xref: /linux/block/genhd.c (revision 045ddc8991698a8e9c5668c6190faa8b5d516dc0)
1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/init.h>
12 #include <linux/spinlock.h>
13 #include <linux/proc_fs.h>
14 #include <linux/seq_file.h>
15 #include <linux/slab.h>
16 #include <linux/kmod.h>
17 #include <linux/kobj_map.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 
23 #include "blk.h"
24 
25 static DEFINE_MUTEX(block_class_lock);
26 struct kobject *block_depr;
27 
28 /* for extended dynamic devt allocation, currently only one major is used */
29 #define MAX_EXT_DEVT		(1 << MINORBITS)
30 
31 /* For extended devt allocation.  ext_devt_mutex prevents look up
32  * results from going away underneath its user.
33  */
34 static DEFINE_MUTEX(ext_devt_mutex);
35 static DEFINE_IDR(ext_devt_idr);
36 
37 static struct device_type disk_type;
38 
39 static void disk_add_events(struct gendisk *disk);
40 static void disk_del_events(struct gendisk *disk);
41 static void disk_release_events(struct gendisk *disk);
42 
43 /**
44  * disk_get_part - get partition
45  * @disk: disk to look partition from
46  * @partno: partition number
47  *
48  * Look for partition @partno from @disk.  If found, increment
49  * reference count and return it.
50  *
51  * CONTEXT:
52  * Don't care.
53  *
54  * RETURNS:
55  * Pointer to the found partition on success, NULL if not found.
56  */
57 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
58 {
59 	struct hd_struct *part = NULL;
60 	struct disk_part_tbl *ptbl;
61 
62 	if (unlikely(partno < 0))
63 		return NULL;
64 
65 	rcu_read_lock();
66 
67 	ptbl = rcu_dereference(disk->part_tbl);
68 	if (likely(partno < ptbl->len)) {
69 		part = rcu_dereference(ptbl->part[partno]);
70 		if (part)
71 			get_device(part_to_dev(part));
72 	}
73 
74 	rcu_read_unlock();
75 
76 	return part;
77 }
78 EXPORT_SYMBOL_GPL(disk_get_part);
79 
80 /**
81  * disk_part_iter_init - initialize partition iterator
82  * @piter: iterator to initialize
83  * @disk: disk to iterate over
84  * @flags: DISK_PITER_* flags
85  *
86  * Initialize @piter so that it iterates over partitions of @disk.
87  *
88  * CONTEXT:
89  * Don't care.
90  */
91 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
92 			  unsigned int flags)
93 {
94 	struct disk_part_tbl *ptbl;
95 
96 	rcu_read_lock();
97 	ptbl = rcu_dereference(disk->part_tbl);
98 
99 	piter->disk = disk;
100 	piter->part = NULL;
101 
102 	if (flags & DISK_PITER_REVERSE)
103 		piter->idx = ptbl->len - 1;
104 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
105 		piter->idx = 0;
106 	else
107 		piter->idx = 1;
108 
109 	piter->flags = flags;
110 
111 	rcu_read_unlock();
112 }
113 EXPORT_SYMBOL_GPL(disk_part_iter_init);
114 
115 /**
116  * disk_part_iter_next - proceed iterator to the next partition and return it
117  * @piter: iterator of interest
118  *
119  * Proceed @piter to the next partition and return it.
120  *
121  * CONTEXT:
122  * Don't care.
123  */
124 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
125 {
126 	struct disk_part_tbl *ptbl;
127 	int inc, end;
128 
129 	/* put the last partition */
130 	disk_put_part(piter->part);
131 	piter->part = NULL;
132 
133 	/* get part_tbl */
134 	rcu_read_lock();
135 	ptbl = rcu_dereference(piter->disk->part_tbl);
136 
137 	/* determine iteration parameters */
138 	if (piter->flags & DISK_PITER_REVERSE) {
139 		inc = -1;
140 		if (piter->flags & (DISK_PITER_INCL_PART0 |
141 				    DISK_PITER_INCL_EMPTY_PART0))
142 			end = -1;
143 		else
144 			end = 0;
145 	} else {
146 		inc = 1;
147 		end = ptbl->len;
148 	}
149 
150 	/* iterate to the next partition */
151 	for (; piter->idx != end; piter->idx += inc) {
152 		struct hd_struct *part;
153 
154 		part = rcu_dereference(ptbl->part[piter->idx]);
155 		if (!part)
156 			continue;
157 		if (!part->nr_sects &&
158 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
159 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
160 		      piter->idx == 0))
161 			continue;
162 
163 		get_device(part_to_dev(part));
164 		piter->part = part;
165 		piter->idx += inc;
166 		break;
167 	}
168 
169 	rcu_read_unlock();
170 
171 	return piter->part;
172 }
173 EXPORT_SYMBOL_GPL(disk_part_iter_next);
174 
175 /**
176  * disk_part_iter_exit - finish up partition iteration
177  * @piter: iter of interest
178  *
179  * Called when iteration is over.  Cleans up @piter.
180  *
181  * CONTEXT:
182  * Don't care.
183  */
184 void disk_part_iter_exit(struct disk_part_iter *piter)
185 {
186 	disk_put_part(piter->part);
187 	piter->part = NULL;
188 }
189 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
190 
191 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
192 {
193 	return part->start_sect <= sector &&
194 		sector < part->start_sect + part->nr_sects;
195 }
196 
197 /**
198  * disk_map_sector_rcu - map sector to partition
199  * @disk: gendisk of interest
200  * @sector: sector to map
201  *
202  * Find out which partition @sector maps to on @disk.  This is
203  * primarily used for stats accounting.
204  *
205  * CONTEXT:
206  * RCU read locked.  The returned partition pointer is valid only
207  * while preemption is disabled.
208  *
209  * RETURNS:
210  * Found partition on success, part0 is returned if no partition matches
211  */
212 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
213 {
214 	struct disk_part_tbl *ptbl;
215 	struct hd_struct *part;
216 	int i;
217 
218 	ptbl = rcu_dereference(disk->part_tbl);
219 
220 	part = rcu_dereference(ptbl->last_lookup);
221 	if (part && sector_in_part(part, sector))
222 		return part;
223 
224 	for (i = 1; i < ptbl->len; i++) {
225 		part = rcu_dereference(ptbl->part[i]);
226 
227 		if (part && sector_in_part(part, sector)) {
228 			rcu_assign_pointer(ptbl->last_lookup, part);
229 			return part;
230 		}
231 	}
232 	return &disk->part0;
233 }
234 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
235 
236 /*
237  * Can be deleted altogether. Later.
238  *
239  */
240 static struct blk_major_name {
241 	struct blk_major_name *next;
242 	int major;
243 	char name[16];
244 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
245 
246 /* index in the above - for now: assume no multimajor ranges */
247 static inline int major_to_index(unsigned major)
248 {
249 	return major % BLKDEV_MAJOR_HASH_SIZE;
250 }
251 
252 #ifdef CONFIG_PROC_FS
253 void blkdev_show(struct seq_file *seqf, off_t offset)
254 {
255 	struct blk_major_name *dp;
256 
257 	if (offset < BLKDEV_MAJOR_HASH_SIZE) {
258 		mutex_lock(&block_class_lock);
259 		for (dp = major_names[offset]; dp; dp = dp->next)
260 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
261 		mutex_unlock(&block_class_lock);
262 	}
263 }
264 #endif /* CONFIG_PROC_FS */
265 
266 /**
267  * register_blkdev - register a new block device
268  *
269  * @major: the requested major device number [1..255]. If @major=0, try to
270  *         allocate any unused major number.
271  * @name: the name of the new block device as a zero terminated string
272  *
273  * The @name must be unique within the system.
274  *
275  * The return value depends on the @major input parameter.
276  *  - if a major device number was requested in range [1..255] then the
277  *    function returns zero on success, or a negative error code
278  *  - if any unused major number was requested with @major=0 parameter
279  *    then the return value is the allocated major number in range
280  *    [1..255] or a negative error code otherwise
281  */
282 int register_blkdev(unsigned int major, const char *name)
283 {
284 	struct blk_major_name **n, *p;
285 	int index, ret = 0;
286 
287 	mutex_lock(&block_class_lock);
288 
289 	/* temporary */
290 	if (major == 0) {
291 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
292 			if (major_names[index] == NULL)
293 				break;
294 		}
295 
296 		if (index == 0) {
297 			printk("register_blkdev: failed to get major for %s\n",
298 			       name);
299 			ret = -EBUSY;
300 			goto out;
301 		}
302 		major = index;
303 		ret = major;
304 	}
305 
306 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
307 	if (p == NULL) {
308 		ret = -ENOMEM;
309 		goto out;
310 	}
311 
312 	p->major = major;
313 	strlcpy(p->name, name, sizeof(p->name));
314 	p->next = NULL;
315 	index = major_to_index(major);
316 
317 	for (n = &major_names[index]; *n; n = &(*n)->next) {
318 		if ((*n)->major == major)
319 			break;
320 	}
321 	if (!*n)
322 		*n = p;
323 	else
324 		ret = -EBUSY;
325 
326 	if (ret < 0) {
327 		printk("register_blkdev: cannot get major %d for %s\n",
328 		       major, name);
329 		kfree(p);
330 	}
331 out:
332 	mutex_unlock(&block_class_lock);
333 	return ret;
334 }
335 
336 EXPORT_SYMBOL(register_blkdev);
337 
338 void unregister_blkdev(unsigned int major, const char *name)
339 {
340 	struct blk_major_name **n;
341 	struct blk_major_name *p = NULL;
342 	int index = major_to_index(major);
343 
344 	mutex_lock(&block_class_lock);
345 	for (n = &major_names[index]; *n; n = &(*n)->next)
346 		if ((*n)->major == major)
347 			break;
348 	if (!*n || strcmp((*n)->name, name)) {
349 		WARN_ON(1);
350 	} else {
351 		p = *n;
352 		*n = p->next;
353 	}
354 	mutex_unlock(&block_class_lock);
355 	kfree(p);
356 }
357 
358 EXPORT_SYMBOL(unregister_blkdev);
359 
360 static struct kobj_map *bdev_map;
361 
362 /**
363  * blk_mangle_minor - scatter minor numbers apart
364  * @minor: minor number to mangle
365  *
366  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
367  * is enabled.  Mangling twice gives the original value.
368  *
369  * RETURNS:
370  * Mangled value.
371  *
372  * CONTEXT:
373  * Don't care.
374  */
375 static int blk_mangle_minor(int minor)
376 {
377 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
378 	int i;
379 
380 	for (i = 0; i < MINORBITS / 2; i++) {
381 		int low = minor & (1 << i);
382 		int high = minor & (1 << (MINORBITS - 1 - i));
383 		int distance = MINORBITS - 1 - 2 * i;
384 
385 		minor ^= low | high;	/* clear both bits */
386 		low <<= distance;	/* swap the positions */
387 		high >>= distance;
388 		minor |= low | high;	/* and set */
389 	}
390 #endif
391 	return minor;
392 }
393 
394 /**
395  * blk_alloc_devt - allocate a dev_t for a partition
396  * @part: partition to allocate dev_t for
397  * @devt: out parameter for resulting dev_t
398  *
399  * Allocate a dev_t for block device.
400  *
401  * RETURNS:
402  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
403  * failure.
404  *
405  * CONTEXT:
406  * Might sleep.
407  */
408 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
409 {
410 	struct gendisk *disk = part_to_disk(part);
411 	int idx, rc;
412 
413 	/* in consecutive minor range? */
414 	if (part->partno < disk->minors) {
415 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
416 		return 0;
417 	}
418 
419 	/* allocate ext devt */
420 	do {
421 		if (!idr_pre_get(&ext_devt_idr, GFP_KERNEL))
422 			return -ENOMEM;
423 		rc = idr_get_new(&ext_devt_idr, part, &idx);
424 	} while (rc == -EAGAIN);
425 
426 	if (rc)
427 		return rc;
428 
429 	if (idx > MAX_EXT_DEVT) {
430 		idr_remove(&ext_devt_idr, idx);
431 		return -EBUSY;
432 	}
433 
434 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
435 	return 0;
436 }
437 
438 /**
439  * blk_free_devt - free a dev_t
440  * @devt: dev_t to free
441  *
442  * Free @devt which was allocated using blk_alloc_devt().
443  *
444  * CONTEXT:
445  * Might sleep.
446  */
447 void blk_free_devt(dev_t devt)
448 {
449 	might_sleep();
450 
451 	if (devt == MKDEV(0, 0))
452 		return;
453 
454 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
455 		mutex_lock(&ext_devt_mutex);
456 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
457 		mutex_unlock(&ext_devt_mutex);
458 	}
459 }
460 
461 static char *bdevt_str(dev_t devt, char *buf)
462 {
463 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
464 		char tbuf[BDEVT_SIZE];
465 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
466 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
467 	} else
468 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
469 
470 	return buf;
471 }
472 
473 /*
474  * Register device numbers dev..(dev+range-1)
475  * range must be nonzero
476  * The hash chain is sorted on range, so that subranges can override.
477  */
478 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
479 			 struct kobject *(*probe)(dev_t, int *, void *),
480 			 int (*lock)(dev_t, void *), void *data)
481 {
482 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
483 }
484 
485 EXPORT_SYMBOL(blk_register_region);
486 
487 void blk_unregister_region(dev_t devt, unsigned long range)
488 {
489 	kobj_unmap(bdev_map, devt, range);
490 }
491 
492 EXPORT_SYMBOL(blk_unregister_region);
493 
494 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
495 {
496 	struct gendisk *p = data;
497 
498 	return &disk_to_dev(p)->kobj;
499 }
500 
501 static int exact_lock(dev_t devt, void *data)
502 {
503 	struct gendisk *p = data;
504 
505 	if (!get_disk(p))
506 		return -1;
507 	return 0;
508 }
509 
510 void register_disk(struct gendisk *disk)
511 {
512 	struct device *ddev = disk_to_dev(disk);
513 	struct block_device *bdev;
514 	struct disk_part_iter piter;
515 	struct hd_struct *part;
516 	int err;
517 
518 	ddev->parent = disk->driverfs_dev;
519 
520 	dev_set_name(ddev, disk->disk_name);
521 
522 	/* delay uevents, until we scanned partition table */
523 	dev_set_uevent_suppress(ddev, 1);
524 
525 	if (device_add(ddev))
526 		return;
527 	if (!sysfs_deprecated) {
528 		err = sysfs_create_link(block_depr, &ddev->kobj,
529 					kobject_name(&ddev->kobj));
530 		if (err) {
531 			device_del(ddev);
532 			return;
533 		}
534 	}
535 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
536 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
537 
538 	/* No minors to use for partitions */
539 	if (!disk_part_scan_enabled(disk))
540 		goto exit;
541 
542 	/* No such device (e.g., media were just removed) */
543 	if (!get_capacity(disk))
544 		goto exit;
545 
546 	bdev = bdget_disk(disk, 0);
547 	if (!bdev)
548 		goto exit;
549 
550 	bdev->bd_invalidated = 1;
551 	err = blkdev_get(bdev, FMODE_READ, NULL);
552 	if (err < 0)
553 		goto exit;
554 	blkdev_put(bdev, FMODE_READ);
555 
556 exit:
557 	/* announce disk after possible partitions are created */
558 	dev_set_uevent_suppress(ddev, 0);
559 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
560 
561 	/* announce possible partitions */
562 	disk_part_iter_init(&piter, disk, 0);
563 	while ((part = disk_part_iter_next(&piter)))
564 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
565 	disk_part_iter_exit(&piter);
566 }
567 
568 /**
569  * add_disk - add partitioning information to kernel list
570  * @disk: per-device partitioning information
571  *
572  * This function registers the partitioning information in @disk
573  * with the kernel.
574  *
575  * FIXME: error handling
576  */
577 void add_disk(struct gendisk *disk)
578 {
579 	struct backing_dev_info *bdi;
580 	dev_t devt;
581 	int retval;
582 
583 	/* minors == 0 indicates to use ext devt from part0 and should
584 	 * be accompanied with EXT_DEVT flag.  Make sure all
585 	 * parameters make sense.
586 	 */
587 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
588 	WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
589 
590 	disk->flags |= GENHD_FL_UP;
591 
592 	retval = blk_alloc_devt(&disk->part0, &devt);
593 	if (retval) {
594 		WARN_ON(1);
595 		return;
596 	}
597 	disk_to_dev(disk)->devt = devt;
598 
599 	/* ->major and ->first_minor aren't supposed to be
600 	 * dereferenced from here on, but set them just in case.
601 	 */
602 	disk->major = MAJOR(devt);
603 	disk->first_minor = MINOR(devt);
604 
605 	/* Register BDI before referencing it from bdev */
606 	bdi = &disk->queue->backing_dev_info;
607 	bdi_register_dev(bdi, disk_devt(disk));
608 
609 	blk_register_region(disk_devt(disk), disk->minors, NULL,
610 			    exact_match, exact_lock, disk);
611 	register_disk(disk);
612 	blk_register_queue(disk);
613 
614 	/*
615 	 * Take an extra ref on queue which will be put on disk_release()
616 	 * so that it sticks around as long as @disk is there.
617 	 */
618 	WARN_ON_ONCE(blk_get_queue(disk->queue));
619 
620 	retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
621 				   "bdi");
622 	WARN_ON(retval);
623 
624 	disk_add_events(disk);
625 }
626 EXPORT_SYMBOL(add_disk);
627 
628 void del_gendisk(struct gendisk *disk)
629 {
630 	struct disk_part_iter piter;
631 	struct hd_struct *part;
632 
633 	disk_del_events(disk);
634 
635 	/* invalidate stuff */
636 	disk_part_iter_init(&piter, disk,
637 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
638 	while ((part = disk_part_iter_next(&piter))) {
639 		invalidate_partition(disk, part->partno);
640 		delete_partition(disk, part->partno);
641 	}
642 	disk_part_iter_exit(&piter);
643 
644 	invalidate_partition(disk, 0);
645 	blk_free_devt(disk_to_dev(disk)->devt);
646 	set_capacity(disk, 0);
647 	disk->flags &= ~GENHD_FL_UP;
648 
649 	sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
650 	bdi_unregister(&disk->queue->backing_dev_info);
651 	blk_unregister_queue(disk);
652 	blk_unregister_region(disk_devt(disk), disk->minors);
653 
654 	part_stat_set_all(&disk->part0, 0);
655 	disk->part0.stamp = 0;
656 
657 	kobject_put(disk->part0.holder_dir);
658 	kobject_put(disk->slave_dir);
659 	disk->driverfs_dev = NULL;
660 	if (!sysfs_deprecated)
661 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
662 	device_del(disk_to_dev(disk));
663 }
664 EXPORT_SYMBOL(del_gendisk);
665 
666 /**
667  * get_gendisk - get partitioning information for a given device
668  * @devt: device to get partitioning information for
669  * @partno: returned partition index
670  *
671  * This function gets the structure containing partitioning
672  * information for the given device @devt.
673  */
674 struct gendisk *get_gendisk(dev_t devt, int *partno)
675 {
676 	struct gendisk *disk = NULL;
677 
678 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
679 		struct kobject *kobj;
680 
681 		kobj = kobj_lookup(bdev_map, devt, partno);
682 		if (kobj)
683 			disk = dev_to_disk(kobj_to_dev(kobj));
684 	} else {
685 		struct hd_struct *part;
686 
687 		mutex_lock(&ext_devt_mutex);
688 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
689 		if (part && get_disk(part_to_disk(part))) {
690 			*partno = part->partno;
691 			disk = part_to_disk(part);
692 		}
693 		mutex_unlock(&ext_devt_mutex);
694 	}
695 
696 	return disk;
697 }
698 EXPORT_SYMBOL(get_gendisk);
699 
700 /**
701  * bdget_disk - do bdget() by gendisk and partition number
702  * @disk: gendisk of interest
703  * @partno: partition number
704  *
705  * Find partition @partno from @disk, do bdget() on it.
706  *
707  * CONTEXT:
708  * Don't care.
709  *
710  * RETURNS:
711  * Resulting block_device on success, NULL on failure.
712  */
713 struct block_device *bdget_disk(struct gendisk *disk, int partno)
714 {
715 	struct hd_struct *part;
716 	struct block_device *bdev = NULL;
717 
718 	part = disk_get_part(disk, partno);
719 	if (part)
720 		bdev = bdget(part_devt(part));
721 	disk_put_part(part);
722 
723 	return bdev;
724 }
725 EXPORT_SYMBOL(bdget_disk);
726 
727 /*
728  * print a full list of all partitions - intended for places where the root
729  * filesystem can't be mounted and thus to give the victim some idea of what
730  * went wrong
731  */
732 void __init printk_all_partitions(void)
733 {
734 	struct class_dev_iter iter;
735 	struct device *dev;
736 
737 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
738 	while ((dev = class_dev_iter_next(&iter))) {
739 		struct gendisk *disk = dev_to_disk(dev);
740 		struct disk_part_iter piter;
741 		struct hd_struct *part;
742 		char name_buf[BDEVNAME_SIZE];
743 		char devt_buf[BDEVT_SIZE];
744 		u8 uuid[PARTITION_META_INFO_UUIDLTH * 2 + 1];
745 
746 		/*
747 		 * Don't show empty devices or things that have been
748 		 * suppressed
749 		 */
750 		if (get_capacity(disk) == 0 ||
751 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
752 			continue;
753 
754 		/*
755 		 * Note, unlike /proc/partitions, I am showing the
756 		 * numbers in hex - the same format as the root=
757 		 * option takes.
758 		 */
759 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
760 		while ((part = disk_part_iter_next(&piter))) {
761 			bool is_part0 = part == &disk->part0;
762 
763 			uuid[0] = 0;
764 			if (part->info)
765 				part_unpack_uuid(part->info->uuid, uuid);
766 
767 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
768 			       bdevt_str(part_devt(part), devt_buf),
769 			       (unsigned long long)part->nr_sects >> 1,
770 			       disk_name(disk, part->partno, name_buf), uuid);
771 			if (is_part0) {
772 				if (disk->driverfs_dev != NULL &&
773 				    disk->driverfs_dev->driver != NULL)
774 					printk(" driver: %s\n",
775 					      disk->driverfs_dev->driver->name);
776 				else
777 					printk(" (driver?)\n");
778 			} else
779 				printk("\n");
780 		}
781 		disk_part_iter_exit(&piter);
782 	}
783 	class_dev_iter_exit(&iter);
784 }
785 
786 #ifdef CONFIG_PROC_FS
787 /* iterator */
788 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
789 {
790 	loff_t skip = *pos;
791 	struct class_dev_iter *iter;
792 	struct device *dev;
793 
794 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
795 	if (!iter)
796 		return ERR_PTR(-ENOMEM);
797 
798 	seqf->private = iter;
799 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
800 	do {
801 		dev = class_dev_iter_next(iter);
802 		if (!dev)
803 			return NULL;
804 	} while (skip--);
805 
806 	return dev_to_disk(dev);
807 }
808 
809 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
810 {
811 	struct device *dev;
812 
813 	(*pos)++;
814 	dev = class_dev_iter_next(seqf->private);
815 	if (dev)
816 		return dev_to_disk(dev);
817 
818 	return NULL;
819 }
820 
821 static void disk_seqf_stop(struct seq_file *seqf, void *v)
822 {
823 	struct class_dev_iter *iter = seqf->private;
824 
825 	/* stop is called even after start failed :-( */
826 	if (iter) {
827 		class_dev_iter_exit(iter);
828 		kfree(iter);
829 	}
830 }
831 
832 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
833 {
834 	static void *p;
835 
836 	p = disk_seqf_start(seqf, pos);
837 	if (!IS_ERR_OR_NULL(p) && !*pos)
838 		seq_puts(seqf, "major minor  #blocks  name\n\n");
839 	return p;
840 }
841 
842 static int show_partition(struct seq_file *seqf, void *v)
843 {
844 	struct gendisk *sgp = v;
845 	struct disk_part_iter piter;
846 	struct hd_struct *part;
847 	char buf[BDEVNAME_SIZE];
848 
849 	/* Don't show non-partitionable removeable devices or empty devices */
850 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
851 				   (sgp->flags & GENHD_FL_REMOVABLE)))
852 		return 0;
853 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
854 		return 0;
855 
856 	/* show the full disk and all non-0 size partitions of it */
857 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
858 	while ((part = disk_part_iter_next(&piter)))
859 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
860 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
861 			   (unsigned long long)part->nr_sects >> 1,
862 			   disk_name(sgp, part->partno, buf));
863 	disk_part_iter_exit(&piter);
864 
865 	return 0;
866 }
867 
868 static const struct seq_operations partitions_op = {
869 	.start	= show_partition_start,
870 	.next	= disk_seqf_next,
871 	.stop	= disk_seqf_stop,
872 	.show	= show_partition
873 };
874 
875 static int partitions_open(struct inode *inode, struct file *file)
876 {
877 	return seq_open(file, &partitions_op);
878 }
879 
880 static const struct file_operations proc_partitions_operations = {
881 	.open		= partitions_open,
882 	.read		= seq_read,
883 	.llseek		= seq_lseek,
884 	.release	= seq_release,
885 };
886 #endif
887 
888 
889 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
890 {
891 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
892 		/* Make old-style 2.4 aliases work */
893 		request_module("block-major-%d", MAJOR(devt));
894 	return NULL;
895 }
896 
897 static int __init genhd_device_init(void)
898 {
899 	int error;
900 
901 	block_class.dev_kobj = sysfs_dev_block_kobj;
902 	error = class_register(&block_class);
903 	if (unlikely(error))
904 		return error;
905 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
906 	blk_dev_init();
907 
908 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
909 
910 	/* create top-level block dir */
911 	if (!sysfs_deprecated)
912 		block_depr = kobject_create_and_add("block", NULL);
913 	return 0;
914 }
915 
916 subsys_initcall(genhd_device_init);
917 
918 static ssize_t disk_range_show(struct device *dev,
919 			       struct device_attribute *attr, char *buf)
920 {
921 	struct gendisk *disk = dev_to_disk(dev);
922 
923 	return sprintf(buf, "%d\n", disk->minors);
924 }
925 
926 static ssize_t disk_ext_range_show(struct device *dev,
927 				   struct device_attribute *attr, char *buf)
928 {
929 	struct gendisk *disk = dev_to_disk(dev);
930 
931 	return sprintf(buf, "%d\n", disk_max_parts(disk));
932 }
933 
934 static ssize_t disk_removable_show(struct device *dev,
935 				   struct device_attribute *attr, char *buf)
936 {
937 	struct gendisk *disk = dev_to_disk(dev);
938 
939 	return sprintf(buf, "%d\n",
940 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
941 }
942 
943 static ssize_t disk_ro_show(struct device *dev,
944 				   struct device_attribute *attr, char *buf)
945 {
946 	struct gendisk *disk = dev_to_disk(dev);
947 
948 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
949 }
950 
951 static ssize_t disk_capability_show(struct device *dev,
952 				    struct device_attribute *attr, char *buf)
953 {
954 	struct gendisk *disk = dev_to_disk(dev);
955 
956 	return sprintf(buf, "%x\n", disk->flags);
957 }
958 
959 static ssize_t disk_alignment_offset_show(struct device *dev,
960 					  struct device_attribute *attr,
961 					  char *buf)
962 {
963 	struct gendisk *disk = dev_to_disk(dev);
964 
965 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
966 }
967 
968 static ssize_t disk_discard_alignment_show(struct device *dev,
969 					   struct device_attribute *attr,
970 					   char *buf)
971 {
972 	struct gendisk *disk = dev_to_disk(dev);
973 
974 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
975 }
976 
977 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
978 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
979 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
980 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
981 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
982 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
983 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
984 		   NULL);
985 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
986 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
987 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
988 #ifdef CONFIG_FAIL_MAKE_REQUEST
989 static struct device_attribute dev_attr_fail =
990 	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
991 #endif
992 #ifdef CONFIG_FAIL_IO_TIMEOUT
993 static struct device_attribute dev_attr_fail_timeout =
994 	__ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
995 		part_timeout_store);
996 #endif
997 
998 static struct attribute *disk_attrs[] = {
999 	&dev_attr_range.attr,
1000 	&dev_attr_ext_range.attr,
1001 	&dev_attr_removable.attr,
1002 	&dev_attr_ro.attr,
1003 	&dev_attr_size.attr,
1004 	&dev_attr_alignment_offset.attr,
1005 	&dev_attr_discard_alignment.attr,
1006 	&dev_attr_capability.attr,
1007 	&dev_attr_stat.attr,
1008 	&dev_attr_inflight.attr,
1009 #ifdef CONFIG_FAIL_MAKE_REQUEST
1010 	&dev_attr_fail.attr,
1011 #endif
1012 #ifdef CONFIG_FAIL_IO_TIMEOUT
1013 	&dev_attr_fail_timeout.attr,
1014 #endif
1015 	NULL
1016 };
1017 
1018 static struct attribute_group disk_attr_group = {
1019 	.attrs = disk_attrs,
1020 };
1021 
1022 static const struct attribute_group *disk_attr_groups[] = {
1023 	&disk_attr_group,
1024 	NULL
1025 };
1026 
1027 /**
1028  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1029  * @disk: disk to replace part_tbl for
1030  * @new_ptbl: new part_tbl to install
1031  *
1032  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1033  * original ptbl is freed using RCU callback.
1034  *
1035  * LOCKING:
1036  * Matching bd_mutx locked.
1037  */
1038 static void disk_replace_part_tbl(struct gendisk *disk,
1039 				  struct disk_part_tbl *new_ptbl)
1040 {
1041 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1042 
1043 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1044 
1045 	if (old_ptbl) {
1046 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1047 		kfree_rcu(old_ptbl, rcu_head);
1048 	}
1049 }
1050 
1051 /**
1052  * disk_expand_part_tbl - expand disk->part_tbl
1053  * @disk: disk to expand part_tbl for
1054  * @partno: expand such that this partno can fit in
1055  *
1056  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1057  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1058  *
1059  * LOCKING:
1060  * Matching bd_mutex locked, might sleep.
1061  *
1062  * RETURNS:
1063  * 0 on success, -errno on failure.
1064  */
1065 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1066 {
1067 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1068 	struct disk_part_tbl *new_ptbl;
1069 	int len = old_ptbl ? old_ptbl->len : 0;
1070 	int target = partno + 1;
1071 	size_t size;
1072 	int i;
1073 
1074 	/* disk_max_parts() is zero during initialization, ignore if so */
1075 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1076 		return -EINVAL;
1077 
1078 	if (target <= len)
1079 		return 0;
1080 
1081 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1082 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1083 	if (!new_ptbl)
1084 		return -ENOMEM;
1085 
1086 	new_ptbl->len = target;
1087 
1088 	for (i = 0; i < len; i++)
1089 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1090 
1091 	disk_replace_part_tbl(disk, new_ptbl);
1092 	return 0;
1093 }
1094 
1095 static void disk_release(struct device *dev)
1096 {
1097 	struct gendisk *disk = dev_to_disk(dev);
1098 
1099 	disk_release_events(disk);
1100 	kfree(disk->random);
1101 	disk_replace_part_tbl(disk, NULL);
1102 	free_part_stats(&disk->part0);
1103 	free_part_info(&disk->part0);
1104 	if (disk->queue)
1105 		blk_put_queue(disk->queue);
1106 	kfree(disk);
1107 }
1108 struct class block_class = {
1109 	.name		= "block",
1110 };
1111 
1112 static char *block_devnode(struct device *dev, mode_t *mode)
1113 {
1114 	struct gendisk *disk = dev_to_disk(dev);
1115 
1116 	if (disk->devnode)
1117 		return disk->devnode(disk, mode);
1118 	return NULL;
1119 }
1120 
1121 static struct device_type disk_type = {
1122 	.name		= "disk",
1123 	.groups		= disk_attr_groups,
1124 	.release	= disk_release,
1125 	.devnode	= block_devnode,
1126 };
1127 
1128 #ifdef CONFIG_PROC_FS
1129 /*
1130  * aggregate disk stat collector.  Uses the same stats that the sysfs
1131  * entries do, above, but makes them available through one seq_file.
1132  *
1133  * The output looks suspiciously like /proc/partitions with a bunch of
1134  * extra fields.
1135  */
1136 static int diskstats_show(struct seq_file *seqf, void *v)
1137 {
1138 	struct gendisk *gp = v;
1139 	struct disk_part_iter piter;
1140 	struct hd_struct *hd;
1141 	char buf[BDEVNAME_SIZE];
1142 	int cpu;
1143 
1144 	/*
1145 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1146 		seq_puts(seqf,	"major minor name"
1147 				"     rio rmerge rsect ruse wio wmerge "
1148 				"wsect wuse running use aveq"
1149 				"\n\n");
1150 	*/
1151 
1152 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1153 	while ((hd = disk_part_iter_next(&piter))) {
1154 		cpu = part_stat_lock();
1155 		part_round_stats(cpu, hd);
1156 		part_stat_unlock();
1157 		seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1158 			   "%u %lu %lu %lu %u %u %u %u\n",
1159 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1160 			   disk_name(gp, hd->partno, buf),
1161 			   part_stat_read(hd, ios[READ]),
1162 			   part_stat_read(hd, merges[READ]),
1163 			   part_stat_read(hd, sectors[READ]),
1164 			   jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1165 			   part_stat_read(hd, ios[WRITE]),
1166 			   part_stat_read(hd, merges[WRITE]),
1167 			   part_stat_read(hd, sectors[WRITE]),
1168 			   jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1169 			   part_in_flight(hd),
1170 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1171 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1172 			);
1173 	}
1174 	disk_part_iter_exit(&piter);
1175 
1176 	return 0;
1177 }
1178 
1179 static const struct seq_operations diskstats_op = {
1180 	.start	= disk_seqf_start,
1181 	.next	= disk_seqf_next,
1182 	.stop	= disk_seqf_stop,
1183 	.show	= diskstats_show
1184 };
1185 
1186 static int diskstats_open(struct inode *inode, struct file *file)
1187 {
1188 	return seq_open(file, &diskstats_op);
1189 }
1190 
1191 static const struct file_operations proc_diskstats_operations = {
1192 	.open		= diskstats_open,
1193 	.read		= seq_read,
1194 	.llseek		= seq_lseek,
1195 	.release	= seq_release,
1196 };
1197 
1198 static int __init proc_genhd_init(void)
1199 {
1200 	proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1201 	proc_create("partitions", 0, NULL, &proc_partitions_operations);
1202 	return 0;
1203 }
1204 module_init(proc_genhd_init);
1205 #endif /* CONFIG_PROC_FS */
1206 
1207 dev_t blk_lookup_devt(const char *name, int partno)
1208 {
1209 	dev_t devt = MKDEV(0, 0);
1210 	struct class_dev_iter iter;
1211 	struct device *dev;
1212 
1213 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1214 	while ((dev = class_dev_iter_next(&iter))) {
1215 		struct gendisk *disk = dev_to_disk(dev);
1216 		struct hd_struct *part;
1217 
1218 		if (strcmp(dev_name(dev), name))
1219 			continue;
1220 
1221 		if (partno < disk->minors) {
1222 			/* We need to return the right devno, even
1223 			 * if the partition doesn't exist yet.
1224 			 */
1225 			devt = MKDEV(MAJOR(dev->devt),
1226 				     MINOR(dev->devt) + partno);
1227 			break;
1228 		}
1229 		part = disk_get_part(disk, partno);
1230 		if (part) {
1231 			devt = part_devt(part);
1232 			disk_put_part(part);
1233 			break;
1234 		}
1235 		disk_put_part(part);
1236 	}
1237 	class_dev_iter_exit(&iter);
1238 	return devt;
1239 }
1240 EXPORT_SYMBOL(blk_lookup_devt);
1241 
1242 struct gendisk *alloc_disk(int minors)
1243 {
1244 	return alloc_disk_node(minors, -1);
1245 }
1246 EXPORT_SYMBOL(alloc_disk);
1247 
1248 struct gendisk *alloc_disk_node(int minors, int node_id)
1249 {
1250 	struct gendisk *disk;
1251 
1252 	disk = kmalloc_node(sizeof(struct gendisk),
1253 				GFP_KERNEL | __GFP_ZERO, node_id);
1254 	if (disk) {
1255 		if (!init_part_stats(&disk->part0)) {
1256 			kfree(disk);
1257 			return NULL;
1258 		}
1259 		disk->node_id = node_id;
1260 		if (disk_expand_part_tbl(disk, 0)) {
1261 			free_part_stats(&disk->part0);
1262 			kfree(disk);
1263 			return NULL;
1264 		}
1265 		disk->part_tbl->part[0] = &disk->part0;
1266 
1267 		hd_ref_init(&disk->part0);
1268 
1269 		disk->minors = minors;
1270 		rand_initialize_disk(disk);
1271 		disk_to_dev(disk)->class = &block_class;
1272 		disk_to_dev(disk)->type = &disk_type;
1273 		device_initialize(disk_to_dev(disk));
1274 	}
1275 	return disk;
1276 }
1277 EXPORT_SYMBOL(alloc_disk_node);
1278 
1279 struct kobject *get_disk(struct gendisk *disk)
1280 {
1281 	struct module *owner;
1282 	struct kobject *kobj;
1283 
1284 	if (!disk->fops)
1285 		return NULL;
1286 	owner = disk->fops->owner;
1287 	if (owner && !try_module_get(owner))
1288 		return NULL;
1289 	kobj = kobject_get(&disk_to_dev(disk)->kobj);
1290 	if (kobj == NULL) {
1291 		module_put(owner);
1292 		return NULL;
1293 	}
1294 	return kobj;
1295 
1296 }
1297 
1298 EXPORT_SYMBOL(get_disk);
1299 
1300 void put_disk(struct gendisk *disk)
1301 {
1302 	if (disk)
1303 		kobject_put(&disk_to_dev(disk)->kobj);
1304 }
1305 
1306 EXPORT_SYMBOL(put_disk);
1307 
1308 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1309 {
1310 	char event[] = "DISK_RO=1";
1311 	char *envp[] = { event, NULL };
1312 
1313 	if (!ro)
1314 		event[8] = '0';
1315 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1316 }
1317 
1318 void set_device_ro(struct block_device *bdev, int flag)
1319 {
1320 	bdev->bd_part->policy = flag;
1321 }
1322 
1323 EXPORT_SYMBOL(set_device_ro);
1324 
1325 void set_disk_ro(struct gendisk *disk, int flag)
1326 {
1327 	struct disk_part_iter piter;
1328 	struct hd_struct *part;
1329 
1330 	if (disk->part0.policy != flag) {
1331 		set_disk_ro_uevent(disk, flag);
1332 		disk->part0.policy = flag;
1333 	}
1334 
1335 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1336 	while ((part = disk_part_iter_next(&piter)))
1337 		part->policy = flag;
1338 	disk_part_iter_exit(&piter);
1339 }
1340 
1341 EXPORT_SYMBOL(set_disk_ro);
1342 
1343 int bdev_read_only(struct block_device *bdev)
1344 {
1345 	if (!bdev)
1346 		return 0;
1347 	return bdev->bd_part->policy;
1348 }
1349 
1350 EXPORT_SYMBOL(bdev_read_only);
1351 
1352 int invalidate_partition(struct gendisk *disk, int partno)
1353 {
1354 	int res = 0;
1355 	struct block_device *bdev = bdget_disk(disk, partno);
1356 	if (bdev) {
1357 		fsync_bdev(bdev);
1358 		res = __invalidate_device(bdev, true);
1359 		bdput(bdev);
1360 	}
1361 	return res;
1362 }
1363 
1364 EXPORT_SYMBOL(invalidate_partition);
1365 
1366 /*
1367  * Disk events - monitor disk events like media change and eject request.
1368  */
1369 struct disk_events {
1370 	struct list_head	node;		/* all disk_event's */
1371 	struct gendisk		*disk;		/* the associated disk */
1372 	spinlock_t		lock;
1373 
1374 	struct mutex		block_mutex;	/* protects blocking */
1375 	int			block;		/* event blocking depth */
1376 	unsigned int		pending;	/* events already sent out */
1377 	unsigned int		clearing;	/* events being cleared */
1378 
1379 	long			poll_msecs;	/* interval, -1 for default */
1380 	struct delayed_work	dwork;
1381 };
1382 
1383 static const char *disk_events_strs[] = {
1384 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1385 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1386 };
1387 
1388 static char *disk_uevents[] = {
1389 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1390 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1391 };
1392 
1393 /* list of all disk_events */
1394 static DEFINE_MUTEX(disk_events_mutex);
1395 static LIST_HEAD(disk_events);
1396 
1397 /* disable in-kernel polling by default */
1398 static unsigned long disk_events_dfl_poll_msecs	= 0;
1399 
1400 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1401 {
1402 	struct disk_events *ev = disk->ev;
1403 	long intv_msecs = 0;
1404 
1405 	/*
1406 	 * If device-specific poll interval is set, always use it.  If
1407 	 * the default is being used, poll iff there are events which
1408 	 * can't be monitored asynchronously.
1409 	 */
1410 	if (ev->poll_msecs >= 0)
1411 		intv_msecs = ev->poll_msecs;
1412 	else if (disk->events & ~disk->async_events)
1413 		intv_msecs = disk_events_dfl_poll_msecs;
1414 
1415 	return msecs_to_jiffies(intv_msecs);
1416 }
1417 
1418 /**
1419  * disk_block_events - block and flush disk event checking
1420  * @disk: disk to block events for
1421  *
1422  * On return from this function, it is guaranteed that event checking
1423  * isn't in progress and won't happen until unblocked by
1424  * disk_unblock_events().  Events blocking is counted and the actual
1425  * unblocking happens after the matching number of unblocks are done.
1426  *
1427  * Note that this intentionally does not block event checking from
1428  * disk_clear_events().
1429  *
1430  * CONTEXT:
1431  * Might sleep.
1432  */
1433 void disk_block_events(struct gendisk *disk)
1434 {
1435 	struct disk_events *ev = disk->ev;
1436 	unsigned long flags;
1437 	bool cancel;
1438 
1439 	if (!ev)
1440 		return;
1441 
1442 	/*
1443 	 * Outer mutex ensures that the first blocker completes canceling
1444 	 * the event work before further blockers are allowed to finish.
1445 	 */
1446 	mutex_lock(&ev->block_mutex);
1447 
1448 	spin_lock_irqsave(&ev->lock, flags);
1449 	cancel = !ev->block++;
1450 	spin_unlock_irqrestore(&ev->lock, flags);
1451 
1452 	if (cancel)
1453 		cancel_delayed_work_sync(&disk->ev->dwork);
1454 
1455 	mutex_unlock(&ev->block_mutex);
1456 }
1457 
1458 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1459 {
1460 	struct disk_events *ev = disk->ev;
1461 	unsigned long intv;
1462 	unsigned long flags;
1463 
1464 	spin_lock_irqsave(&ev->lock, flags);
1465 
1466 	if (WARN_ON_ONCE(ev->block <= 0))
1467 		goto out_unlock;
1468 
1469 	if (--ev->block)
1470 		goto out_unlock;
1471 
1472 	/*
1473 	 * Not exactly a latency critical operation, set poll timer
1474 	 * slack to 25% and kick event check.
1475 	 */
1476 	intv = disk_events_poll_jiffies(disk);
1477 	set_timer_slack(&ev->dwork.timer, intv / 4);
1478 	if (check_now)
1479 		queue_delayed_work(system_nrt_wq, &ev->dwork, 0);
1480 	else if (intv)
1481 		queue_delayed_work(system_nrt_wq, &ev->dwork, intv);
1482 out_unlock:
1483 	spin_unlock_irqrestore(&ev->lock, flags);
1484 }
1485 
1486 /**
1487  * disk_unblock_events - unblock disk event checking
1488  * @disk: disk to unblock events for
1489  *
1490  * Undo disk_block_events().  When the block count reaches zero, it
1491  * starts events polling if configured.
1492  *
1493  * CONTEXT:
1494  * Don't care.  Safe to call from irq context.
1495  */
1496 void disk_unblock_events(struct gendisk *disk)
1497 {
1498 	if (disk->ev)
1499 		__disk_unblock_events(disk, false);
1500 }
1501 
1502 /**
1503  * disk_flush_events - schedule immediate event checking and flushing
1504  * @disk: disk to check and flush events for
1505  * @mask: events to flush
1506  *
1507  * Schedule immediate event checking on @disk if not blocked.  Events in
1508  * @mask are scheduled to be cleared from the driver.  Note that this
1509  * doesn't clear the events from @disk->ev.
1510  *
1511  * CONTEXT:
1512  * If @mask is non-zero must be called with bdev->bd_mutex held.
1513  */
1514 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1515 {
1516 	struct disk_events *ev = disk->ev;
1517 
1518 	if (!ev)
1519 		return;
1520 
1521 	spin_lock_irq(&ev->lock);
1522 	ev->clearing |= mask;
1523 	if (!ev->block) {
1524 		cancel_delayed_work(&ev->dwork);
1525 		queue_delayed_work(system_nrt_wq, &ev->dwork, 0);
1526 	}
1527 	spin_unlock_irq(&ev->lock);
1528 }
1529 
1530 /**
1531  * disk_clear_events - synchronously check, clear and return pending events
1532  * @disk: disk to fetch and clear events from
1533  * @mask: mask of events to be fetched and clearted
1534  *
1535  * Disk events are synchronously checked and pending events in @mask
1536  * are cleared and returned.  This ignores the block count.
1537  *
1538  * CONTEXT:
1539  * Might sleep.
1540  */
1541 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1542 {
1543 	const struct block_device_operations *bdops = disk->fops;
1544 	struct disk_events *ev = disk->ev;
1545 	unsigned int pending;
1546 
1547 	if (!ev) {
1548 		/* for drivers still using the old ->media_changed method */
1549 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1550 		    bdops->media_changed && bdops->media_changed(disk))
1551 			return DISK_EVENT_MEDIA_CHANGE;
1552 		return 0;
1553 	}
1554 
1555 	/* tell the workfn about the events being cleared */
1556 	spin_lock_irq(&ev->lock);
1557 	ev->clearing |= mask;
1558 	spin_unlock_irq(&ev->lock);
1559 
1560 	/* uncondtionally schedule event check and wait for it to finish */
1561 	disk_block_events(disk);
1562 	queue_delayed_work(system_nrt_wq, &ev->dwork, 0);
1563 	flush_delayed_work(&ev->dwork);
1564 	__disk_unblock_events(disk, false);
1565 
1566 	/* then, fetch and clear pending events */
1567 	spin_lock_irq(&ev->lock);
1568 	WARN_ON_ONCE(ev->clearing & mask);	/* cleared by workfn */
1569 	pending = ev->pending & mask;
1570 	ev->pending &= ~mask;
1571 	spin_unlock_irq(&ev->lock);
1572 
1573 	return pending;
1574 }
1575 
1576 static void disk_events_workfn(struct work_struct *work)
1577 {
1578 	struct delayed_work *dwork = to_delayed_work(work);
1579 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1580 	struct gendisk *disk = ev->disk;
1581 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1582 	unsigned int clearing = ev->clearing;
1583 	unsigned int events;
1584 	unsigned long intv;
1585 	int nr_events = 0, i;
1586 
1587 	/* check events */
1588 	events = disk->fops->check_events(disk, clearing);
1589 
1590 	/* accumulate pending events and schedule next poll if necessary */
1591 	spin_lock_irq(&ev->lock);
1592 
1593 	events &= ~ev->pending;
1594 	ev->pending |= events;
1595 	ev->clearing &= ~clearing;
1596 
1597 	intv = disk_events_poll_jiffies(disk);
1598 	if (!ev->block && intv)
1599 		queue_delayed_work(system_nrt_wq, &ev->dwork, intv);
1600 
1601 	spin_unlock_irq(&ev->lock);
1602 
1603 	/*
1604 	 * Tell userland about new events.  Only the events listed in
1605 	 * @disk->events are reported.  Unlisted events are processed the
1606 	 * same internally but never get reported to userland.
1607 	 */
1608 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1609 		if (events & disk->events & (1 << i))
1610 			envp[nr_events++] = disk_uevents[i];
1611 
1612 	if (nr_events)
1613 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1614 }
1615 
1616 /*
1617  * A disk events enabled device has the following sysfs nodes under
1618  * its /sys/block/X/ directory.
1619  *
1620  * events		: list of all supported events
1621  * events_async		: list of events which can be detected w/o polling
1622  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1623  */
1624 static ssize_t __disk_events_show(unsigned int events, char *buf)
1625 {
1626 	const char *delim = "";
1627 	ssize_t pos = 0;
1628 	int i;
1629 
1630 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1631 		if (events & (1 << i)) {
1632 			pos += sprintf(buf + pos, "%s%s",
1633 				       delim, disk_events_strs[i]);
1634 			delim = " ";
1635 		}
1636 	if (pos)
1637 		pos += sprintf(buf + pos, "\n");
1638 	return pos;
1639 }
1640 
1641 static ssize_t disk_events_show(struct device *dev,
1642 				struct device_attribute *attr, char *buf)
1643 {
1644 	struct gendisk *disk = dev_to_disk(dev);
1645 
1646 	return __disk_events_show(disk->events, buf);
1647 }
1648 
1649 static ssize_t disk_events_async_show(struct device *dev,
1650 				      struct device_attribute *attr, char *buf)
1651 {
1652 	struct gendisk *disk = dev_to_disk(dev);
1653 
1654 	return __disk_events_show(disk->async_events, buf);
1655 }
1656 
1657 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1658 					   struct device_attribute *attr,
1659 					   char *buf)
1660 {
1661 	struct gendisk *disk = dev_to_disk(dev);
1662 
1663 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1664 }
1665 
1666 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1667 					    struct device_attribute *attr,
1668 					    const char *buf, size_t count)
1669 {
1670 	struct gendisk *disk = dev_to_disk(dev);
1671 	long intv;
1672 
1673 	if (!count || !sscanf(buf, "%ld", &intv))
1674 		return -EINVAL;
1675 
1676 	if (intv < 0 && intv != -1)
1677 		return -EINVAL;
1678 
1679 	disk_block_events(disk);
1680 	disk->ev->poll_msecs = intv;
1681 	__disk_unblock_events(disk, true);
1682 
1683 	return count;
1684 }
1685 
1686 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1687 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1688 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1689 			 disk_events_poll_msecs_show,
1690 			 disk_events_poll_msecs_store);
1691 
1692 static const struct attribute *disk_events_attrs[] = {
1693 	&dev_attr_events.attr,
1694 	&dev_attr_events_async.attr,
1695 	&dev_attr_events_poll_msecs.attr,
1696 	NULL,
1697 };
1698 
1699 /*
1700  * The default polling interval can be specified by the kernel
1701  * parameter block.events_dfl_poll_msecs which defaults to 0
1702  * (disable).  This can also be modified runtime by writing to
1703  * /sys/module/block/events_dfl_poll_msecs.
1704  */
1705 static int disk_events_set_dfl_poll_msecs(const char *val,
1706 					  const struct kernel_param *kp)
1707 {
1708 	struct disk_events *ev;
1709 	int ret;
1710 
1711 	ret = param_set_ulong(val, kp);
1712 	if (ret < 0)
1713 		return ret;
1714 
1715 	mutex_lock(&disk_events_mutex);
1716 
1717 	list_for_each_entry(ev, &disk_events, node)
1718 		disk_flush_events(ev->disk, 0);
1719 
1720 	mutex_unlock(&disk_events_mutex);
1721 
1722 	return 0;
1723 }
1724 
1725 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1726 	.set	= disk_events_set_dfl_poll_msecs,
1727 	.get	= param_get_ulong,
1728 };
1729 
1730 #undef MODULE_PARAM_PREFIX
1731 #define MODULE_PARAM_PREFIX	"block."
1732 
1733 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1734 		&disk_events_dfl_poll_msecs, 0644);
1735 
1736 /*
1737  * disk_{add|del|release}_events - initialize and destroy disk_events.
1738  */
1739 static void disk_add_events(struct gendisk *disk)
1740 {
1741 	struct disk_events *ev;
1742 
1743 	if (!disk->fops->check_events)
1744 		return;
1745 
1746 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1747 	if (!ev) {
1748 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1749 		return;
1750 	}
1751 
1752 	if (sysfs_create_files(&disk_to_dev(disk)->kobj,
1753 			       disk_events_attrs) < 0) {
1754 		pr_warn("%s: failed to create sysfs files for events\n",
1755 			disk->disk_name);
1756 		kfree(ev);
1757 		return;
1758 	}
1759 
1760 	disk->ev = ev;
1761 
1762 	INIT_LIST_HEAD(&ev->node);
1763 	ev->disk = disk;
1764 	spin_lock_init(&ev->lock);
1765 	mutex_init(&ev->block_mutex);
1766 	ev->block = 1;
1767 	ev->poll_msecs = -1;
1768 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1769 
1770 	mutex_lock(&disk_events_mutex);
1771 	list_add_tail(&ev->node, &disk_events);
1772 	mutex_unlock(&disk_events_mutex);
1773 
1774 	/*
1775 	 * Block count is initialized to 1 and the following initial
1776 	 * unblock kicks it into action.
1777 	 */
1778 	__disk_unblock_events(disk, true);
1779 }
1780 
1781 static void disk_del_events(struct gendisk *disk)
1782 {
1783 	if (!disk->ev)
1784 		return;
1785 
1786 	disk_block_events(disk);
1787 
1788 	mutex_lock(&disk_events_mutex);
1789 	list_del_init(&disk->ev->node);
1790 	mutex_unlock(&disk_events_mutex);
1791 
1792 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1793 }
1794 
1795 static void disk_release_events(struct gendisk *disk)
1796 {
1797 	/* the block count should be 1 from disk_del_events() */
1798 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1799 	kfree(disk->ev);
1800 }
1801