xref: /linux/block/elevator.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 
38 #include <asm/uaccess.h>
39 
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
42 
43 /*
44  * Merge hash stuff.
45  */
46 static const int elv_hash_shift = 6;
47 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
48 #define ELV_HASH_FN(sec)	\
49 		(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
50 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
51 #define rq_hash_key(rq)		((rq)->sector + (rq)->nr_sectors)
52 #define ELV_ON_HASH(rq)		(!hlist_unhashed(&(rq)->hash))
53 
54 /*
55  * Query io scheduler to see if the current process issuing bio may be
56  * merged with rq.
57  */
58 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
59 {
60 	struct request_queue *q = rq->q;
61 	elevator_t *e = q->elevator;
62 
63 	if (e->ops->elevator_allow_merge_fn)
64 		return e->ops->elevator_allow_merge_fn(q, rq, bio);
65 
66 	return 1;
67 }
68 
69 /*
70  * can we safely merge with this request?
71  */
72 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
73 {
74 	if (!rq_mergeable(rq))
75 		return 0;
76 
77 	/*
78 	 * different data direction or already started, don't merge
79 	 */
80 	if (bio_data_dir(bio) != rq_data_dir(rq))
81 		return 0;
82 
83 	/*
84 	 * must be same device and not a special request
85 	 */
86 	if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
87 		return 0;
88 
89 	if (!elv_iosched_allow_merge(rq, bio))
90 		return 0;
91 
92 	return 1;
93 }
94 EXPORT_SYMBOL(elv_rq_merge_ok);
95 
96 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
97 {
98 	int ret = ELEVATOR_NO_MERGE;
99 
100 	/*
101 	 * we can merge and sequence is ok, check if it's possible
102 	 */
103 	if (elv_rq_merge_ok(__rq, bio)) {
104 		if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
105 			ret = ELEVATOR_BACK_MERGE;
106 		else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
107 			ret = ELEVATOR_FRONT_MERGE;
108 	}
109 
110 	return ret;
111 }
112 
113 static struct elevator_type *elevator_find(const char *name)
114 {
115 	struct elevator_type *e;
116 
117 	list_for_each_entry(e, &elv_list, list) {
118 		if (!strcmp(e->elevator_name, name))
119 			return e;
120 	}
121 
122 	return NULL;
123 }
124 
125 static void elevator_put(struct elevator_type *e)
126 {
127 	module_put(e->elevator_owner);
128 }
129 
130 static struct elevator_type *elevator_get(const char *name)
131 {
132 	struct elevator_type *e;
133 
134 	spin_lock(&elv_list_lock);
135 
136 	e = elevator_find(name);
137 	if (!e) {
138 		char elv[ELV_NAME_MAX + strlen("-iosched")];
139 
140 		spin_unlock(&elv_list_lock);
141 
142 		if (!strcmp(name, "anticipatory"))
143 			sprintf(elv, "as-iosched");
144 		else
145 			sprintf(elv, "%s-iosched", name);
146 
147 		request_module(elv);
148 		spin_lock(&elv_list_lock);
149 		e = elevator_find(name);
150 	}
151 
152 	if (e && !try_module_get(e->elevator_owner))
153 		e = NULL;
154 
155 	spin_unlock(&elv_list_lock);
156 
157 	return e;
158 }
159 
160 static void *elevator_init_queue(struct request_queue *q,
161 				 struct elevator_queue *eq)
162 {
163 	return eq->ops->elevator_init_fn(q);
164 }
165 
166 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
167 			   void *data)
168 {
169 	q->elevator = eq;
170 	eq->elevator_data = data;
171 }
172 
173 static char chosen_elevator[16];
174 
175 static int __init elevator_setup(char *str)
176 {
177 	/*
178 	 * Be backwards-compatible with previous kernels, so users
179 	 * won't get the wrong elevator.
180 	 */
181 	if (!strcmp(str, "as"))
182 		strcpy(chosen_elevator, "anticipatory");
183 	else
184 		strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
185 	return 1;
186 }
187 
188 __setup("elevator=", elevator_setup);
189 
190 static struct kobj_type elv_ktype;
191 
192 static elevator_t *elevator_alloc(struct request_queue *q,
193 				  struct elevator_type *e)
194 {
195 	elevator_t *eq;
196 	int i;
197 
198 	eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node);
199 	if (unlikely(!eq))
200 		goto err;
201 
202 	eq->ops = &e->ops;
203 	eq->elevator_type = e;
204 	kobject_init(&eq->kobj, &elv_ktype);
205 	mutex_init(&eq->sysfs_lock);
206 
207 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
208 					GFP_KERNEL, q->node);
209 	if (!eq->hash)
210 		goto err;
211 
212 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
213 		INIT_HLIST_HEAD(&eq->hash[i]);
214 
215 	return eq;
216 err:
217 	kfree(eq);
218 	elevator_put(e);
219 	return NULL;
220 }
221 
222 static void elevator_release(struct kobject *kobj)
223 {
224 	elevator_t *e = container_of(kobj, elevator_t, kobj);
225 
226 	elevator_put(e->elevator_type);
227 	kfree(e->hash);
228 	kfree(e);
229 }
230 
231 int elevator_init(struct request_queue *q, char *name)
232 {
233 	struct elevator_type *e = NULL;
234 	struct elevator_queue *eq;
235 	int ret = 0;
236 	void *data;
237 
238 	INIT_LIST_HEAD(&q->queue_head);
239 	q->last_merge = NULL;
240 	q->end_sector = 0;
241 	q->boundary_rq = NULL;
242 
243 	if (name) {
244 		e = elevator_get(name);
245 		if (!e)
246 			return -EINVAL;
247 	}
248 
249 	if (!e && *chosen_elevator) {
250 		e = elevator_get(chosen_elevator);
251 		if (!e)
252 			printk(KERN_ERR "I/O scheduler %s not found\n",
253 							chosen_elevator);
254 	}
255 
256 	if (!e) {
257 		e = elevator_get(CONFIG_DEFAULT_IOSCHED);
258 		if (!e) {
259 			printk(KERN_ERR
260 				"Default I/O scheduler not found. " \
261 				"Using noop.\n");
262 			e = elevator_get("noop");
263 		}
264 	}
265 
266 	eq = elevator_alloc(q, e);
267 	if (!eq)
268 		return -ENOMEM;
269 
270 	data = elevator_init_queue(q, eq);
271 	if (!data) {
272 		kobject_put(&eq->kobj);
273 		return -ENOMEM;
274 	}
275 
276 	elevator_attach(q, eq, data);
277 	return ret;
278 }
279 EXPORT_SYMBOL(elevator_init);
280 
281 void elevator_exit(elevator_t *e)
282 {
283 	mutex_lock(&e->sysfs_lock);
284 	if (e->ops->elevator_exit_fn)
285 		e->ops->elevator_exit_fn(e);
286 	e->ops = NULL;
287 	mutex_unlock(&e->sysfs_lock);
288 
289 	kobject_put(&e->kobj);
290 }
291 EXPORT_SYMBOL(elevator_exit);
292 
293 static void elv_activate_rq(struct request_queue *q, struct request *rq)
294 {
295 	elevator_t *e = q->elevator;
296 
297 	if (e->ops->elevator_activate_req_fn)
298 		e->ops->elevator_activate_req_fn(q, rq);
299 }
300 
301 static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
302 {
303 	elevator_t *e = q->elevator;
304 
305 	if (e->ops->elevator_deactivate_req_fn)
306 		e->ops->elevator_deactivate_req_fn(q, rq);
307 }
308 
309 static inline void __elv_rqhash_del(struct request *rq)
310 {
311 	hlist_del_init(&rq->hash);
312 }
313 
314 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
315 {
316 	if (ELV_ON_HASH(rq))
317 		__elv_rqhash_del(rq);
318 }
319 
320 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
321 {
322 	elevator_t *e = q->elevator;
323 
324 	BUG_ON(ELV_ON_HASH(rq));
325 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
326 }
327 
328 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
329 {
330 	__elv_rqhash_del(rq);
331 	elv_rqhash_add(q, rq);
332 }
333 
334 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
335 {
336 	elevator_t *e = q->elevator;
337 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
338 	struct hlist_node *entry, *next;
339 	struct request *rq;
340 
341 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
342 		BUG_ON(!ELV_ON_HASH(rq));
343 
344 		if (unlikely(!rq_mergeable(rq))) {
345 			__elv_rqhash_del(rq);
346 			continue;
347 		}
348 
349 		if (rq_hash_key(rq) == offset)
350 			return rq;
351 	}
352 
353 	return NULL;
354 }
355 
356 /*
357  * RB-tree support functions for inserting/lookup/removal of requests
358  * in a sorted RB tree.
359  */
360 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
361 {
362 	struct rb_node **p = &root->rb_node;
363 	struct rb_node *parent = NULL;
364 	struct request *__rq;
365 
366 	while (*p) {
367 		parent = *p;
368 		__rq = rb_entry(parent, struct request, rb_node);
369 
370 		if (rq->sector < __rq->sector)
371 			p = &(*p)->rb_left;
372 		else if (rq->sector > __rq->sector)
373 			p = &(*p)->rb_right;
374 		else
375 			return __rq;
376 	}
377 
378 	rb_link_node(&rq->rb_node, parent, p);
379 	rb_insert_color(&rq->rb_node, root);
380 	return NULL;
381 }
382 EXPORT_SYMBOL(elv_rb_add);
383 
384 void elv_rb_del(struct rb_root *root, struct request *rq)
385 {
386 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
387 	rb_erase(&rq->rb_node, root);
388 	RB_CLEAR_NODE(&rq->rb_node);
389 }
390 EXPORT_SYMBOL(elv_rb_del);
391 
392 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
393 {
394 	struct rb_node *n = root->rb_node;
395 	struct request *rq;
396 
397 	while (n) {
398 		rq = rb_entry(n, struct request, rb_node);
399 
400 		if (sector < rq->sector)
401 			n = n->rb_left;
402 		else if (sector > rq->sector)
403 			n = n->rb_right;
404 		else
405 			return rq;
406 	}
407 
408 	return NULL;
409 }
410 EXPORT_SYMBOL(elv_rb_find);
411 
412 /*
413  * Insert rq into dispatch queue of q.  Queue lock must be held on
414  * entry.  rq is sort instead into the dispatch queue. To be used by
415  * specific elevators.
416  */
417 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
418 {
419 	sector_t boundary;
420 	struct list_head *entry;
421 	int stop_flags;
422 
423 	if (q->last_merge == rq)
424 		q->last_merge = NULL;
425 
426 	elv_rqhash_del(q, rq);
427 
428 	q->nr_sorted--;
429 
430 	boundary = q->end_sector;
431 	stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
432 	list_for_each_prev(entry, &q->queue_head) {
433 		struct request *pos = list_entry_rq(entry);
434 
435 		if (rq_data_dir(rq) != rq_data_dir(pos))
436 			break;
437 		if (pos->cmd_flags & stop_flags)
438 			break;
439 		if (rq->sector >= boundary) {
440 			if (pos->sector < boundary)
441 				continue;
442 		} else {
443 			if (pos->sector >= boundary)
444 				break;
445 		}
446 		if (rq->sector >= pos->sector)
447 			break;
448 	}
449 
450 	list_add(&rq->queuelist, entry);
451 }
452 EXPORT_SYMBOL(elv_dispatch_sort);
453 
454 /*
455  * Insert rq into dispatch queue of q.  Queue lock must be held on
456  * entry.  rq is added to the back of the dispatch queue. To be used by
457  * specific elevators.
458  */
459 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
460 {
461 	if (q->last_merge == rq)
462 		q->last_merge = NULL;
463 
464 	elv_rqhash_del(q, rq);
465 
466 	q->nr_sorted--;
467 
468 	q->end_sector = rq_end_sector(rq);
469 	q->boundary_rq = rq;
470 	list_add_tail(&rq->queuelist, &q->queue_head);
471 }
472 EXPORT_SYMBOL(elv_dispatch_add_tail);
473 
474 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
475 {
476 	elevator_t *e = q->elevator;
477 	struct request *__rq;
478 	int ret;
479 
480 	/*
481 	 * First try one-hit cache.
482 	 */
483 	if (q->last_merge) {
484 		ret = elv_try_merge(q->last_merge, bio);
485 		if (ret != ELEVATOR_NO_MERGE) {
486 			*req = q->last_merge;
487 			return ret;
488 		}
489 	}
490 
491 	if (blk_queue_nomerges(q))
492 		return ELEVATOR_NO_MERGE;
493 
494 	/*
495 	 * See if our hash lookup can find a potential backmerge.
496 	 */
497 	__rq = elv_rqhash_find(q, bio->bi_sector);
498 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
499 		*req = __rq;
500 		return ELEVATOR_BACK_MERGE;
501 	}
502 
503 	if (e->ops->elevator_merge_fn)
504 		return e->ops->elevator_merge_fn(q, req, bio);
505 
506 	return ELEVATOR_NO_MERGE;
507 }
508 
509 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
510 {
511 	elevator_t *e = q->elevator;
512 
513 	if (e->ops->elevator_merged_fn)
514 		e->ops->elevator_merged_fn(q, rq, type);
515 
516 	if (type == ELEVATOR_BACK_MERGE)
517 		elv_rqhash_reposition(q, rq);
518 
519 	q->last_merge = rq;
520 }
521 
522 void elv_merge_requests(struct request_queue *q, struct request *rq,
523 			     struct request *next)
524 {
525 	elevator_t *e = q->elevator;
526 
527 	if (e->ops->elevator_merge_req_fn)
528 		e->ops->elevator_merge_req_fn(q, rq, next);
529 
530 	elv_rqhash_reposition(q, rq);
531 	elv_rqhash_del(q, next);
532 
533 	q->nr_sorted--;
534 	q->last_merge = rq;
535 }
536 
537 void elv_requeue_request(struct request_queue *q, struct request *rq)
538 {
539 	/*
540 	 * it already went through dequeue, we need to decrement the
541 	 * in_flight count again
542 	 */
543 	if (blk_account_rq(rq)) {
544 		q->in_flight--;
545 		if (blk_sorted_rq(rq))
546 			elv_deactivate_rq(q, rq);
547 	}
548 
549 	rq->cmd_flags &= ~REQ_STARTED;
550 
551 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
552 }
553 
554 static void elv_drain_elevator(struct request_queue *q)
555 {
556 	static int printed;
557 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
558 		;
559 	if (q->nr_sorted == 0)
560 		return;
561 	if (printed++ < 10) {
562 		printk(KERN_ERR "%s: forced dispatching is broken "
563 		       "(nr_sorted=%u), please report this\n",
564 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
565 	}
566 }
567 
568 void elv_insert(struct request_queue *q, struct request *rq, int where)
569 {
570 	struct list_head *pos;
571 	unsigned ordseq;
572 	int unplug_it = 1;
573 
574 	blk_add_trace_rq(q, rq, BLK_TA_INSERT);
575 
576 	rq->q = q;
577 
578 	switch (where) {
579 	case ELEVATOR_INSERT_FRONT:
580 		rq->cmd_flags |= REQ_SOFTBARRIER;
581 
582 		list_add(&rq->queuelist, &q->queue_head);
583 		break;
584 
585 	case ELEVATOR_INSERT_BACK:
586 		rq->cmd_flags |= REQ_SOFTBARRIER;
587 		elv_drain_elevator(q);
588 		list_add_tail(&rq->queuelist, &q->queue_head);
589 		/*
590 		 * We kick the queue here for the following reasons.
591 		 * - The elevator might have returned NULL previously
592 		 *   to delay requests and returned them now.  As the
593 		 *   queue wasn't empty before this request, ll_rw_blk
594 		 *   won't run the queue on return, resulting in hang.
595 		 * - Usually, back inserted requests won't be merged
596 		 *   with anything.  There's no point in delaying queue
597 		 *   processing.
598 		 */
599 		blk_remove_plug(q);
600 		q->request_fn(q);
601 		break;
602 
603 	case ELEVATOR_INSERT_SORT:
604 		BUG_ON(!blk_fs_request(rq));
605 		rq->cmd_flags |= REQ_SORTED;
606 		q->nr_sorted++;
607 		if (rq_mergeable(rq)) {
608 			elv_rqhash_add(q, rq);
609 			if (!q->last_merge)
610 				q->last_merge = rq;
611 		}
612 
613 		/*
614 		 * Some ioscheds (cfq) run q->request_fn directly, so
615 		 * rq cannot be accessed after calling
616 		 * elevator_add_req_fn.
617 		 */
618 		q->elevator->ops->elevator_add_req_fn(q, rq);
619 		break;
620 
621 	case ELEVATOR_INSERT_REQUEUE:
622 		/*
623 		 * If ordered flush isn't in progress, we do front
624 		 * insertion; otherwise, requests should be requeued
625 		 * in ordseq order.
626 		 */
627 		rq->cmd_flags |= REQ_SOFTBARRIER;
628 
629 		/*
630 		 * Most requeues happen because of a busy condition,
631 		 * don't force unplug of the queue for that case.
632 		 */
633 		unplug_it = 0;
634 
635 		if (q->ordseq == 0) {
636 			list_add(&rq->queuelist, &q->queue_head);
637 			break;
638 		}
639 
640 		ordseq = blk_ordered_req_seq(rq);
641 
642 		list_for_each(pos, &q->queue_head) {
643 			struct request *pos_rq = list_entry_rq(pos);
644 			if (ordseq <= blk_ordered_req_seq(pos_rq))
645 				break;
646 		}
647 
648 		list_add_tail(&rq->queuelist, pos);
649 		break;
650 
651 	default:
652 		printk(KERN_ERR "%s: bad insertion point %d\n",
653 		       __FUNCTION__, where);
654 		BUG();
655 	}
656 
657 	if (unplug_it && blk_queue_plugged(q)) {
658 		int nrq = q->rq.count[READ] + q->rq.count[WRITE]
659 			- q->in_flight;
660 
661 		if (nrq >= q->unplug_thresh)
662 			__generic_unplug_device(q);
663 	}
664 }
665 
666 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
667 		       int plug)
668 {
669 	if (q->ordcolor)
670 		rq->cmd_flags |= REQ_ORDERED_COLOR;
671 
672 	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
673 		/*
674 		 * toggle ordered color
675 		 */
676 		if (blk_barrier_rq(rq))
677 			q->ordcolor ^= 1;
678 
679 		/*
680 		 * barriers implicitly indicate back insertion
681 		 */
682 		if (where == ELEVATOR_INSERT_SORT)
683 			where = ELEVATOR_INSERT_BACK;
684 
685 		/*
686 		 * this request is scheduling boundary, update
687 		 * end_sector
688 		 */
689 		if (blk_fs_request(rq)) {
690 			q->end_sector = rq_end_sector(rq);
691 			q->boundary_rq = rq;
692 		}
693 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
694 		    where == ELEVATOR_INSERT_SORT)
695 		where = ELEVATOR_INSERT_BACK;
696 
697 	if (plug)
698 		blk_plug_device(q);
699 
700 	elv_insert(q, rq, where);
701 }
702 EXPORT_SYMBOL(__elv_add_request);
703 
704 void elv_add_request(struct request_queue *q, struct request *rq, int where,
705 		     int plug)
706 {
707 	unsigned long flags;
708 
709 	spin_lock_irqsave(q->queue_lock, flags);
710 	__elv_add_request(q, rq, where, plug);
711 	spin_unlock_irqrestore(q->queue_lock, flags);
712 }
713 EXPORT_SYMBOL(elv_add_request);
714 
715 static inline struct request *__elv_next_request(struct request_queue *q)
716 {
717 	struct request *rq;
718 
719 	while (1) {
720 		while (!list_empty(&q->queue_head)) {
721 			rq = list_entry_rq(q->queue_head.next);
722 			if (blk_do_ordered(q, &rq))
723 				return rq;
724 		}
725 
726 		if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
727 			return NULL;
728 	}
729 }
730 
731 struct request *elv_next_request(struct request_queue *q)
732 {
733 	struct request *rq;
734 	int ret;
735 
736 	while ((rq = __elv_next_request(q)) != NULL) {
737 		/*
738 		 * Kill the empty barrier place holder, the driver must
739 		 * not ever see it.
740 		 */
741 		if (blk_empty_barrier(rq)) {
742 			end_queued_request(rq, 1);
743 			continue;
744 		}
745 		if (!(rq->cmd_flags & REQ_STARTED)) {
746 			/*
747 			 * This is the first time the device driver
748 			 * sees this request (possibly after
749 			 * requeueing).  Notify IO scheduler.
750 			 */
751 			if (blk_sorted_rq(rq))
752 				elv_activate_rq(q, rq);
753 
754 			/*
755 			 * just mark as started even if we don't start
756 			 * it, a request that has been delayed should
757 			 * not be passed by new incoming requests
758 			 */
759 			rq->cmd_flags |= REQ_STARTED;
760 			blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
761 		}
762 
763 		if (!q->boundary_rq || q->boundary_rq == rq) {
764 			q->end_sector = rq_end_sector(rq);
765 			q->boundary_rq = NULL;
766 		}
767 
768 		if (rq->cmd_flags & REQ_DONTPREP)
769 			break;
770 
771 		if (q->dma_drain_size && rq->data_len) {
772 			/*
773 			 * make sure space for the drain appears we
774 			 * know we can do this because max_hw_segments
775 			 * has been adjusted to be one fewer than the
776 			 * device can handle
777 			 */
778 			rq->nr_phys_segments++;
779 			rq->nr_hw_segments++;
780 		}
781 
782 		if (!q->prep_rq_fn)
783 			break;
784 
785 		ret = q->prep_rq_fn(q, rq);
786 		if (ret == BLKPREP_OK) {
787 			break;
788 		} else if (ret == BLKPREP_DEFER) {
789 			/*
790 			 * the request may have been (partially) prepped.
791 			 * we need to keep this request in the front to
792 			 * avoid resource deadlock.  REQ_STARTED will
793 			 * prevent other fs requests from passing this one.
794 			 */
795 			if (q->dma_drain_size && rq->data_len &&
796 			    !(rq->cmd_flags & REQ_DONTPREP)) {
797 				/*
798 				 * remove the space for the drain we added
799 				 * so that we don't add it again
800 				 */
801 				--rq->nr_phys_segments;
802 				--rq->nr_hw_segments;
803 			}
804 
805 			rq = NULL;
806 			break;
807 		} else if (ret == BLKPREP_KILL) {
808 			rq->cmd_flags |= REQ_QUIET;
809 			end_queued_request(rq, 0);
810 		} else {
811 			printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
812 								ret);
813 			break;
814 		}
815 	}
816 
817 	return rq;
818 }
819 EXPORT_SYMBOL(elv_next_request);
820 
821 void elv_dequeue_request(struct request_queue *q, struct request *rq)
822 {
823 	BUG_ON(list_empty(&rq->queuelist));
824 	BUG_ON(ELV_ON_HASH(rq));
825 
826 	list_del_init(&rq->queuelist);
827 
828 	/*
829 	 * the time frame between a request being removed from the lists
830 	 * and to it is freed is accounted as io that is in progress at
831 	 * the driver side.
832 	 */
833 	if (blk_account_rq(rq))
834 		q->in_flight++;
835 }
836 EXPORT_SYMBOL(elv_dequeue_request);
837 
838 int elv_queue_empty(struct request_queue *q)
839 {
840 	elevator_t *e = q->elevator;
841 
842 	if (!list_empty(&q->queue_head))
843 		return 0;
844 
845 	if (e->ops->elevator_queue_empty_fn)
846 		return e->ops->elevator_queue_empty_fn(q);
847 
848 	return 1;
849 }
850 EXPORT_SYMBOL(elv_queue_empty);
851 
852 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
853 {
854 	elevator_t *e = q->elevator;
855 
856 	if (e->ops->elevator_latter_req_fn)
857 		return e->ops->elevator_latter_req_fn(q, rq);
858 	return NULL;
859 }
860 
861 struct request *elv_former_request(struct request_queue *q, struct request *rq)
862 {
863 	elevator_t *e = q->elevator;
864 
865 	if (e->ops->elevator_former_req_fn)
866 		return e->ops->elevator_former_req_fn(q, rq);
867 	return NULL;
868 }
869 
870 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
871 {
872 	elevator_t *e = q->elevator;
873 
874 	if (e->ops->elevator_set_req_fn)
875 		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
876 
877 	rq->elevator_private = NULL;
878 	return 0;
879 }
880 
881 void elv_put_request(struct request_queue *q, struct request *rq)
882 {
883 	elevator_t *e = q->elevator;
884 
885 	if (e->ops->elevator_put_req_fn)
886 		e->ops->elevator_put_req_fn(rq);
887 }
888 
889 int elv_may_queue(struct request_queue *q, int rw)
890 {
891 	elevator_t *e = q->elevator;
892 
893 	if (e->ops->elevator_may_queue_fn)
894 		return e->ops->elevator_may_queue_fn(q, rw);
895 
896 	return ELV_MQUEUE_MAY;
897 }
898 
899 void elv_completed_request(struct request_queue *q, struct request *rq)
900 {
901 	elevator_t *e = q->elevator;
902 
903 	/*
904 	 * request is released from the driver, io must be done
905 	 */
906 	if (blk_account_rq(rq)) {
907 		q->in_flight--;
908 		if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
909 			e->ops->elevator_completed_req_fn(q, rq);
910 	}
911 
912 	/*
913 	 * Check if the queue is waiting for fs requests to be
914 	 * drained for flush sequence.
915 	 */
916 	if (unlikely(q->ordseq)) {
917 		struct request *first_rq = list_entry_rq(q->queue_head.next);
918 		if (q->in_flight == 0 &&
919 		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
920 		    blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
921 			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
922 			q->request_fn(q);
923 		}
924 	}
925 }
926 
927 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
928 
929 static ssize_t
930 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
931 {
932 	elevator_t *e = container_of(kobj, elevator_t, kobj);
933 	struct elv_fs_entry *entry = to_elv(attr);
934 	ssize_t error;
935 
936 	if (!entry->show)
937 		return -EIO;
938 
939 	mutex_lock(&e->sysfs_lock);
940 	error = e->ops ? entry->show(e, page) : -ENOENT;
941 	mutex_unlock(&e->sysfs_lock);
942 	return error;
943 }
944 
945 static ssize_t
946 elv_attr_store(struct kobject *kobj, struct attribute *attr,
947 	       const char *page, size_t length)
948 {
949 	elevator_t *e = container_of(kobj, elevator_t, kobj);
950 	struct elv_fs_entry *entry = to_elv(attr);
951 	ssize_t error;
952 
953 	if (!entry->store)
954 		return -EIO;
955 
956 	mutex_lock(&e->sysfs_lock);
957 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
958 	mutex_unlock(&e->sysfs_lock);
959 	return error;
960 }
961 
962 static struct sysfs_ops elv_sysfs_ops = {
963 	.show	= elv_attr_show,
964 	.store	= elv_attr_store,
965 };
966 
967 static struct kobj_type elv_ktype = {
968 	.sysfs_ops	= &elv_sysfs_ops,
969 	.release	= elevator_release,
970 };
971 
972 int elv_register_queue(struct request_queue *q)
973 {
974 	elevator_t *e = q->elevator;
975 	int error;
976 
977 	error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
978 	if (!error) {
979 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
980 		if (attr) {
981 			while (attr->attr.name) {
982 				if (sysfs_create_file(&e->kobj, &attr->attr))
983 					break;
984 				attr++;
985 			}
986 		}
987 		kobject_uevent(&e->kobj, KOBJ_ADD);
988 	}
989 	return error;
990 }
991 
992 static void __elv_unregister_queue(elevator_t *e)
993 {
994 	kobject_uevent(&e->kobj, KOBJ_REMOVE);
995 	kobject_del(&e->kobj);
996 }
997 
998 void elv_unregister_queue(struct request_queue *q)
999 {
1000 	if (q)
1001 		__elv_unregister_queue(q->elevator);
1002 }
1003 
1004 void elv_register(struct elevator_type *e)
1005 {
1006 	char *def = "";
1007 
1008 	spin_lock(&elv_list_lock);
1009 	BUG_ON(elevator_find(e->elevator_name));
1010 	list_add_tail(&e->list, &elv_list);
1011 	spin_unlock(&elv_list_lock);
1012 
1013 	if (!strcmp(e->elevator_name, chosen_elevator) ||
1014 			(!*chosen_elevator &&
1015 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
1016 				def = " (default)";
1017 
1018 	printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
1019 								def);
1020 }
1021 EXPORT_SYMBOL_GPL(elv_register);
1022 
1023 void elv_unregister(struct elevator_type *e)
1024 {
1025 	struct task_struct *g, *p;
1026 
1027 	/*
1028 	 * Iterate every thread in the process to remove the io contexts.
1029 	 */
1030 	if (e->ops.trim) {
1031 		read_lock(&tasklist_lock);
1032 		do_each_thread(g, p) {
1033 			task_lock(p);
1034 			if (p->io_context)
1035 				e->ops.trim(p->io_context);
1036 			task_unlock(p);
1037 		} while_each_thread(g, p);
1038 		read_unlock(&tasklist_lock);
1039 	}
1040 
1041 	spin_lock(&elv_list_lock);
1042 	list_del_init(&e->list);
1043 	spin_unlock(&elv_list_lock);
1044 }
1045 EXPORT_SYMBOL_GPL(elv_unregister);
1046 
1047 /*
1048  * switch to new_e io scheduler. be careful not to introduce deadlocks -
1049  * we don't free the old io scheduler, before we have allocated what we
1050  * need for the new one. this way we have a chance of going back to the old
1051  * one, if the new one fails init for some reason.
1052  */
1053 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1054 {
1055 	elevator_t *old_elevator, *e;
1056 	void *data;
1057 
1058 	/*
1059 	 * Allocate new elevator
1060 	 */
1061 	e = elevator_alloc(q, new_e);
1062 	if (!e)
1063 		return 0;
1064 
1065 	data = elevator_init_queue(q, e);
1066 	if (!data) {
1067 		kobject_put(&e->kobj);
1068 		return 0;
1069 	}
1070 
1071 	/*
1072 	 * Turn on BYPASS and drain all requests w/ elevator private data
1073 	 */
1074 	spin_lock_irq(q->queue_lock);
1075 
1076 	queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
1077 
1078 	elv_drain_elevator(q);
1079 
1080 	while (q->rq.elvpriv) {
1081 		blk_remove_plug(q);
1082 		q->request_fn(q);
1083 		spin_unlock_irq(q->queue_lock);
1084 		msleep(10);
1085 		spin_lock_irq(q->queue_lock);
1086 		elv_drain_elevator(q);
1087 	}
1088 
1089 	/*
1090 	 * Remember old elevator.
1091 	 */
1092 	old_elevator = q->elevator;
1093 
1094 	/*
1095 	 * attach and start new elevator
1096 	 */
1097 	elevator_attach(q, e, data);
1098 
1099 	spin_unlock_irq(q->queue_lock);
1100 
1101 	__elv_unregister_queue(old_elevator);
1102 
1103 	if (elv_register_queue(q))
1104 		goto fail_register;
1105 
1106 	/*
1107 	 * finally exit old elevator and turn off BYPASS.
1108 	 */
1109 	elevator_exit(old_elevator);
1110 	spin_lock_irq(q->queue_lock);
1111 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1112 	spin_unlock_irq(q->queue_lock);
1113 
1114 	return 1;
1115 
1116 fail_register:
1117 	/*
1118 	 * switch failed, exit the new io scheduler and reattach the old
1119 	 * one again (along with re-adding the sysfs dir)
1120 	 */
1121 	elevator_exit(e);
1122 	q->elevator = old_elevator;
1123 	elv_register_queue(q);
1124 
1125 	spin_lock_irq(q->queue_lock);
1126 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1127 	spin_unlock_irq(q->queue_lock);
1128 
1129 	return 0;
1130 }
1131 
1132 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1133 			  size_t count)
1134 {
1135 	char elevator_name[ELV_NAME_MAX];
1136 	size_t len;
1137 	struct elevator_type *e;
1138 
1139 	elevator_name[sizeof(elevator_name) - 1] = '\0';
1140 	strncpy(elevator_name, name, sizeof(elevator_name) - 1);
1141 	len = strlen(elevator_name);
1142 
1143 	if (len && elevator_name[len - 1] == '\n')
1144 		elevator_name[len - 1] = '\0';
1145 
1146 	e = elevator_get(elevator_name);
1147 	if (!e) {
1148 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1149 		return -EINVAL;
1150 	}
1151 
1152 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1153 		elevator_put(e);
1154 		return count;
1155 	}
1156 
1157 	if (!elevator_switch(q, e))
1158 		printk(KERN_ERR "elevator: switch to %s failed\n",
1159 							elevator_name);
1160 	return count;
1161 }
1162 
1163 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1164 {
1165 	elevator_t *e = q->elevator;
1166 	struct elevator_type *elv = e->elevator_type;
1167 	struct elevator_type *__e;
1168 	int len = 0;
1169 
1170 	spin_lock(&elv_list_lock);
1171 	list_for_each_entry(__e, &elv_list, list) {
1172 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1173 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1174 		else
1175 			len += sprintf(name+len, "%s ", __e->elevator_name);
1176 	}
1177 	spin_unlock(&elv_list_lock);
1178 
1179 	len += sprintf(len+name, "\n");
1180 	return len;
1181 }
1182 
1183 struct request *elv_rb_former_request(struct request_queue *q,
1184 				      struct request *rq)
1185 {
1186 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1187 
1188 	if (rbprev)
1189 		return rb_entry_rq(rbprev);
1190 
1191 	return NULL;
1192 }
1193 EXPORT_SYMBOL(elv_rb_former_request);
1194 
1195 struct request *elv_rb_latter_request(struct request_queue *q,
1196 				      struct request *rq)
1197 {
1198 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1199 
1200 	if (rbnext)
1201 		return rb_entry_rq(rbnext);
1202 
1203 	return NULL;
1204 }
1205 EXPORT_SYMBOL(elv_rb_latter_request);
1206