1 /* 2 * gendisk handling 3 */ 4 5 #include <linux/module.h> 6 #include <linux/fs.h> 7 #include <linux/genhd.h> 8 #include <linux/kdev_t.h> 9 #include <linux/kernel.h> 10 #include <linux/blkdev.h> 11 #include <linux/backing-dev.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/proc_fs.h> 15 #include <linux/seq_file.h> 16 #include <linux/slab.h> 17 #include <linux/kmod.h> 18 #include <linux/kobj_map.h> 19 #include <linux/mutex.h> 20 #include <linux/idr.h> 21 #include <linux/log2.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/badblocks.h> 24 25 #include "blk.h" 26 27 static DEFINE_MUTEX(block_class_lock); 28 struct kobject *block_depr; 29 30 /* for extended dynamic devt allocation, currently only one major is used */ 31 #define NR_EXT_DEVT (1 << MINORBITS) 32 33 /* For extended devt allocation. ext_devt_lock prevents look up 34 * results from going away underneath its user. 35 */ 36 static DEFINE_SPINLOCK(ext_devt_lock); 37 static DEFINE_IDR(ext_devt_idr); 38 39 static struct device_type disk_type; 40 41 static void disk_check_events(struct disk_events *ev, 42 unsigned int *clearing_ptr); 43 static void disk_alloc_events(struct gendisk *disk); 44 static void disk_add_events(struct gendisk *disk); 45 static void disk_del_events(struct gendisk *disk); 46 static void disk_release_events(struct gendisk *disk); 47 48 /** 49 * disk_get_part - get partition 50 * @disk: disk to look partition from 51 * @partno: partition number 52 * 53 * Look for partition @partno from @disk. If found, increment 54 * reference count and return it. 55 * 56 * CONTEXT: 57 * Don't care. 58 * 59 * RETURNS: 60 * Pointer to the found partition on success, NULL if not found. 61 */ 62 struct hd_struct *disk_get_part(struct gendisk *disk, int partno) 63 { 64 struct hd_struct *part = NULL; 65 struct disk_part_tbl *ptbl; 66 67 if (unlikely(partno < 0)) 68 return NULL; 69 70 rcu_read_lock(); 71 72 ptbl = rcu_dereference(disk->part_tbl); 73 if (likely(partno < ptbl->len)) { 74 part = rcu_dereference(ptbl->part[partno]); 75 if (part) 76 get_device(part_to_dev(part)); 77 } 78 79 rcu_read_unlock(); 80 81 return part; 82 } 83 EXPORT_SYMBOL_GPL(disk_get_part); 84 85 /** 86 * disk_part_iter_init - initialize partition iterator 87 * @piter: iterator to initialize 88 * @disk: disk to iterate over 89 * @flags: DISK_PITER_* flags 90 * 91 * Initialize @piter so that it iterates over partitions of @disk. 92 * 93 * CONTEXT: 94 * Don't care. 95 */ 96 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, 97 unsigned int flags) 98 { 99 struct disk_part_tbl *ptbl; 100 101 rcu_read_lock(); 102 ptbl = rcu_dereference(disk->part_tbl); 103 104 piter->disk = disk; 105 piter->part = NULL; 106 107 if (flags & DISK_PITER_REVERSE) 108 piter->idx = ptbl->len - 1; 109 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0)) 110 piter->idx = 0; 111 else 112 piter->idx = 1; 113 114 piter->flags = flags; 115 116 rcu_read_unlock(); 117 } 118 EXPORT_SYMBOL_GPL(disk_part_iter_init); 119 120 /** 121 * disk_part_iter_next - proceed iterator to the next partition and return it 122 * @piter: iterator of interest 123 * 124 * Proceed @piter to the next partition and return it. 125 * 126 * CONTEXT: 127 * Don't care. 128 */ 129 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter) 130 { 131 struct disk_part_tbl *ptbl; 132 int inc, end; 133 134 /* put the last partition */ 135 disk_put_part(piter->part); 136 piter->part = NULL; 137 138 /* get part_tbl */ 139 rcu_read_lock(); 140 ptbl = rcu_dereference(piter->disk->part_tbl); 141 142 /* determine iteration parameters */ 143 if (piter->flags & DISK_PITER_REVERSE) { 144 inc = -1; 145 if (piter->flags & (DISK_PITER_INCL_PART0 | 146 DISK_PITER_INCL_EMPTY_PART0)) 147 end = -1; 148 else 149 end = 0; 150 } else { 151 inc = 1; 152 end = ptbl->len; 153 } 154 155 /* iterate to the next partition */ 156 for (; piter->idx != end; piter->idx += inc) { 157 struct hd_struct *part; 158 159 part = rcu_dereference(ptbl->part[piter->idx]); 160 if (!part) 161 continue; 162 if (!part_nr_sects_read(part) && 163 !(piter->flags & DISK_PITER_INCL_EMPTY) && 164 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 && 165 piter->idx == 0)) 166 continue; 167 168 get_device(part_to_dev(part)); 169 piter->part = part; 170 piter->idx += inc; 171 break; 172 } 173 174 rcu_read_unlock(); 175 176 return piter->part; 177 } 178 EXPORT_SYMBOL_GPL(disk_part_iter_next); 179 180 /** 181 * disk_part_iter_exit - finish up partition iteration 182 * @piter: iter of interest 183 * 184 * Called when iteration is over. Cleans up @piter. 185 * 186 * CONTEXT: 187 * Don't care. 188 */ 189 void disk_part_iter_exit(struct disk_part_iter *piter) 190 { 191 disk_put_part(piter->part); 192 piter->part = NULL; 193 } 194 EXPORT_SYMBOL_GPL(disk_part_iter_exit); 195 196 static inline int sector_in_part(struct hd_struct *part, sector_t sector) 197 { 198 return part->start_sect <= sector && 199 sector < part->start_sect + part_nr_sects_read(part); 200 } 201 202 /** 203 * disk_map_sector_rcu - map sector to partition 204 * @disk: gendisk of interest 205 * @sector: sector to map 206 * 207 * Find out which partition @sector maps to on @disk. This is 208 * primarily used for stats accounting. 209 * 210 * CONTEXT: 211 * RCU read locked. The returned partition pointer is valid only 212 * while preemption is disabled. 213 * 214 * RETURNS: 215 * Found partition on success, part0 is returned if no partition matches 216 */ 217 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector) 218 { 219 struct disk_part_tbl *ptbl; 220 struct hd_struct *part; 221 int i; 222 223 ptbl = rcu_dereference(disk->part_tbl); 224 225 part = rcu_dereference(ptbl->last_lookup); 226 if (part && sector_in_part(part, sector)) 227 return part; 228 229 for (i = 1; i < ptbl->len; i++) { 230 part = rcu_dereference(ptbl->part[i]); 231 232 if (part && sector_in_part(part, sector)) { 233 rcu_assign_pointer(ptbl->last_lookup, part); 234 return part; 235 } 236 } 237 return &disk->part0; 238 } 239 EXPORT_SYMBOL_GPL(disk_map_sector_rcu); 240 241 /* 242 * Can be deleted altogether. Later. 243 * 244 */ 245 static struct blk_major_name { 246 struct blk_major_name *next; 247 int major; 248 char name[16]; 249 } *major_names[BLKDEV_MAJOR_HASH_SIZE]; 250 251 /* index in the above - for now: assume no multimajor ranges */ 252 static inline int major_to_index(unsigned major) 253 { 254 return major % BLKDEV_MAJOR_HASH_SIZE; 255 } 256 257 #ifdef CONFIG_PROC_FS 258 void blkdev_show(struct seq_file *seqf, off_t offset) 259 { 260 struct blk_major_name *dp; 261 262 if (offset < BLKDEV_MAJOR_HASH_SIZE) { 263 mutex_lock(&block_class_lock); 264 for (dp = major_names[offset]; dp; dp = dp->next) 265 seq_printf(seqf, "%3d %s\n", dp->major, dp->name); 266 mutex_unlock(&block_class_lock); 267 } 268 } 269 #endif /* CONFIG_PROC_FS */ 270 271 /** 272 * register_blkdev - register a new block device 273 * 274 * @major: the requested major device number [1..255]. If @major=0, try to 275 * allocate any unused major number. 276 * @name: the name of the new block device as a zero terminated string 277 * 278 * The @name must be unique within the system. 279 * 280 * The return value depends on the @major input parameter. 281 * - if a major device number was requested in range [1..255] then the 282 * function returns zero on success, or a negative error code 283 * - if any unused major number was requested with @major=0 parameter 284 * then the return value is the allocated major number in range 285 * [1..255] or a negative error code otherwise 286 */ 287 int register_blkdev(unsigned int major, const char *name) 288 { 289 struct blk_major_name **n, *p; 290 int index, ret = 0; 291 292 mutex_lock(&block_class_lock); 293 294 /* temporary */ 295 if (major == 0) { 296 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { 297 if (major_names[index] == NULL) 298 break; 299 } 300 301 if (index == 0) { 302 printk("register_blkdev: failed to get major for %s\n", 303 name); 304 ret = -EBUSY; 305 goto out; 306 } 307 major = index; 308 ret = major; 309 } 310 311 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); 312 if (p == NULL) { 313 ret = -ENOMEM; 314 goto out; 315 } 316 317 p->major = major; 318 strlcpy(p->name, name, sizeof(p->name)); 319 p->next = NULL; 320 index = major_to_index(major); 321 322 for (n = &major_names[index]; *n; n = &(*n)->next) { 323 if ((*n)->major == major) 324 break; 325 } 326 if (!*n) 327 *n = p; 328 else 329 ret = -EBUSY; 330 331 if (ret < 0) { 332 printk("register_blkdev: cannot get major %d for %s\n", 333 major, name); 334 kfree(p); 335 } 336 out: 337 mutex_unlock(&block_class_lock); 338 return ret; 339 } 340 341 EXPORT_SYMBOL(register_blkdev); 342 343 void unregister_blkdev(unsigned int major, const char *name) 344 { 345 struct blk_major_name **n; 346 struct blk_major_name *p = NULL; 347 int index = major_to_index(major); 348 349 mutex_lock(&block_class_lock); 350 for (n = &major_names[index]; *n; n = &(*n)->next) 351 if ((*n)->major == major) 352 break; 353 if (!*n || strcmp((*n)->name, name)) { 354 WARN_ON(1); 355 } else { 356 p = *n; 357 *n = p->next; 358 } 359 mutex_unlock(&block_class_lock); 360 kfree(p); 361 } 362 363 EXPORT_SYMBOL(unregister_blkdev); 364 365 static struct kobj_map *bdev_map; 366 367 /** 368 * blk_mangle_minor - scatter minor numbers apart 369 * @minor: minor number to mangle 370 * 371 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT 372 * is enabled. Mangling twice gives the original value. 373 * 374 * RETURNS: 375 * Mangled value. 376 * 377 * CONTEXT: 378 * Don't care. 379 */ 380 static int blk_mangle_minor(int minor) 381 { 382 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT 383 int i; 384 385 for (i = 0; i < MINORBITS / 2; i++) { 386 int low = minor & (1 << i); 387 int high = minor & (1 << (MINORBITS - 1 - i)); 388 int distance = MINORBITS - 1 - 2 * i; 389 390 minor ^= low | high; /* clear both bits */ 391 low <<= distance; /* swap the positions */ 392 high >>= distance; 393 minor |= low | high; /* and set */ 394 } 395 #endif 396 return minor; 397 } 398 399 /** 400 * blk_alloc_devt - allocate a dev_t for a partition 401 * @part: partition to allocate dev_t for 402 * @devt: out parameter for resulting dev_t 403 * 404 * Allocate a dev_t for block device. 405 * 406 * RETURNS: 407 * 0 on success, allocated dev_t is returned in *@devt. -errno on 408 * failure. 409 * 410 * CONTEXT: 411 * Might sleep. 412 */ 413 int blk_alloc_devt(struct hd_struct *part, dev_t *devt) 414 { 415 struct gendisk *disk = part_to_disk(part); 416 int idx; 417 418 /* in consecutive minor range? */ 419 if (part->partno < disk->minors) { 420 *devt = MKDEV(disk->major, disk->first_minor + part->partno); 421 return 0; 422 } 423 424 /* allocate ext devt */ 425 idr_preload(GFP_KERNEL); 426 427 spin_lock_bh(&ext_devt_lock); 428 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT); 429 spin_unlock_bh(&ext_devt_lock); 430 431 idr_preload_end(); 432 if (idx < 0) 433 return idx == -ENOSPC ? -EBUSY : idx; 434 435 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx)); 436 return 0; 437 } 438 439 /** 440 * blk_free_devt - free a dev_t 441 * @devt: dev_t to free 442 * 443 * Free @devt which was allocated using blk_alloc_devt(). 444 * 445 * CONTEXT: 446 * Might sleep. 447 */ 448 void blk_free_devt(dev_t devt) 449 { 450 if (devt == MKDEV(0, 0)) 451 return; 452 453 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 454 spin_lock_bh(&ext_devt_lock); 455 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 456 spin_unlock_bh(&ext_devt_lock); 457 } 458 } 459 460 static char *bdevt_str(dev_t devt, char *buf) 461 { 462 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { 463 char tbuf[BDEVT_SIZE]; 464 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); 465 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); 466 } else 467 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); 468 469 return buf; 470 } 471 472 /* 473 * Register device numbers dev..(dev+range-1) 474 * range must be nonzero 475 * The hash chain is sorted on range, so that subranges can override. 476 */ 477 void blk_register_region(dev_t devt, unsigned long range, struct module *module, 478 struct kobject *(*probe)(dev_t, int *, void *), 479 int (*lock)(dev_t, void *), void *data) 480 { 481 kobj_map(bdev_map, devt, range, module, probe, lock, data); 482 } 483 484 EXPORT_SYMBOL(blk_register_region); 485 486 void blk_unregister_region(dev_t devt, unsigned long range) 487 { 488 kobj_unmap(bdev_map, devt, range); 489 } 490 491 EXPORT_SYMBOL(blk_unregister_region); 492 493 static struct kobject *exact_match(dev_t devt, int *partno, void *data) 494 { 495 struct gendisk *p = data; 496 497 return &disk_to_dev(p)->kobj; 498 } 499 500 static int exact_lock(dev_t devt, void *data) 501 { 502 struct gendisk *p = data; 503 504 if (!get_disk(p)) 505 return -1; 506 return 0; 507 } 508 509 static void register_disk(struct device *parent, struct gendisk *disk) 510 { 511 struct device *ddev = disk_to_dev(disk); 512 struct block_device *bdev; 513 struct disk_part_iter piter; 514 struct hd_struct *part; 515 int err; 516 517 ddev->parent = parent; 518 519 dev_set_name(ddev, "%s", disk->disk_name); 520 521 /* delay uevents, until we scanned partition table */ 522 dev_set_uevent_suppress(ddev, 1); 523 524 if (device_add(ddev)) 525 return; 526 if (!sysfs_deprecated) { 527 err = sysfs_create_link(block_depr, &ddev->kobj, 528 kobject_name(&ddev->kobj)); 529 if (err) { 530 device_del(ddev); 531 return; 532 } 533 } 534 535 /* 536 * avoid probable deadlock caused by allocating memory with 537 * GFP_KERNEL in runtime_resume callback of its all ancestor 538 * devices 539 */ 540 pm_runtime_set_memalloc_noio(ddev, true); 541 542 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj); 543 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); 544 545 /* No minors to use for partitions */ 546 if (!disk_part_scan_enabled(disk)) 547 goto exit; 548 549 /* No such device (e.g., media were just removed) */ 550 if (!get_capacity(disk)) 551 goto exit; 552 553 bdev = bdget_disk(disk, 0); 554 if (!bdev) 555 goto exit; 556 557 bdev->bd_invalidated = 1; 558 err = blkdev_get(bdev, FMODE_READ, NULL); 559 if (err < 0) 560 goto exit; 561 blkdev_put(bdev, FMODE_READ); 562 563 exit: 564 /* announce disk after possible partitions are created */ 565 dev_set_uevent_suppress(ddev, 0); 566 kobject_uevent(&ddev->kobj, KOBJ_ADD); 567 568 /* announce possible partitions */ 569 disk_part_iter_init(&piter, disk, 0); 570 while ((part = disk_part_iter_next(&piter))) 571 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD); 572 disk_part_iter_exit(&piter); 573 } 574 575 /** 576 * device_add_disk - add partitioning information to kernel list 577 * @parent: parent device for the disk 578 * @disk: per-device partitioning information 579 * 580 * This function registers the partitioning information in @disk 581 * with the kernel. 582 * 583 * FIXME: error handling 584 */ 585 void device_add_disk(struct device *parent, struct gendisk *disk) 586 { 587 struct backing_dev_info *bdi; 588 dev_t devt; 589 int retval; 590 591 /* minors == 0 indicates to use ext devt from part0 and should 592 * be accompanied with EXT_DEVT flag. Make sure all 593 * parameters make sense. 594 */ 595 WARN_ON(disk->minors && !(disk->major || disk->first_minor)); 596 WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT)); 597 598 disk->flags |= GENHD_FL_UP; 599 600 retval = blk_alloc_devt(&disk->part0, &devt); 601 if (retval) { 602 WARN_ON(1); 603 return; 604 } 605 disk_to_dev(disk)->devt = devt; 606 607 /* ->major and ->first_minor aren't supposed to be 608 * dereferenced from here on, but set them just in case. 609 */ 610 disk->major = MAJOR(devt); 611 disk->first_minor = MINOR(devt); 612 613 disk_alloc_events(disk); 614 615 /* Register BDI before referencing it from bdev */ 616 bdi = &disk->queue->backing_dev_info; 617 bdi_register_owner(bdi, disk_to_dev(disk)); 618 619 blk_register_region(disk_devt(disk), disk->minors, NULL, 620 exact_match, exact_lock, disk); 621 register_disk(parent, disk); 622 blk_register_queue(disk); 623 624 /* 625 * Take an extra ref on queue which will be put on disk_release() 626 * so that it sticks around as long as @disk is there. 627 */ 628 WARN_ON_ONCE(!blk_get_queue(disk->queue)); 629 630 retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj, 631 "bdi"); 632 WARN_ON(retval); 633 634 disk_add_events(disk); 635 blk_integrity_add(disk); 636 } 637 EXPORT_SYMBOL(device_add_disk); 638 639 void del_gendisk(struct gendisk *disk) 640 { 641 struct disk_part_iter piter; 642 struct hd_struct *part; 643 644 blk_integrity_del(disk); 645 disk_del_events(disk); 646 647 /* invalidate stuff */ 648 disk_part_iter_init(&piter, disk, 649 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE); 650 while ((part = disk_part_iter_next(&piter))) { 651 invalidate_partition(disk, part->partno); 652 delete_partition(disk, part->partno); 653 } 654 disk_part_iter_exit(&piter); 655 656 invalidate_partition(disk, 0); 657 set_capacity(disk, 0); 658 disk->flags &= ~GENHD_FL_UP; 659 660 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); 661 blk_unregister_queue(disk); 662 blk_unregister_region(disk_devt(disk), disk->minors); 663 664 part_stat_set_all(&disk->part0, 0); 665 disk->part0.stamp = 0; 666 667 kobject_put(disk->part0.holder_dir); 668 kobject_put(disk->slave_dir); 669 if (!sysfs_deprecated) 670 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); 671 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false); 672 device_del(disk_to_dev(disk)); 673 } 674 EXPORT_SYMBOL(del_gendisk); 675 676 /* sysfs access to bad-blocks list. */ 677 static ssize_t disk_badblocks_show(struct device *dev, 678 struct device_attribute *attr, 679 char *page) 680 { 681 struct gendisk *disk = dev_to_disk(dev); 682 683 if (!disk->bb) 684 return sprintf(page, "\n"); 685 686 return badblocks_show(disk->bb, page, 0); 687 } 688 689 static ssize_t disk_badblocks_store(struct device *dev, 690 struct device_attribute *attr, 691 const char *page, size_t len) 692 { 693 struct gendisk *disk = dev_to_disk(dev); 694 695 if (!disk->bb) 696 return -ENXIO; 697 698 return badblocks_store(disk->bb, page, len, 0); 699 } 700 701 /** 702 * get_gendisk - get partitioning information for a given device 703 * @devt: device to get partitioning information for 704 * @partno: returned partition index 705 * 706 * This function gets the structure containing partitioning 707 * information for the given device @devt. 708 */ 709 struct gendisk *get_gendisk(dev_t devt, int *partno) 710 { 711 struct gendisk *disk = NULL; 712 713 if (MAJOR(devt) != BLOCK_EXT_MAJOR) { 714 struct kobject *kobj; 715 716 kobj = kobj_lookup(bdev_map, devt, partno); 717 if (kobj) 718 disk = dev_to_disk(kobj_to_dev(kobj)); 719 } else { 720 struct hd_struct *part; 721 722 spin_lock_bh(&ext_devt_lock); 723 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 724 if (part && get_disk(part_to_disk(part))) { 725 *partno = part->partno; 726 disk = part_to_disk(part); 727 } 728 spin_unlock_bh(&ext_devt_lock); 729 } 730 731 return disk; 732 } 733 EXPORT_SYMBOL(get_gendisk); 734 735 /** 736 * bdget_disk - do bdget() by gendisk and partition number 737 * @disk: gendisk of interest 738 * @partno: partition number 739 * 740 * Find partition @partno from @disk, do bdget() on it. 741 * 742 * CONTEXT: 743 * Don't care. 744 * 745 * RETURNS: 746 * Resulting block_device on success, NULL on failure. 747 */ 748 struct block_device *bdget_disk(struct gendisk *disk, int partno) 749 { 750 struct hd_struct *part; 751 struct block_device *bdev = NULL; 752 753 part = disk_get_part(disk, partno); 754 if (part) 755 bdev = bdget(part_devt(part)); 756 disk_put_part(part); 757 758 return bdev; 759 } 760 EXPORT_SYMBOL(bdget_disk); 761 762 /* 763 * print a full list of all partitions - intended for places where the root 764 * filesystem can't be mounted and thus to give the victim some idea of what 765 * went wrong 766 */ 767 void __init printk_all_partitions(void) 768 { 769 struct class_dev_iter iter; 770 struct device *dev; 771 772 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 773 while ((dev = class_dev_iter_next(&iter))) { 774 struct gendisk *disk = dev_to_disk(dev); 775 struct disk_part_iter piter; 776 struct hd_struct *part; 777 char name_buf[BDEVNAME_SIZE]; 778 char devt_buf[BDEVT_SIZE]; 779 780 /* 781 * Don't show empty devices or things that have been 782 * suppressed 783 */ 784 if (get_capacity(disk) == 0 || 785 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) 786 continue; 787 788 /* 789 * Note, unlike /proc/partitions, I am showing the 790 * numbers in hex - the same format as the root= 791 * option takes. 792 */ 793 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); 794 while ((part = disk_part_iter_next(&piter))) { 795 bool is_part0 = part == &disk->part0; 796 797 printk("%s%s %10llu %s %s", is_part0 ? "" : " ", 798 bdevt_str(part_devt(part), devt_buf), 799 (unsigned long long)part_nr_sects_read(part) >> 1 800 , disk_name(disk, part->partno, name_buf), 801 part->info ? part->info->uuid : ""); 802 if (is_part0) { 803 if (dev->parent && dev->parent->driver) 804 printk(" driver: %s\n", 805 dev->parent->driver->name); 806 else 807 printk(" (driver?)\n"); 808 } else 809 printk("\n"); 810 } 811 disk_part_iter_exit(&piter); 812 } 813 class_dev_iter_exit(&iter); 814 } 815 816 #ifdef CONFIG_PROC_FS 817 /* iterator */ 818 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) 819 { 820 loff_t skip = *pos; 821 struct class_dev_iter *iter; 822 struct device *dev; 823 824 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 825 if (!iter) 826 return ERR_PTR(-ENOMEM); 827 828 seqf->private = iter; 829 class_dev_iter_init(iter, &block_class, NULL, &disk_type); 830 do { 831 dev = class_dev_iter_next(iter); 832 if (!dev) 833 return NULL; 834 } while (skip--); 835 836 return dev_to_disk(dev); 837 } 838 839 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) 840 { 841 struct device *dev; 842 843 (*pos)++; 844 dev = class_dev_iter_next(seqf->private); 845 if (dev) 846 return dev_to_disk(dev); 847 848 return NULL; 849 } 850 851 static void disk_seqf_stop(struct seq_file *seqf, void *v) 852 { 853 struct class_dev_iter *iter = seqf->private; 854 855 /* stop is called even after start failed :-( */ 856 if (iter) { 857 class_dev_iter_exit(iter); 858 kfree(iter); 859 seqf->private = NULL; 860 } 861 } 862 863 static void *show_partition_start(struct seq_file *seqf, loff_t *pos) 864 { 865 void *p; 866 867 p = disk_seqf_start(seqf, pos); 868 if (!IS_ERR_OR_NULL(p) && !*pos) 869 seq_puts(seqf, "major minor #blocks name\n\n"); 870 return p; 871 } 872 873 static int show_partition(struct seq_file *seqf, void *v) 874 { 875 struct gendisk *sgp = v; 876 struct disk_part_iter piter; 877 struct hd_struct *part; 878 char buf[BDEVNAME_SIZE]; 879 880 /* Don't show non-partitionable removeable devices or empty devices */ 881 if (!get_capacity(sgp) || (!disk_max_parts(sgp) && 882 (sgp->flags & GENHD_FL_REMOVABLE))) 883 return 0; 884 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) 885 return 0; 886 887 /* show the full disk and all non-0 size partitions of it */ 888 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0); 889 while ((part = disk_part_iter_next(&piter))) 890 seq_printf(seqf, "%4d %7d %10llu %s\n", 891 MAJOR(part_devt(part)), MINOR(part_devt(part)), 892 (unsigned long long)part_nr_sects_read(part) >> 1, 893 disk_name(sgp, part->partno, buf)); 894 disk_part_iter_exit(&piter); 895 896 return 0; 897 } 898 899 static const struct seq_operations partitions_op = { 900 .start = show_partition_start, 901 .next = disk_seqf_next, 902 .stop = disk_seqf_stop, 903 .show = show_partition 904 }; 905 906 static int partitions_open(struct inode *inode, struct file *file) 907 { 908 return seq_open(file, &partitions_op); 909 } 910 911 static const struct file_operations proc_partitions_operations = { 912 .open = partitions_open, 913 .read = seq_read, 914 .llseek = seq_lseek, 915 .release = seq_release, 916 }; 917 #endif 918 919 920 static struct kobject *base_probe(dev_t devt, int *partno, void *data) 921 { 922 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) 923 /* Make old-style 2.4 aliases work */ 924 request_module("block-major-%d", MAJOR(devt)); 925 return NULL; 926 } 927 928 static int __init genhd_device_init(void) 929 { 930 int error; 931 932 block_class.dev_kobj = sysfs_dev_block_kobj; 933 error = class_register(&block_class); 934 if (unlikely(error)) 935 return error; 936 bdev_map = kobj_map_init(base_probe, &block_class_lock); 937 blk_dev_init(); 938 939 register_blkdev(BLOCK_EXT_MAJOR, "blkext"); 940 941 /* create top-level block dir */ 942 if (!sysfs_deprecated) 943 block_depr = kobject_create_and_add("block", NULL); 944 return 0; 945 } 946 947 subsys_initcall(genhd_device_init); 948 949 static ssize_t disk_range_show(struct device *dev, 950 struct device_attribute *attr, char *buf) 951 { 952 struct gendisk *disk = dev_to_disk(dev); 953 954 return sprintf(buf, "%d\n", disk->minors); 955 } 956 957 static ssize_t disk_ext_range_show(struct device *dev, 958 struct device_attribute *attr, char *buf) 959 { 960 struct gendisk *disk = dev_to_disk(dev); 961 962 return sprintf(buf, "%d\n", disk_max_parts(disk)); 963 } 964 965 static ssize_t disk_removable_show(struct device *dev, 966 struct device_attribute *attr, char *buf) 967 { 968 struct gendisk *disk = dev_to_disk(dev); 969 970 return sprintf(buf, "%d\n", 971 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); 972 } 973 974 static ssize_t disk_ro_show(struct device *dev, 975 struct device_attribute *attr, char *buf) 976 { 977 struct gendisk *disk = dev_to_disk(dev); 978 979 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); 980 } 981 982 static ssize_t disk_capability_show(struct device *dev, 983 struct device_attribute *attr, char *buf) 984 { 985 struct gendisk *disk = dev_to_disk(dev); 986 987 return sprintf(buf, "%x\n", disk->flags); 988 } 989 990 static ssize_t disk_alignment_offset_show(struct device *dev, 991 struct device_attribute *attr, 992 char *buf) 993 { 994 struct gendisk *disk = dev_to_disk(dev); 995 996 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); 997 } 998 999 static ssize_t disk_discard_alignment_show(struct device *dev, 1000 struct device_attribute *attr, 1001 char *buf) 1002 { 1003 struct gendisk *disk = dev_to_disk(dev); 1004 1005 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); 1006 } 1007 1008 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL); 1009 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL); 1010 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL); 1011 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL); 1012 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL); 1013 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL); 1014 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show, 1015 NULL); 1016 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL); 1017 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL); 1018 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL); 1019 static DEVICE_ATTR(badblocks, S_IRUGO | S_IWUSR, disk_badblocks_show, 1020 disk_badblocks_store); 1021 #ifdef CONFIG_FAIL_MAKE_REQUEST 1022 static struct device_attribute dev_attr_fail = 1023 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store); 1024 #endif 1025 #ifdef CONFIG_FAIL_IO_TIMEOUT 1026 static struct device_attribute dev_attr_fail_timeout = 1027 __ATTR(io-timeout-fail, S_IRUGO|S_IWUSR, part_timeout_show, 1028 part_timeout_store); 1029 #endif 1030 1031 static struct attribute *disk_attrs[] = { 1032 &dev_attr_range.attr, 1033 &dev_attr_ext_range.attr, 1034 &dev_attr_removable.attr, 1035 &dev_attr_ro.attr, 1036 &dev_attr_size.attr, 1037 &dev_attr_alignment_offset.attr, 1038 &dev_attr_discard_alignment.attr, 1039 &dev_attr_capability.attr, 1040 &dev_attr_stat.attr, 1041 &dev_attr_inflight.attr, 1042 &dev_attr_badblocks.attr, 1043 #ifdef CONFIG_FAIL_MAKE_REQUEST 1044 &dev_attr_fail.attr, 1045 #endif 1046 #ifdef CONFIG_FAIL_IO_TIMEOUT 1047 &dev_attr_fail_timeout.attr, 1048 #endif 1049 NULL 1050 }; 1051 1052 static struct attribute_group disk_attr_group = { 1053 .attrs = disk_attrs, 1054 }; 1055 1056 static const struct attribute_group *disk_attr_groups[] = { 1057 &disk_attr_group, 1058 NULL 1059 }; 1060 1061 /** 1062 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way 1063 * @disk: disk to replace part_tbl for 1064 * @new_ptbl: new part_tbl to install 1065 * 1066 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The 1067 * original ptbl is freed using RCU callback. 1068 * 1069 * LOCKING: 1070 * Matching bd_mutx locked. 1071 */ 1072 static void disk_replace_part_tbl(struct gendisk *disk, 1073 struct disk_part_tbl *new_ptbl) 1074 { 1075 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1076 1077 rcu_assign_pointer(disk->part_tbl, new_ptbl); 1078 1079 if (old_ptbl) { 1080 rcu_assign_pointer(old_ptbl->last_lookup, NULL); 1081 kfree_rcu(old_ptbl, rcu_head); 1082 } 1083 } 1084 1085 /** 1086 * disk_expand_part_tbl - expand disk->part_tbl 1087 * @disk: disk to expand part_tbl for 1088 * @partno: expand such that this partno can fit in 1089 * 1090 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl 1091 * uses RCU to allow unlocked dereferencing for stats and other stuff. 1092 * 1093 * LOCKING: 1094 * Matching bd_mutex locked, might sleep. 1095 * 1096 * RETURNS: 1097 * 0 on success, -errno on failure. 1098 */ 1099 int disk_expand_part_tbl(struct gendisk *disk, int partno) 1100 { 1101 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1102 struct disk_part_tbl *new_ptbl; 1103 int len = old_ptbl ? old_ptbl->len : 0; 1104 int i, target; 1105 size_t size; 1106 1107 /* 1108 * check for int overflow, since we can get here from blkpg_ioctl() 1109 * with a user passed 'partno'. 1110 */ 1111 target = partno + 1; 1112 if (target < 0) 1113 return -EINVAL; 1114 1115 /* disk_max_parts() is zero during initialization, ignore if so */ 1116 if (disk_max_parts(disk) && target > disk_max_parts(disk)) 1117 return -EINVAL; 1118 1119 if (target <= len) 1120 return 0; 1121 1122 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]); 1123 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id); 1124 if (!new_ptbl) 1125 return -ENOMEM; 1126 1127 new_ptbl->len = target; 1128 1129 for (i = 0; i < len; i++) 1130 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]); 1131 1132 disk_replace_part_tbl(disk, new_ptbl); 1133 return 0; 1134 } 1135 1136 static void disk_release(struct device *dev) 1137 { 1138 struct gendisk *disk = dev_to_disk(dev); 1139 1140 blk_free_devt(dev->devt); 1141 disk_release_events(disk); 1142 kfree(disk->random); 1143 disk_replace_part_tbl(disk, NULL); 1144 hd_free_part(&disk->part0); 1145 if (disk->queue) 1146 blk_put_queue(disk->queue); 1147 kfree(disk); 1148 } 1149 struct class block_class = { 1150 .name = "block", 1151 }; 1152 1153 static char *block_devnode(struct device *dev, umode_t *mode, 1154 kuid_t *uid, kgid_t *gid) 1155 { 1156 struct gendisk *disk = dev_to_disk(dev); 1157 1158 if (disk->devnode) 1159 return disk->devnode(disk, mode); 1160 return NULL; 1161 } 1162 1163 static struct device_type disk_type = { 1164 .name = "disk", 1165 .groups = disk_attr_groups, 1166 .release = disk_release, 1167 .devnode = block_devnode, 1168 }; 1169 1170 #ifdef CONFIG_PROC_FS 1171 /* 1172 * aggregate disk stat collector. Uses the same stats that the sysfs 1173 * entries do, above, but makes them available through one seq_file. 1174 * 1175 * The output looks suspiciously like /proc/partitions with a bunch of 1176 * extra fields. 1177 */ 1178 static int diskstats_show(struct seq_file *seqf, void *v) 1179 { 1180 struct gendisk *gp = v; 1181 struct disk_part_iter piter; 1182 struct hd_struct *hd; 1183 char buf[BDEVNAME_SIZE]; 1184 int cpu; 1185 1186 /* 1187 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) 1188 seq_puts(seqf, "major minor name" 1189 " rio rmerge rsect ruse wio wmerge " 1190 "wsect wuse running use aveq" 1191 "\n\n"); 1192 */ 1193 1194 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0); 1195 while ((hd = disk_part_iter_next(&piter))) { 1196 cpu = part_stat_lock(); 1197 part_round_stats(cpu, hd); 1198 part_stat_unlock(); 1199 seq_printf(seqf, "%4d %7d %s %lu %lu %lu " 1200 "%u %lu %lu %lu %u %u %u %u\n", 1201 MAJOR(part_devt(hd)), MINOR(part_devt(hd)), 1202 disk_name(gp, hd->partno, buf), 1203 part_stat_read(hd, ios[READ]), 1204 part_stat_read(hd, merges[READ]), 1205 part_stat_read(hd, sectors[READ]), 1206 jiffies_to_msecs(part_stat_read(hd, ticks[READ])), 1207 part_stat_read(hd, ios[WRITE]), 1208 part_stat_read(hd, merges[WRITE]), 1209 part_stat_read(hd, sectors[WRITE]), 1210 jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])), 1211 part_in_flight(hd), 1212 jiffies_to_msecs(part_stat_read(hd, io_ticks)), 1213 jiffies_to_msecs(part_stat_read(hd, time_in_queue)) 1214 ); 1215 } 1216 disk_part_iter_exit(&piter); 1217 1218 return 0; 1219 } 1220 1221 static const struct seq_operations diskstats_op = { 1222 .start = disk_seqf_start, 1223 .next = disk_seqf_next, 1224 .stop = disk_seqf_stop, 1225 .show = diskstats_show 1226 }; 1227 1228 static int diskstats_open(struct inode *inode, struct file *file) 1229 { 1230 return seq_open(file, &diskstats_op); 1231 } 1232 1233 static const struct file_operations proc_diskstats_operations = { 1234 .open = diskstats_open, 1235 .read = seq_read, 1236 .llseek = seq_lseek, 1237 .release = seq_release, 1238 }; 1239 1240 static int __init proc_genhd_init(void) 1241 { 1242 proc_create("diskstats", 0, NULL, &proc_diskstats_operations); 1243 proc_create("partitions", 0, NULL, &proc_partitions_operations); 1244 return 0; 1245 } 1246 module_init(proc_genhd_init); 1247 #endif /* CONFIG_PROC_FS */ 1248 1249 dev_t blk_lookup_devt(const char *name, int partno) 1250 { 1251 dev_t devt = MKDEV(0, 0); 1252 struct class_dev_iter iter; 1253 struct device *dev; 1254 1255 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1256 while ((dev = class_dev_iter_next(&iter))) { 1257 struct gendisk *disk = dev_to_disk(dev); 1258 struct hd_struct *part; 1259 1260 if (strcmp(dev_name(dev), name)) 1261 continue; 1262 1263 if (partno < disk->minors) { 1264 /* We need to return the right devno, even 1265 * if the partition doesn't exist yet. 1266 */ 1267 devt = MKDEV(MAJOR(dev->devt), 1268 MINOR(dev->devt) + partno); 1269 break; 1270 } 1271 part = disk_get_part(disk, partno); 1272 if (part) { 1273 devt = part_devt(part); 1274 disk_put_part(part); 1275 break; 1276 } 1277 disk_put_part(part); 1278 } 1279 class_dev_iter_exit(&iter); 1280 return devt; 1281 } 1282 EXPORT_SYMBOL(blk_lookup_devt); 1283 1284 struct gendisk *alloc_disk(int minors) 1285 { 1286 return alloc_disk_node(minors, NUMA_NO_NODE); 1287 } 1288 EXPORT_SYMBOL(alloc_disk); 1289 1290 struct gendisk *alloc_disk_node(int minors, int node_id) 1291 { 1292 struct gendisk *disk; 1293 1294 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); 1295 if (disk) { 1296 if (!init_part_stats(&disk->part0)) { 1297 kfree(disk); 1298 return NULL; 1299 } 1300 disk->node_id = node_id; 1301 if (disk_expand_part_tbl(disk, 0)) { 1302 free_part_stats(&disk->part0); 1303 kfree(disk); 1304 return NULL; 1305 } 1306 disk->part_tbl->part[0] = &disk->part0; 1307 1308 /* 1309 * set_capacity() and get_capacity() currently don't use 1310 * seqcounter to read/update the part0->nr_sects. Still init 1311 * the counter as we can read the sectors in IO submission 1312 * patch using seqence counters. 1313 * 1314 * TODO: Ideally set_capacity() and get_capacity() should be 1315 * converted to make use of bd_mutex and sequence counters. 1316 */ 1317 seqcount_init(&disk->part0.nr_sects_seq); 1318 if (hd_ref_init(&disk->part0)) { 1319 hd_free_part(&disk->part0); 1320 kfree(disk); 1321 return NULL; 1322 } 1323 1324 disk->minors = minors; 1325 rand_initialize_disk(disk); 1326 disk_to_dev(disk)->class = &block_class; 1327 disk_to_dev(disk)->type = &disk_type; 1328 device_initialize(disk_to_dev(disk)); 1329 } 1330 return disk; 1331 } 1332 EXPORT_SYMBOL(alloc_disk_node); 1333 1334 struct kobject *get_disk(struct gendisk *disk) 1335 { 1336 struct module *owner; 1337 struct kobject *kobj; 1338 1339 if (!disk->fops) 1340 return NULL; 1341 owner = disk->fops->owner; 1342 if (owner && !try_module_get(owner)) 1343 return NULL; 1344 kobj = kobject_get(&disk_to_dev(disk)->kobj); 1345 if (kobj == NULL) { 1346 module_put(owner); 1347 return NULL; 1348 } 1349 return kobj; 1350 1351 } 1352 1353 EXPORT_SYMBOL(get_disk); 1354 1355 void put_disk(struct gendisk *disk) 1356 { 1357 if (disk) 1358 kobject_put(&disk_to_dev(disk)->kobj); 1359 } 1360 1361 EXPORT_SYMBOL(put_disk); 1362 1363 static void set_disk_ro_uevent(struct gendisk *gd, int ro) 1364 { 1365 char event[] = "DISK_RO=1"; 1366 char *envp[] = { event, NULL }; 1367 1368 if (!ro) 1369 event[8] = '0'; 1370 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); 1371 } 1372 1373 void set_device_ro(struct block_device *bdev, int flag) 1374 { 1375 bdev->bd_part->policy = flag; 1376 } 1377 1378 EXPORT_SYMBOL(set_device_ro); 1379 1380 void set_disk_ro(struct gendisk *disk, int flag) 1381 { 1382 struct disk_part_iter piter; 1383 struct hd_struct *part; 1384 1385 if (disk->part0.policy != flag) { 1386 set_disk_ro_uevent(disk, flag); 1387 disk->part0.policy = flag; 1388 } 1389 1390 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 1391 while ((part = disk_part_iter_next(&piter))) 1392 part->policy = flag; 1393 disk_part_iter_exit(&piter); 1394 } 1395 1396 EXPORT_SYMBOL(set_disk_ro); 1397 1398 int bdev_read_only(struct block_device *bdev) 1399 { 1400 if (!bdev) 1401 return 0; 1402 return bdev->bd_part->policy; 1403 } 1404 1405 EXPORT_SYMBOL(bdev_read_only); 1406 1407 int invalidate_partition(struct gendisk *disk, int partno) 1408 { 1409 int res = 0; 1410 struct block_device *bdev = bdget_disk(disk, partno); 1411 if (bdev) { 1412 fsync_bdev(bdev); 1413 res = __invalidate_device(bdev, true); 1414 bdput(bdev); 1415 } 1416 return res; 1417 } 1418 1419 EXPORT_SYMBOL(invalidate_partition); 1420 1421 /* 1422 * Disk events - monitor disk events like media change and eject request. 1423 */ 1424 struct disk_events { 1425 struct list_head node; /* all disk_event's */ 1426 struct gendisk *disk; /* the associated disk */ 1427 spinlock_t lock; 1428 1429 struct mutex block_mutex; /* protects blocking */ 1430 int block; /* event blocking depth */ 1431 unsigned int pending; /* events already sent out */ 1432 unsigned int clearing; /* events being cleared */ 1433 1434 long poll_msecs; /* interval, -1 for default */ 1435 struct delayed_work dwork; 1436 }; 1437 1438 static const char *disk_events_strs[] = { 1439 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change", 1440 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request", 1441 }; 1442 1443 static char *disk_uevents[] = { 1444 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1", 1445 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1", 1446 }; 1447 1448 /* list of all disk_events */ 1449 static DEFINE_MUTEX(disk_events_mutex); 1450 static LIST_HEAD(disk_events); 1451 1452 /* disable in-kernel polling by default */ 1453 static unsigned long disk_events_dfl_poll_msecs; 1454 1455 static unsigned long disk_events_poll_jiffies(struct gendisk *disk) 1456 { 1457 struct disk_events *ev = disk->ev; 1458 long intv_msecs = 0; 1459 1460 /* 1461 * If device-specific poll interval is set, always use it. If 1462 * the default is being used, poll iff there are events which 1463 * can't be monitored asynchronously. 1464 */ 1465 if (ev->poll_msecs >= 0) 1466 intv_msecs = ev->poll_msecs; 1467 else if (disk->events & ~disk->async_events) 1468 intv_msecs = disk_events_dfl_poll_msecs; 1469 1470 return msecs_to_jiffies(intv_msecs); 1471 } 1472 1473 /** 1474 * disk_block_events - block and flush disk event checking 1475 * @disk: disk to block events for 1476 * 1477 * On return from this function, it is guaranteed that event checking 1478 * isn't in progress and won't happen until unblocked by 1479 * disk_unblock_events(). Events blocking is counted and the actual 1480 * unblocking happens after the matching number of unblocks are done. 1481 * 1482 * Note that this intentionally does not block event checking from 1483 * disk_clear_events(). 1484 * 1485 * CONTEXT: 1486 * Might sleep. 1487 */ 1488 void disk_block_events(struct gendisk *disk) 1489 { 1490 struct disk_events *ev = disk->ev; 1491 unsigned long flags; 1492 bool cancel; 1493 1494 if (!ev) 1495 return; 1496 1497 /* 1498 * Outer mutex ensures that the first blocker completes canceling 1499 * the event work before further blockers are allowed to finish. 1500 */ 1501 mutex_lock(&ev->block_mutex); 1502 1503 spin_lock_irqsave(&ev->lock, flags); 1504 cancel = !ev->block++; 1505 spin_unlock_irqrestore(&ev->lock, flags); 1506 1507 if (cancel) 1508 cancel_delayed_work_sync(&disk->ev->dwork); 1509 1510 mutex_unlock(&ev->block_mutex); 1511 } 1512 1513 static void __disk_unblock_events(struct gendisk *disk, bool check_now) 1514 { 1515 struct disk_events *ev = disk->ev; 1516 unsigned long intv; 1517 unsigned long flags; 1518 1519 spin_lock_irqsave(&ev->lock, flags); 1520 1521 if (WARN_ON_ONCE(ev->block <= 0)) 1522 goto out_unlock; 1523 1524 if (--ev->block) 1525 goto out_unlock; 1526 1527 intv = disk_events_poll_jiffies(disk); 1528 if (check_now) 1529 queue_delayed_work(system_freezable_power_efficient_wq, 1530 &ev->dwork, 0); 1531 else if (intv) 1532 queue_delayed_work(system_freezable_power_efficient_wq, 1533 &ev->dwork, intv); 1534 out_unlock: 1535 spin_unlock_irqrestore(&ev->lock, flags); 1536 } 1537 1538 /** 1539 * disk_unblock_events - unblock disk event checking 1540 * @disk: disk to unblock events for 1541 * 1542 * Undo disk_block_events(). When the block count reaches zero, it 1543 * starts events polling if configured. 1544 * 1545 * CONTEXT: 1546 * Don't care. Safe to call from irq context. 1547 */ 1548 void disk_unblock_events(struct gendisk *disk) 1549 { 1550 if (disk->ev) 1551 __disk_unblock_events(disk, false); 1552 } 1553 1554 /** 1555 * disk_flush_events - schedule immediate event checking and flushing 1556 * @disk: disk to check and flush events for 1557 * @mask: events to flush 1558 * 1559 * Schedule immediate event checking on @disk if not blocked. Events in 1560 * @mask are scheduled to be cleared from the driver. Note that this 1561 * doesn't clear the events from @disk->ev. 1562 * 1563 * CONTEXT: 1564 * If @mask is non-zero must be called with bdev->bd_mutex held. 1565 */ 1566 void disk_flush_events(struct gendisk *disk, unsigned int mask) 1567 { 1568 struct disk_events *ev = disk->ev; 1569 1570 if (!ev) 1571 return; 1572 1573 spin_lock_irq(&ev->lock); 1574 ev->clearing |= mask; 1575 if (!ev->block) 1576 mod_delayed_work(system_freezable_power_efficient_wq, 1577 &ev->dwork, 0); 1578 spin_unlock_irq(&ev->lock); 1579 } 1580 1581 /** 1582 * disk_clear_events - synchronously check, clear and return pending events 1583 * @disk: disk to fetch and clear events from 1584 * @mask: mask of events to be fetched and cleared 1585 * 1586 * Disk events are synchronously checked and pending events in @mask 1587 * are cleared and returned. This ignores the block count. 1588 * 1589 * CONTEXT: 1590 * Might sleep. 1591 */ 1592 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask) 1593 { 1594 const struct block_device_operations *bdops = disk->fops; 1595 struct disk_events *ev = disk->ev; 1596 unsigned int pending; 1597 unsigned int clearing = mask; 1598 1599 if (!ev) { 1600 /* for drivers still using the old ->media_changed method */ 1601 if ((mask & DISK_EVENT_MEDIA_CHANGE) && 1602 bdops->media_changed && bdops->media_changed(disk)) 1603 return DISK_EVENT_MEDIA_CHANGE; 1604 return 0; 1605 } 1606 1607 disk_block_events(disk); 1608 1609 /* 1610 * store the union of mask and ev->clearing on the stack so that the 1611 * race with disk_flush_events does not cause ambiguity (ev->clearing 1612 * can still be modified even if events are blocked). 1613 */ 1614 spin_lock_irq(&ev->lock); 1615 clearing |= ev->clearing; 1616 ev->clearing = 0; 1617 spin_unlock_irq(&ev->lock); 1618 1619 disk_check_events(ev, &clearing); 1620 /* 1621 * if ev->clearing is not 0, the disk_flush_events got called in the 1622 * middle of this function, so we want to run the workfn without delay. 1623 */ 1624 __disk_unblock_events(disk, ev->clearing ? true : false); 1625 1626 /* then, fetch and clear pending events */ 1627 spin_lock_irq(&ev->lock); 1628 pending = ev->pending & mask; 1629 ev->pending &= ~mask; 1630 spin_unlock_irq(&ev->lock); 1631 WARN_ON_ONCE(clearing & mask); 1632 1633 return pending; 1634 } 1635 1636 /* 1637 * Separate this part out so that a different pointer for clearing_ptr can be 1638 * passed in for disk_clear_events. 1639 */ 1640 static void disk_events_workfn(struct work_struct *work) 1641 { 1642 struct delayed_work *dwork = to_delayed_work(work); 1643 struct disk_events *ev = container_of(dwork, struct disk_events, dwork); 1644 1645 disk_check_events(ev, &ev->clearing); 1646 } 1647 1648 static void disk_check_events(struct disk_events *ev, 1649 unsigned int *clearing_ptr) 1650 { 1651 struct gendisk *disk = ev->disk; 1652 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { }; 1653 unsigned int clearing = *clearing_ptr; 1654 unsigned int events; 1655 unsigned long intv; 1656 int nr_events = 0, i; 1657 1658 /* check events */ 1659 events = disk->fops->check_events(disk, clearing); 1660 1661 /* accumulate pending events and schedule next poll if necessary */ 1662 spin_lock_irq(&ev->lock); 1663 1664 events &= ~ev->pending; 1665 ev->pending |= events; 1666 *clearing_ptr &= ~clearing; 1667 1668 intv = disk_events_poll_jiffies(disk); 1669 if (!ev->block && intv) 1670 queue_delayed_work(system_freezable_power_efficient_wq, 1671 &ev->dwork, intv); 1672 1673 spin_unlock_irq(&ev->lock); 1674 1675 /* 1676 * Tell userland about new events. Only the events listed in 1677 * @disk->events are reported. Unlisted events are processed the 1678 * same internally but never get reported to userland. 1679 */ 1680 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++) 1681 if (events & disk->events & (1 << i)) 1682 envp[nr_events++] = disk_uevents[i]; 1683 1684 if (nr_events) 1685 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 1686 } 1687 1688 /* 1689 * A disk events enabled device has the following sysfs nodes under 1690 * its /sys/block/X/ directory. 1691 * 1692 * events : list of all supported events 1693 * events_async : list of events which can be detected w/o polling 1694 * events_poll_msecs : polling interval, 0: disable, -1: system default 1695 */ 1696 static ssize_t __disk_events_show(unsigned int events, char *buf) 1697 { 1698 const char *delim = ""; 1699 ssize_t pos = 0; 1700 int i; 1701 1702 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++) 1703 if (events & (1 << i)) { 1704 pos += sprintf(buf + pos, "%s%s", 1705 delim, disk_events_strs[i]); 1706 delim = " "; 1707 } 1708 if (pos) 1709 pos += sprintf(buf + pos, "\n"); 1710 return pos; 1711 } 1712 1713 static ssize_t disk_events_show(struct device *dev, 1714 struct device_attribute *attr, char *buf) 1715 { 1716 struct gendisk *disk = dev_to_disk(dev); 1717 1718 return __disk_events_show(disk->events, buf); 1719 } 1720 1721 static ssize_t disk_events_async_show(struct device *dev, 1722 struct device_attribute *attr, char *buf) 1723 { 1724 struct gendisk *disk = dev_to_disk(dev); 1725 1726 return __disk_events_show(disk->async_events, buf); 1727 } 1728 1729 static ssize_t disk_events_poll_msecs_show(struct device *dev, 1730 struct device_attribute *attr, 1731 char *buf) 1732 { 1733 struct gendisk *disk = dev_to_disk(dev); 1734 1735 return sprintf(buf, "%ld\n", disk->ev->poll_msecs); 1736 } 1737 1738 static ssize_t disk_events_poll_msecs_store(struct device *dev, 1739 struct device_attribute *attr, 1740 const char *buf, size_t count) 1741 { 1742 struct gendisk *disk = dev_to_disk(dev); 1743 long intv; 1744 1745 if (!count || !sscanf(buf, "%ld", &intv)) 1746 return -EINVAL; 1747 1748 if (intv < 0 && intv != -1) 1749 return -EINVAL; 1750 1751 disk_block_events(disk); 1752 disk->ev->poll_msecs = intv; 1753 __disk_unblock_events(disk, true); 1754 1755 return count; 1756 } 1757 1758 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL); 1759 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL); 1760 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR, 1761 disk_events_poll_msecs_show, 1762 disk_events_poll_msecs_store); 1763 1764 static const struct attribute *disk_events_attrs[] = { 1765 &dev_attr_events.attr, 1766 &dev_attr_events_async.attr, 1767 &dev_attr_events_poll_msecs.attr, 1768 NULL, 1769 }; 1770 1771 /* 1772 * The default polling interval can be specified by the kernel 1773 * parameter block.events_dfl_poll_msecs which defaults to 0 1774 * (disable). This can also be modified runtime by writing to 1775 * /sys/module/block/events_dfl_poll_msecs. 1776 */ 1777 static int disk_events_set_dfl_poll_msecs(const char *val, 1778 const struct kernel_param *kp) 1779 { 1780 struct disk_events *ev; 1781 int ret; 1782 1783 ret = param_set_ulong(val, kp); 1784 if (ret < 0) 1785 return ret; 1786 1787 mutex_lock(&disk_events_mutex); 1788 1789 list_for_each_entry(ev, &disk_events, node) 1790 disk_flush_events(ev->disk, 0); 1791 1792 mutex_unlock(&disk_events_mutex); 1793 1794 return 0; 1795 } 1796 1797 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = { 1798 .set = disk_events_set_dfl_poll_msecs, 1799 .get = param_get_ulong, 1800 }; 1801 1802 #undef MODULE_PARAM_PREFIX 1803 #define MODULE_PARAM_PREFIX "block." 1804 1805 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops, 1806 &disk_events_dfl_poll_msecs, 0644); 1807 1808 /* 1809 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events. 1810 */ 1811 static void disk_alloc_events(struct gendisk *disk) 1812 { 1813 struct disk_events *ev; 1814 1815 if (!disk->fops->check_events) 1816 return; 1817 1818 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1819 if (!ev) { 1820 pr_warn("%s: failed to initialize events\n", disk->disk_name); 1821 return; 1822 } 1823 1824 INIT_LIST_HEAD(&ev->node); 1825 ev->disk = disk; 1826 spin_lock_init(&ev->lock); 1827 mutex_init(&ev->block_mutex); 1828 ev->block = 1; 1829 ev->poll_msecs = -1; 1830 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn); 1831 1832 disk->ev = ev; 1833 } 1834 1835 static void disk_add_events(struct gendisk *disk) 1836 { 1837 if (!disk->ev) 1838 return; 1839 1840 /* FIXME: error handling */ 1841 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0) 1842 pr_warn("%s: failed to create sysfs files for events\n", 1843 disk->disk_name); 1844 1845 mutex_lock(&disk_events_mutex); 1846 list_add_tail(&disk->ev->node, &disk_events); 1847 mutex_unlock(&disk_events_mutex); 1848 1849 /* 1850 * Block count is initialized to 1 and the following initial 1851 * unblock kicks it into action. 1852 */ 1853 __disk_unblock_events(disk, true); 1854 } 1855 1856 static void disk_del_events(struct gendisk *disk) 1857 { 1858 if (!disk->ev) 1859 return; 1860 1861 disk_block_events(disk); 1862 1863 mutex_lock(&disk_events_mutex); 1864 list_del_init(&disk->ev->node); 1865 mutex_unlock(&disk_events_mutex); 1866 1867 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs); 1868 } 1869 1870 static void disk_release_events(struct gendisk *disk) 1871 { 1872 /* the block count should be 1 from disk_del_events() */ 1873 WARN_ON_ONCE(disk->ev && disk->ev->block != 1); 1874 kfree(disk->ev); 1875 } 1876