 	/* delay uevents, until we scanned partition table */
522 	dev_set_uevent_suppress(ddev, 1);
523 
524 	if (device_add(ddev))
525 		return;
526 	if (!sysfs_deprecated) {
527 		err = sysfs_create_link(block_depr, &ddev->kobj,
528 					kobject_name(&ddev->kobj));
529 		if (err) {
530 			device_del(ddev);
531 			return;
532 		}
533 	}
534 
535 	/*
536 	 * avoid probable deadlock caused by allocating memory with
537 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
538 	 * devices
539 	 */
540 	pm_runtime_set_memalloc_noio(ddev, true);
541 
542 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
543 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
544 
545 	/* No minors to use for partitions */
546 	if (!disk_part_scan_enabled(disk))
547 		goto exit;
548 
549 	/* No such device (e.g., media were just removed) */
550 	if (!get_capacity(disk))
551 		goto exit;
552 
553 	bdev = bdget_disk(disk, 0);
554 	if (!bdev)
555 		goto exit;
556 
557 	bdev->bd_invalidated = 1;
558 	err = blkdev_get(bdev, FMODE_READ, NULL);
559 	if (err < 0)
560 		goto exit;
561 	blkdev_put(bdev, FMODE_READ);
562 
563 exit:
564 	/* announce disk after possible partitions are created */
565 	dev_set_uevent_suppress(ddev, 0);
566 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
567 
568 	/* announce possible partitions */
569 	disk_part_iter_init(&piter, disk, 0);
570 	while ((part = disk_part_iter_next(&piter)))
571 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
572 	disk_part_iter_exit(&piter);
573 }
574 
575 /**
576  * device_add_disk - add partitioning information to kernel list
577  * @parent: parent device for the disk
578  * @disk: per-device partitioning information
579  *
580  * This function registers the partitioning information in @disk
581  * with the kernel.
582  *
583  * FIXME: error handling
584  */
585 void device_add_disk(struct device *parent, struct gendisk *disk)
586 {
587 	struct backing_dev_info *bdi;
588 	dev_t devt;
589 	int retval;
590 
591 	/* minors == 0 indicates to use ext devt from part0 and should
592 	 * be accompanied with EXT_DEVT flag.  Make sure all
593 	 * parameters make sense.
594 	 */
595 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
596 	WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
597 
598 	disk->flags |= GENHD_FL_UP;
599 
600 	retval = blk_alloc_devt(&disk->part0, &devt);
601 	if (retval) {
602 		WARN_ON(1);
603 		return;
604 	}
605 	disk_to_dev(disk)->devt = devt;
606 
607 	/* ->major and ->first_minor aren't supposed to be
608 	 * dereferenced from here on, but set them just in case.
609 	 */
610 	disk->major = MAJOR(devt);
611 	disk->first_minor = MINOR(devt);
612 
613 	disk_alloc_events(disk);
614 
615 	/* Register BDI before referencing it from bdev */
616 	bdi = disk->queue->backing_dev_info;
617 	bdi_register_owner(bdi, disk_to_dev(disk));
618 
619 	blk_register_region(disk_devt(disk), disk->minors, NULL,
620 			    exact_match, exact_lock, disk);
621 	register_disk(parent, disk);
622 	blk_register_queue(disk);
623 
624 	/*
625 	 * Take an extra ref on queue which will be put on disk_release()
626 	 * so that it sticks around as long as @disk is there.
627 	 */
628 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
629 
630 	retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
631 				   "bdi");
632 	WARN_ON(retval);
633 
634 	disk_add_events(disk);
635 	blk_integrity_add(disk);
636 }
637 EXPORT_SYMBOL(device_add_disk);
638 
639 void del_gendisk(struct gendisk *disk)
640 {
641 	struct disk_part_iter piter;
642 	struct hd_struct *part;
643 
644 	blk_integrity_del(disk);
645 	disk_del_events(disk);
646 
647 	/* invalidate stuff */
648 	disk_part_iter_init(&piter, disk,
649 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
650 	while ((part = disk_part_iter_next(&piter))) {
651 		invalidate_partition(disk, part->partno);
652 		bdev_unhash_inode(part_devt(part));
653 		delete_partition(disk, part->partno);
654 	}
655 	disk_part_iter_exit(&piter);
656 
657 	invalidate_partition(disk, 0);
658 	bdev_unhash_inode(disk_devt(disk));
659 	set_capacity(disk, 0);
660 	disk->flags &= ~GENHD_FL_UP;
661 
662 	sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
663 	if (disk->queue) {
664 		/*
665 		 * Unregister bdi before releasing device numbers (as they can
666 		 * get reused and we'd get clashes in sysfs).
667 		 */
668 		bdi_unregister(disk->queue->backing_dev_info);
669 		blk_unregister_queue(disk);
670 	} else {
671 		WARN_ON(1);
672 	}
673 	blk_unregister_region(disk_devt(disk), disk->minors);
674 
675 	part_stat_set_all(&disk->part0, 0);
676 	disk->part0.stamp = 0;
677 
678 	kobject_put(disk->part0.holder_dir);
679 	kobject_put(disk->slave_dir);
680 	if (!sysfs_deprecated)
681 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
682 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
683 	device_del(disk_to_dev(disk));
684 }
685 EXPORT_SYMBOL(del_gendisk);
686 
687 /* sysfs access to bad-blocks list. */
688 static ssize_t disk_badblocks_show(struct device *dev,
689 					struct device_attribute *attr,
690 					char *page)
691 {
692 	struct gendisk *disk = dev_to_disk(dev);
693 
694 	if (!disk->bb)
695 		return sprintf(page, "\n");
696 
697 	return badblocks_show(disk->bb, page, 0);
698 }
699 
700 static ssize_t disk_badblocks_store(struct device *dev,
701 					struct device_attribute *attr,
702 					const char *page, size_t len)
703 {
704 	struct gendisk *disk = dev_to_disk(dev);
705 
706 	if (!disk->bb)
707 		return -ENXIO;
708 
709 	return badblocks_store(disk->bb, page, len, 0);
710 }
711 
712 /**
713  * get_gendisk - get partitioning information for a given device
714  * @devt: device to get partitioning information for
715  * @partno: returned partition index
716  *
717  * This function gets the structure containing partitioning
718  * information for the given device @devt.
719  */
720 struct gendisk *get_gendisk(dev_t devt, int *partno)
721 {
722 	struct gendisk *disk = NULL;
723 
724 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
725 		struct kobject *kobj;
726 
727 		kobj = kobj_lookup(bdev_map, devt, partno);
728 		if (kobj)
729 			disk = dev_to_disk(kobj_to_dev(kobj));
730 	} else {
731 		struct hd_struct *part;
732 
733 		spin_lock_bh(&ext_devt_lock);
734 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
735 		if (part && get_disk(part_to_disk(part))) {
736 			*partno = part->partno;
737 			disk = part_to_disk(part);
738 		}
739 		spin_unlock_bh(&ext_devt_lock);
740 	}
741 
742 	return disk;
743 }
744 EXPORT_SYMBOL(get_gendisk);
745 
746 /**
747  * bdget_disk - do bdget() by gendisk and partition number
748  * @disk: gendisk of interest
749  * @partno: partition number
750  *
751  * Find partition @partno from @disk, do bdget() on it.
752  *
753  * CONTEXT:
754  * Don't care.
755  *
756  * RETURNS:
757  * Resulting block_device on success, NULL on failure.
758  */
759 struct block_device *bdget_disk(struct gendisk *disk, int partno)
760 {
761 	struct hd_struct *part;
762 	struct block_device *bdev = NULL;
763 
764 	part = disk_get_part(disk, partno);
765 	if (part)
766 		bdev = bdget(part_devt(part));
767 	disk_put_part(part);
768 
769 	return bdev;
770 }
771 EXPORT_SYMBOL(bdget_disk);
772 
773 /*
774  * print a full list of all partitions - intended for places where the root
775  * filesystem can't be mounted and thus to give the victim some idea of what
776  * went wrong
777  */
778 void __init printk_all_partitions(void)
779 {
780 	struct class_dev_iter iter;
781 	struct device *dev;
782 
783 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
784 	while ((dev = class_dev_iter_next(&iter))) {
785 		struct gendisk *disk = dev_to_disk(dev);
786 		struct disk_part_iter piter;
787 		struct hd_struct *part;
788 		char name_buf[BDEVNAME_SIZE];
789 		char devt_buf[BDEVT_SIZE];
790 
791 		/*
792 		 * Don't show empty devices or things that have been
793 		 * suppressed
794 		 */
795 		if (get_capacity(disk) == 0 ||
796 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
797 			continue;
798 
799 		/*
800 		 * Note, unlike /proc/partitions, I am showing the
801 		 * numbers in hex - the same format as the root=
802 		 * option takes.
803 		 */
804 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
805 		while ((part = disk_part_iter_next(&piter))) {
806 			bool is_part0 = part == &disk->part0;
807 
808 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
809 			       bdevt_str(part_devt(part), devt_buf),
810 			       (unsigned long long)part_nr_sects_read(part) >> 1
811 			       , disk_name(disk, part->partno, name_buf),
812 			       part->info ? part->info->uuid : "");
813 			if (is_part0) {
814 				if (dev->parent && dev->parent->driver)
815 					printk(" driver: %s\n",
816 					      dev->parent->driver->name);
817 				else
818 					printk(" (driver?)\n");
819 			} else
820 				printk("\n");
821 		}
822 		disk_part_iter_exit(&piter);
823 	}
824 	class_dev_iter_exit(&iter);
825 }
826 
827 #ifdef CONFIG_PROC_FS
828 /* iterator */
829 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
830 {
831 	loff_t skip = *pos;
832 	struct class_dev_iter *iter;
833 	struct device *dev;
834 
835 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
836 	if (!iter)
837 		return ERR_PTR(-ENOMEM);
838 
839 	seqf->private = iter;
840 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
841 	do {
842 		dev = class_dev_iter_next(iter);
843 		if (!dev)
844 			return NULL;
845 	} while (skip--);
846 
847 	return dev_to_disk(dev);
848 }
849 
850 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
851 {
852 	struct device *dev;
853 
854 	(*pos)++;
855 	dev = class_dev_iter_next(seqf->private);
856 	if (dev)
857 		return dev_to_disk(dev);
858 
859 	return NULL;
860 }
861 
862 static void disk_seqf_stop(struct seq_file *seqf, void *v)
863 {
864 	struct class_dev_iter *iter = seqf->private;
865 
866 	/* stop is called even after start failed :-( */
867 	if (iter) {
868 		class_dev_iter_exit(iter);
869 		kfree(iter);
870 		seqf->private = NULL;
871 	}
872 }
873 
874 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
875 {
876 	void *p;
877 
878 	p = disk_seqf_start(seqf, pos);
879 	if (!IS_ERR_OR_NULL(p) && !*pos)
880 		seq_puts(seqf, "major minor  #blocks  name\n\n");
881 	return p;
882 }
883 
884 static int show_partition(struct seq_file *seqf, void *v)
885 {
886 	struct gendisk *sgp = v;
887 	struct disk_part_iter piter;
888 	struct hd_struct *part;
889 	char buf[BDEVNAME_SIZE];
890 
891 	/* Don't show non-partitionable removeable devices or empty devices */
892 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
893 				   (sgp->flags & GENHD_FL_REMOVABLE)))
894 		return 0;
895 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
896 		return 0;
897 
898 	/* show the full disk and all non-0 size partitions of it */
899 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
900 	while ((part = disk_part_iter_next(&piter)))
901 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
902 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
903 			   (unsigned long long)part_nr_sects_read(part) >> 1,
904 			   disk_name(sgp, part->partno, buf));
905 	disk_part_iter_exit(&piter);
906 
907 	return 0;
908 }
909 
910 static const struct seq_operations partitions_op = {
911 	.start	= show_partition_start,
912 	.next	= disk_seqf_next,
913 	.stop	= disk_seqf_stop,
914 	.show	= show_partition
915 };
916 
917 static int partitions_open(struct inode *inode, struct file *file)
918 {
919 	return seq_open(file, &partitions_op);
920 }
921 
922 static const struct file_operations proc_partitions_operations = {
923 	.open		= partitions_open,
924 	.read		= seq_read,
925 	.llseek		= seq_lseek,
926 	.release	= seq_release,
927 };
928 #endif
929 
930 
931 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
932 {
933 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
934 		/* Make old-style 2.4 aliases work */
935 		request_module("block-major-%d", MAJOR(devt));
936 	return NULL;
937 }
938 
939 static int __init genhd_device_init(void)
940 {
941 	int error;
942 
943 	block_class.dev_kobj = sysfs_dev_block_kobj;
944 	error = class_register(&block_class);
945 	if (unlikely(error))
946 		return error;
947 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
948 	blk_dev_init();
949 
950 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
951 
952 	/* create top-level block dir */
953 	if (!sysfs_deprecated)
954 		block_depr = kobject_create_and_add("block", NULL);
955 	return 0;
956 }
957 
958 subsys_initcall(genhd_device_init);
959 
960 static ssize_t disk_range_show(struct device *dev,
961 			       struct device_attribute *attr, char *buf)
962 {
963 	struct gendisk *disk = dev_to_disk(dev);
964 
965 	return sprintf(buf, "%d\n", disk->minors);
966 }
967 
968 static ssize_t disk_ext_range_show(struct device *dev,
969 				   struct device_attribute *attr, char *buf)
970 {
971 	struct gendisk *disk = dev_to_disk(dev);
972 
973 	return sprintf(buf, "%d\n", disk_max_parts(disk));
974 }
975 
976 static ssize_t disk_removable_show(struct device *dev,
977 				   struct device_attribute *attr, char *buf)
978 {
979 	struct gendisk *disk = dev_to_disk(dev);
980 
981 	return sprintf(buf, "%d\n",
982 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
983 }
984 
985 static ssize_t disk_ro_show(struct device *dev,
986 				   struct device_attribute *attr, char *buf)
987 {
988 	struct gendisk *disk = dev_to_disk(dev);
989 
990 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
991 }
992 
993 static ssize_t disk_capability_show(struct device *dev,
994 				    struct device_attribute *attr, char *buf)
995 {
996 	struct gendisk *disk = dev_to_disk(dev);
997 
998 	return sprintf(buf, "%x\n", disk->flags);
999 }
1000 
1001 static ssize_t disk_alignment_offset_show(struct device *dev,
1002 					  struct device_attribute *attr,
1003 					  char *buf)
1004 {
1005 	struct gendisk *disk = dev_to_disk(dev);
1006 
1007 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1008 }
1009 
1010 static ssize_t disk_discard_alignment_show(struct device *dev,
1011 					   struct device_attribute *attr,
1012 					   char *buf)
1013 {
1014 	struct gendisk *disk = dev_to_disk(dev);
1015 
1016 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1017 }
1018 
1019 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
1020 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
1021 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
1022 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
1023 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
1024 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
1025 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
1026 		   NULL);
1027 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
1028 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
1029 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
1030 static DEVICE_ATTR(badblocks, S_IRUGO | S_IWUSR, disk_badblocks_show,
1031 		disk_badblocks_store);
1032 #ifdef CONFIG_FAIL_MAKE_REQUEST
1033 static struct device_attribute dev_attr_fail =
1034 	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
1035 #endif
1036 #ifdef CONFIG_FAIL_IO_TIMEOUT
1037 static struct device_attribute dev_attr_fail_timeout =
1038 	__ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
1039 		part_timeout_store);
1040 #endif
1041 
1042 static struct attribute *disk_attrs[] = {
1043 	&dev_attr_range.attr,
1044 	&dev_attr_ext_range.attr,
1045 	&dev_attr_removable.attr,
1046 	&dev_attr_ro.attr,
1047 	&dev_attr_size.attr,
1048 	&dev_attr_alignment_offset.attr,
1049 	&dev_attr_discard_alignment.attr,
1050 	&dev_attr_capability.attr,
1051 	&dev_attr_stat.attr,
1052 	&dev_attr_inflight.attr,
1053 	&dev_attr_badblocks.attr,
1054 #ifdef CONFIG_FAIL_MAKE_REQUEST
1055 	&dev_attr_fail.attr,
1056 #endif
1057 #ifdef CONFIG_FAIL_IO_TIMEOUT
1058 	&dev_attr_fail_timeout.attr,
1059 #endif
1060 	NULL
1061 };
1062 
1063 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1064 {
1065 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
1066 	struct gendisk *disk = dev_to_disk(dev);
1067 
1068 	if (a == &dev_attr_badblocks.attr && !disk->bb)
1069 		return 0;
1070 	return a->mode;
1071 }
1072 
1073 static struct attribute_group disk_attr_group = {
1074 	.attrs = disk_attrs,
1075 	.is_visible = disk_visible,
1076 };
1077 
1078 static const struct attribute_group *disk_attr_groups[] = {
1079 	&disk_attr_group,
1080 	NULL
1081 };
1082 
1083 /**
1084  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1085  * @disk: disk to replace part_tbl for
1086  * @new_ptbl: new part_tbl to install
1087  *
1088  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1089  * original ptbl is freed using RCU callback.
1090  *
1091  * LOCKING:
1092  * Matching bd_mutx locked.
1093  */
1094 static void disk_replace_part_tbl(struct gendisk *disk,
1095 				  struct disk_part_tbl *new_ptbl)
1096 {
1097 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1098 
1099 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1100 
1101 	if (old_ptbl) {
1102 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1103 		kfree_rcu(old_ptbl, rcu_head);
1104 	}
1105 }
1106 
1107 /**
1108  * disk_expand_part_tbl - expand disk->part_tbl
1109  * @disk: disk to expand part_tbl for
1110  * @partno: expand such that this partno can fit in
1111  *
1112  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1113  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1114  *
1115  * LOCKING:
1116  * Matching bd_mutex locked, might sleep.
1117  *
1118  * RETURNS:
1119  * 0 on success, -errno on failure.
1120  */
1121 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1122 {
1123 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1124 	struct disk_part_tbl *new_ptbl;
1125 	int len = old_ptbl ? old_ptbl->len : 0;
1126 	int i, target;
1127 	size_t size;
1128 
1129 	/*
1130 	 * check for int overflow, since we can get here from blkpg_ioctl()
1131 	 * with a user passed 'partno'.
1132 	 */
1133 	target = partno + 1;
1134 	if (target < 0)
1135 		return -EINVAL;
1136 
1137 	/* disk_max_parts() is zero during initialization, ignore if so */
1138 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1139 		return -EINVAL;
1140 
1141 	if (target <= len)
1142 		return 0;
1143 
1144 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1145 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1146 	if (!new_ptbl)
1147 		return -ENOMEM;
1148 
1149 	new_ptbl->len = target;
1150 
1151 	for (i = 0; i < len; i++)
1152 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1153 
1154 	disk_replace_part_tbl(disk, new_ptbl);
1155 	return 0;
1156 }
1157 
1158 static void disk_release(struct device *dev)
1159 {
1160 	struct gendisk *disk = dev_to_disk(dev);
1161 
1162 	blk_free_devt(dev->devt);
1163 	disk_release_events(disk);
1164 	kfree(disk->random);
1165 	disk_replace_part_tbl(disk, NULL);
1166 	hd_free_part(&disk->part0);
1167 	if (disk->queue)
1168 		blk_put_queue(disk->queue);
1169 	kfree(disk);
1170 }
1171 struct class block_class = {
1172 	.name		= "block",
1173 };
1174 
1175 static char *block_devnode(struct device *dev, umode_t *mode,
1176 			   kuid_t *uid, kgid_t *gid)
1177 {
1178 	struct gendisk *disk = dev_to_disk(dev);
1179 
1180 	if (disk->devnode)
1181 		return disk->devnode(disk, mode);
1182 	return NULL;
1183 }
1184 
1185 static struct device_type disk_type = {
1186 	.name		= "disk",
1187 	.groups		= disk_attr_groups,
1188 	.release	= disk_release,
1189 	.devnode	= block_devnode,
1190 };
1191 
1192 #ifdef CONFIG_PROC_FS
1193 /*
1194  * aggregate disk stat collector.  Uses the same stats that the sysfs
1195  * entries do, above, but makes them available through one seq_file.
1196  *
1197  * The output looks suspiciously like /proc/partitions with a bunch of
1198  * extra fields.
1199  */
1200 static int diskstats_show(struct seq_file *seqf, void *v)
1201 {
1202 	struct gendisk *gp = v;
1203 	struct disk_part_iter piter;
1204 	struct hd_struct *hd;
1205 	char buf[BDEVNAME_SIZE];
1206 	int cpu;
1207 
1208 	/*
1209 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1210 		seq_puts(seqf,	"major minor name"
1211 				"     rio rmerge rsect ruse wio wmerge "
1212 				"wsect wuse running use aveq"
1213 				"\n\n");
1214 	*/
1215 
1216 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1217 	while ((hd = disk_part_iter_next(&piter))) {
1218 		cpu = part_stat_lock();
1219 		part_round_stats(cpu, hd);
1220 		part_stat_unlock();
1221 		seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1222 			   "%u %lu %lu %lu %u %u %u %u\n",
1223 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1224 			   disk_name(gp, hd->partno, buf),
1225 			   part_stat_read(hd, ios[READ]),
1226 			   part_stat_read(hd, merges[READ]),
1227 			   part_stat_read(hd, sectors[READ]),
1228 			   jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1229 			   part_stat_read(hd, ios[WRITE]),
1230 			   part_stat_read(hd, merges[WRITE]),
1231 			   part_stat_read(hd, sectors[WRITE]),
1232 			   jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1233 			   part_in_flight(hd),
1234 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1235 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1236 			);
1237 	}
1238 	disk_part_iter_exit(&piter);
1239 
1240 	return 0;
1241 }
1242 
1243 static const struct seq_operations diskstats_op = {
1244 	.start	= disk_seqf_start,
1245 	.next	= disk_seqf_next,
1246 	.stop	= disk_seqf_stop,
1247 	.show	= diskstats_show
1248 };
1249 
1250 static int diskstats_open(struct inode *inode, struct file *file)
1251 {
1252 	return seq_open(file, &diskstats_op);
1253 }
1254 
1255 static const struct file_operations proc_diskstats_operations = {
1256 	.open		= diskstats_open,
1257 	.read		= seq_read,
1258 	.llseek		= seq_lseek,
1259 	.release	= seq_release,
1260 };
1261 
1262 static int __init proc_genhd_init(void)
1263 {
1264 	proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1265 	proc_create("partitions", 0, NULL, &proc_partitions_operations);
1266 	return 0;
1267 }
1268 module_init(proc_genhd_init);
1269 #endif /* CONFIG_PROC_FS */
1270 
1271 dev_t blk_lookup_devt(const char *name, int partno)
1272 {
1273 	dev_t devt = MKDEV(0, 0);
1274 	struct class_dev_iter iter;
1275 	struct device *dev;
1276 
1277 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1278 	while ((dev = class_dev_iter_next(&iter))) {
1279 		struct gendisk *disk = dev_to_disk(dev);
1280 		struct hd_struct *part;
1281 
1282 		if (strcmp(dev_name(dev), name))
1283 			continue;
1284 
1285 		if (partno < disk->minors) {
1286 			/* We need to return the right devno, even
1287 			 * if the partition doesn't exist yet.
1288 			 */
1289 			devt = MKDEV(MAJOR(dev->devt),
1290 				     MINOR(dev->devt) + partno);
1291 			break;
1292 		}
1293 		part = disk_get_part(disk, partno);
1294 		if (part) {
1295 			devt = part_devt(part);
1296 			disk_put_part(part);
1297 			break;
1298 		}
1299 		disk_put_part(part);
1300 	}
1301 	class_dev_iter_exit(&iter);
1302 	return devt;
1303 }
1304 EXPORT_SYMBOL(blk_lookup_devt);
1305 
1306 struct gendisk *alloc_disk(int minors)
1307 {
1308 	return alloc_disk_node(minors, NUMA_NO_NODE);
1309 }
1310 EXPORT_SYMBOL(alloc_disk);
1311 
1312 struct gendisk *alloc_disk_node(int minors, int node_id)
1313 {
1314 	struct gendisk *disk;
1315 
1316 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1317 	if (disk) {
1318 		if (!init_part_stats(&disk->part0)) {
1319 			kfree(disk);
1320 			return NULL;
1321 		}
1322 		disk->node_id = node_id;
1323 		if (disk_expand_part_tbl(disk, 0)) {
1324 			free_part_stats(&disk->part0);
1325 			kfree(disk);
1326 			return NULL;
1327 		}
1328 		disk->part_tbl->part[0] = &disk->part0;
1329 
1330 		/*
1331 		 * set_capacity() and get_capacity() currently don't use
1332 		 * seqcounter to read/update the part0->nr_sects. Still init
1333 		 * the counter as we can read the sectors in IO submission
1334 		 * patch using seqence counters.
1335 		 *
1336 		 * TODO: Ideally set_capacity() and get_capacity() should be
1337 		 * converted to make use of bd_mutex and sequence counters.
1338 		 */
1339 		seqcount_init(&disk->part0.nr_sects_seq);
1340 		if (hd_ref_init(&disk->part0)) {
1341 			hd_free_part(&disk->part0);
1342 			kfree(disk);
1343 			return NULL;
1344 		}
1345 
1346 		disk->minors = minors;
1347 		rand_initialize_disk(disk);
1348 		disk_to_dev(disk)->class = &block_class;
1349 		disk_to_dev(disk)->type = &disk_type;
1350 		device_initialize(disk_to_dev(disk));
1351 	}
1352 	return disk;
1353 }
1354 EXPORT_SYMBOL(alloc_disk_node);
1355 
1356 struct kobject *get_disk(struct gendisk *disk)
1357 {
1358 	struct module *owner;
1359 	struct kobject *kobj;
1360 
1361 	if (!disk->fops)
1362 		return NULL;
1363 	owner = disk->fops->owner;
1364 	if (owner && !try_module_get(owner))
1365 		return NULL;
1366 	kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1367 	if (kobj == NULL) {
1368 		module_put(owner);
1369 		return NULL;
1370 	}
1371 	return kobj;
1372 
1373 }
1374 
1375 EXPORT_SYMBOL(get_disk);
1376 
1377 void put_disk(struct gendisk *disk)
1378 {
1379 	if (disk)
1380 		kobject_put(&disk_to_dev(disk)->kobj);
1381 }
1382 
1383 EXPORT_SYMBOL(put_disk);
1384 
1385 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1386 {
1387 	char event[] = "DISK_RO=1";
1388 	char *envp[] = { event, NULL };
1389 
1390 	if (!ro)
1391 		event[8] = '0';
1392 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1393 }
1394 
1395 void set_device_ro(struct block_device *bdev, int flag)
1396 {
1397 	bdev->bd_part->policy = flag;
1398 }
1399 
1400 EXPORT_SYMBOL(set_device_ro);
1401 
1402 void set_disk_ro(struct gendisk *disk, int flag)
1403 {
1404 	struct disk_part_iter piter;
1405 	struct hd_struct *part;
1406 
1407 	if (disk->part0.policy != flag) {
1408 		set_disk_ro_uevent(disk, flag);
1409 		disk->part0.policy = flag;
1410 	}
1411 
1412 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1413 	while ((part = disk_part_iter_next(&piter)))
1414 		part->policy = flag;
1415 	disk_part_iter_exit(&piter);
1416 }
1417 
1418 EXPORT_SYMBOL(set_disk_ro);
1419 
1420 int bdev_read_only(struct block_device *bdev)
1421 {
1422 	if (!bdev)
1423 		return 0;
1424 	return bdev->bd_part->policy;
1425 }
1426 
1427 EXPORT_SYMBOL(bdev_read_only);
1428 
1429 int invalidate_partition(struct gendisk *disk, int partno)
1430 {
1431 	int res = 0;
1432 	struct block_device *bdev = bdget_disk(disk, partno);
1433 	if (bdev) {
1434 		fsync_bdev(bdev);
1435 		res = __invalidate_device(bdev, true);
1436 		bdput(bdev);
1437 	}
1438 	return res;
1439 }
1440 
1441 EXPORT_SYMBOL(invalidate_partition);
1442 
1443 /*
1444  * Disk events - monitor disk events like media change and eject request.
1445  */
1446 struct disk_events {
1447 	struct list_head	node;		/* all disk_event's */
1448 	struct gendisk		*disk;		/* the associated disk */
1449 	spinlock_t		lock;
1450 
1451 	struct mutex		block_mutex;	/* protects blocking */
1452 	int			block;		/* event blocking depth */
1453 	unsigned int		pending;	/* events already sent out */
1454 	unsigned int		clearing;	/* events being cleared */
1455 
1456 	long			poll_msecs;	/* interval, -1 for default */
1457 	struct delayed_work	dwork;
1458 };
1459 
1460 static const char *disk_events_strs[] = {
1461 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1462 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1463 };
1464 
1465 static char *disk_uevents[] = {
1466 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1467 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1468 };
1469 
1470 /* list of all disk_events */
1471 static DEFINE_MUTEX(disk_events_mutex);
1472 static LIST_HEAD(disk_events);
1473 
1474 /* disable in-kernel polling by default */
1475 static unsigned long disk_events_dfl_poll_msecs;
1476 
1477 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1478 {
1479 	struct disk_events *ev = disk->ev;
1480 	long intv_msecs = 0;
1481 
1482 	/*
1483 	 * If device-specific poll interval is set, always use it.  If
1484 	 * the default is being used, poll iff there are events which
1485 	 * can't be monitored asynchronously.
1486 	 */
1487 	if (ev->poll_msecs >= 0)
1488 		intv_msecs = ev->poll_msecs;
1489 	else if (disk->events & ~disk->async_events)
1490 		intv_msecs = disk_events_dfl_poll_msecs;
1491 
1492 	return msecs_to_jiffies(intv_msecs);
1493 }
1494 
1495 /**
1496  * disk_block_events - block and flush disk event checking
1497  * @disk: disk to block events for
1498  *
1499  * On return from this function, it is guaranteed that event checking
1500  * isn't in progress and won't happen until unblocked by
1501  * disk_unblock_events().  Events blocking is counted and the actual
1502  * unblocking happens after the matching number of unblocks are done.
1503  *
1504  * Note that this intentionally does not block event checking from
1505  * disk_clear_events().
1506  *
1507  * CONTEXT:
1508  * Might sleep.
1509  */
1510 void disk_block_events(struct gendisk *disk)
1511 {
1512 	struct disk_events *ev = disk->ev;
1513 	unsigned long flags;
1514 	bool cancel;
1515 
1516 	if (!ev)
1517 		return;
1518 
1519 	/*
1520 	 * Outer mutex ensures that the first blocker completes canceling
1521 	 * the event work before further blockers are allowed to finish.
1522 	 */
1523 	mutex_lock(&ev->block_mutex);
1524 
1525 	spin_lock_irqsave(&ev->lock, flags);
1526 	cancel = !ev->block++;
1527 	spin_unlock_irqrestore(&ev->lock, flags);
1528 
1529 	if (cancel)
1530 		cancel_delayed_work_sync(&disk->ev->dwork);
1531 
1532 	mutex_unlock(&ev->block_mutex);
1533 }
1534 
1535 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1536 {
1537 	struct disk_events *ev = disk->ev;
1538 	unsigned long intv;
1539 	unsigned long flags;
1540 
1541 	spin_lock_irqsave(&ev->lock, flags);
1542 
1543 	if (WARN_ON_ONCE(ev->block <= 0))
1544 		goto out_unlock;
1545 
1546 	if (--ev->block)
1547 		goto out_unlock;
1548 
1549 	intv = disk_events_poll_jiffies(disk);
1550 	if (check_now)
1551 		queue_delayed_work(system_freezable_power_efficient_wq,
1552 				&ev->dwork, 0);
1553 	else if (intv)
1554 		queue_delayed_work(system_freezable_power_efficient_wq,
1555 				&ev->dwork, intv);
1556 out_unlock:
1557 	spin_unlock_irqrestore(&ev->lock, flags);
1558 }
1559 
1560 /**
1561  * disk_unblock_events - unblock disk event checking
1562  * @disk: disk to unblock events for
1563  *
1564  * Undo disk_block_events().  When the block count reaches zero, it
1565  * starts events polling if configured.
1566  *
1567  * CONTEXT:
1568  * Don't care.  Safe to call from irq context.
1569  */
1570 void disk_unblock_events(struct gendisk *disk)
1571 {
1572 	if (disk->ev)
1573 		__disk_unblock_events(disk, false);
1574 }
1575 
1576 /**
1577  * disk_flush_events - schedule immediate event checking and flushing
1578  * @disk: disk to check and flush events for
1579  * @mask: events to flush
1580  *
1581  * Schedule immediate event checking on @disk if not blocked.  Events in
1582  * @mask are scheduled to be cleared from the driver.  Note that this
1583  * doesn't clear the events from @disk->ev.
1584  *
1585  * CONTEXT:
1586  * If @mask is non-zero must be called with bdev->bd_mutex held.
1587  */
1588 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1589 {
1590 	struct disk_events *ev = disk->ev;
1591 
1592 	if (!ev)
1593 		return;
1594 
1595 	spin_lock_irq(&ev->lock);
1596 	ev->clearing |= mask;
1597 	if (!ev->block)
1598 		mod_delayed_work(system_freezable_power_efficient_wq,
1599 				&ev->dwork, 0);
1600 	spin_unlock_irq(&ev->lock);
1601 }
1602 
1603 /**
1604  * disk_clear_events - synchronously check, clear and return pending events
1605  * @disk: disk to fetch and clear events from
1606  * @mask: mask of events to be fetched and cleared
1607  *
1608  * Disk events are synchronously checked and pending events in @mask
1609  * are cleared and returned.  This ignores the block count.
1610  *
1611  * CONTEXT:
1612  * Might sleep.
1613  */
1614 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1615 {
1616 	const struct block_device_operations *bdops = disk->fops;
1617 	struct disk_events *ev = disk->ev;
1618 	unsigned int pending;
1619 	unsigned int clearing = mask;
1620 
1621 	if (!ev) {
1622 		/* for drivers still using the old ->media_changed method */
1623 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1624 		    bdops->media_changed && bdops->media_changed(disk))
1625 			return DISK_EVENT_MEDIA_CHANGE;
1626 		return 0;
1627 	}
1628 
1629 	disk_block_events(disk);
1630 
1631 	/*
1632 	 * store the union of mask and ev->clearing on the stack so that the
1633 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1634 	 * can still be modified even if events are blocked).
1635 	 */
1636 	spin_lock_irq(&ev->lock);
1637 	clearing |= ev->clearing;
1638 	ev->clearing = 0;
1639 	spin_unlock_irq(&ev->lock);
1640 
1641 	disk_check_events(ev, &clearing);
1642 	/*
1643 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1644 	 * middle of this function, so we want to run the workfn without delay.
1645 	 */
1646 	__disk_unblock_events(disk, ev->clearing ? true : false);
1647 
1648 	/* then, fetch and clear pending events */
1649 	spin_lock_irq(&ev->lock);
1650 	pending = ev->pending & mask;
1651 	ev->pending &= ~mask;
1652 	spin_unlock_irq(&ev->lock);
1653 	WARN_ON_ONCE(clearing & mask);
1654 
1655 	return pending;
1656 }
1657 
1658 /*
1659  * Separate this part out so that a different pointer for clearing_ptr can be
1660  * passed in for disk_clear_events.
1661  */
1662 static void disk_events_workfn(struct work_struct *work)
1663 {
1664 	struct delayed_work *dwork = to_delayed_work(work);
1665 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1666 
1667 	disk_check_events(ev, &ev->clearing);
1668 }
1669 
1670 static void disk_check_events(struct disk_events *ev,
1671 			      unsigned int *clearing_ptr)
1672 {
1673 	struct gendisk *disk = ev->disk;
1674 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1675 	unsigned int clearing = *clearing_ptr;
1676 	unsigned int events;
1677 	unsigned long intv;
1678 	int nr_events = 0, i;
1679 
1680 	/* check events */
1681 	events = disk->fops->check_events(disk, clearing);
1682 
1683 	/* accumulate pending events and schedule next poll if necessary */
1684 	spin_lock_irq(&ev->lock);
1685 
1686 	events &= ~ev->pending;
1687 	ev->pending |= events;
1688 	*clearing_ptr &= ~clearing;
1689 
1690 	intv = disk_events_poll_jiffies(disk);
1691 	if (!ev->block && intv)
1692 		queue_delayed_work(system_freezable_power_efficient_wq,
1693 				&ev->dwork, intv);
1694 
1695 	spin_unlock_irq(&ev->lock);
1696 
1697 	/*
1698 	 * Tell userland about new events.  Only the events listed in
1699 	 * @disk->events are reported.  Unlisted events are processed the
1700 	 * same internally but never get reported to userland.
1701 	 */
1702 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1703 		if (events & disk->events & (1 << i))
1704 			envp[nr_events++] = disk_uevents[i];
1705 
1706 	if (nr_events)
1707 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1708 }
1709 
1710 /*
1711  * A disk events enabled device has the following sysfs nodes under
1712  * its /sys/block/X/ directory.
1713  *
1714  * events		: list of all supported events
1715  * events_async		: list of events which can be detected w/o polling
1716  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1717  */
1718 static ssize_t __disk_events_show(unsigned int events, char *buf)
1719 {
1720 	const char *delim = "";
1721 	ssize_t pos = 0;
1722 	int i;
1723 
1724 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1725 		if (events & (1 << i)) {
1726 			pos += sprintf(buf + pos, "%s%s",
1727 				       delim, disk_events_strs[i]);
1728 			delim = " ";
1729 		}
1730 	if (pos)
1731 		pos += sprintf(buf + pos, "\n");
1732 	return pos;
1733 }
1734 
1735 static ssize_t disk_events_show(struct device *dev,
1736 				struct device_attribute *attr, char *buf)
1737 {
1738 	struct gendisk *disk = dev_to_disk(dev);
1739 
1740 	return __disk_events_show(disk->events, buf);
1741 }
1742 
1743 static ssize_t disk_events_async_show(struct device *dev,
1744 				      struct device_attribute *attr, char *buf)
1745 {
1746 	struct gendisk *disk = dev_to_disk(dev);
1747 
1748 	return __disk_events_show(disk->async_events, buf);
1749 }
1750 
1751 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1752 					   struct device_attribute *attr,
1753 					   char *buf)
1754 {
1755 	struct gendisk *disk = dev_to_disk(dev);
1756 
1757 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1758 }
1759 
1760 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1761 					    struct device_attribute *attr,
1762 					    const char *buf, size_t count)
1763 {
1764 	struct gendisk *disk = dev_to_disk(dev);
1765 	long intv;
1766 
1767 	if (!count || !sscanf(buf, "%ld", &intv))
1768 		return -EINVAL;
1769 
1770 	if (intv < 0 && intv != -1)
1771 		return -EINVAL;
1772 
1773 	disk_block_events(disk);
1774 	disk->ev->poll_msecs = intv;
1775 	__disk_unblock_events(disk, true);
1776 
1777 	return count;
1778 }
1779 
1780 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1781 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1782 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1783 			 disk_events_poll_msecs_show,
1784 			 disk_events_poll_msecs_store);
1785 
1786 static const struct attribute *disk_events_attrs[] = {
1787 	&dev_attr_events.attr,
1788 	&dev_attr_events_async.attr,
1789 	&dev_attr_events_poll_msecs.attr,
1790 	NULL,
1791 };
1792 
1793 /*
1794  * The default polling interval can be specified by the kernel
1795  * parameter block.events_dfl_poll_msecs which defaults to 0
1796  * (disable).  This can also be modified runtime by writing to
1797  * /sys/module/block/events_dfl_poll_msecs.
1798  */
1799 static int disk_events_set_dfl_poll_msecs(const char *val,
1800 					  const struct kernel_param *kp)
1801 {
1802 	struct disk_events *ev;
1803 	int ret;
1804 
1805 	ret = param_set_ulong(val, kp);
1806 	if (ret < 0)
1807 		return ret;
1808 
1809 	mutex_lock(&disk_events_mutex);
1810 
1811 	list_for_each_entry(ev, &disk_events, node)
1812 		disk_flush_events(ev->disk, 0);
1813 
1814 	mutex_unlock(&disk_events_mutex);
1815 
1816 	return 0;
1817 }
1818 
1819 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1820 	.set	= disk_events_set_dfl_poll_msecs,
1821 	.get	= param_get_ulong,
1822 };
1823 
1824 #undef MODULE_PARAM_PREFIX
1825 #define MODULE_PARAM_PREFIX	"block."
1826 
1827 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1828 		&disk_events_dfl_poll_msecs, 0644);
1829 
1830 /*
1831  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1832  */
1833 static void disk_alloc_events(struct gendisk *disk)
1834 {
1835 	struct disk_events *ev;
1836 
1837 	if (!disk->fops->check_events)
1838 		return;
1839 
1840 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1841 	if (!ev) {
1842 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1843 		return;
1844 	}
1845 
1846 	INIT_LIST_HEAD(&ev->node);
1847 	ev->disk = disk;
1848 	spin_lock_init(&ev->lock);
1849 	mutex_init(&ev->block_mutex);
1850 	ev->block = 1;
1851 	ev->poll_msecs = -1;
1852 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1853 
1854 	disk->ev = ev;
1855 }
1856 
1857 static void disk_add_events(struct gendisk *disk)
1858 {
1859 	if (!disk->ev)
1860 		return;
1861 
1862 	/* FIXME: error handling */
1863 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1864 		pr_warn("%s: failed to create sysfs files for events\n",
1865 			disk->disk_name);
1866 
1867 	mutex_lock(&disk_events_mutex);
1868 	list_add_tail(&disk->ev->node, &disk_events);
1869 	mutex_unlock(&disk_events_mutex);
1870 
1871 	/*
1872 	 * Block count is initialized to 1 and the following initial
1873 	 * unblock kicks it into action.
1874 	 */
1875 	__disk_unblock_events(disk, true);
1876 }
1877 
1878 static void disk_del_events(struct gendisk *disk)
1879 {
1880 	if (!disk->ev)
1881 		return;
1882 
1883 	disk_block_events(disk);
1884 
1885 	mutex_lock(&disk_events_mutex);
1886 	list_del_init(&disk->ev->node);
1887 	mutex_unlock(&disk_events_mutex);
1888 
1889 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1890 }
1891 
1892 static void disk_release_events(struct gendisk *disk)
1893 {
1894 	/* the block count should be 1 from disk_del_events() */
1895 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1896 	kfree(disk->ev);
1897 }
1898