xref: /linux/block/elevator.c (revision d0b73b488c55df905ea8faaad079f8535629ed26)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/blktrace_api.h>
35 #include <linux/hash.h>
36 #include <linux/uaccess.h>
37 
38 #include <trace/events/block.h>
39 
40 #include "blk.h"
41 #include "blk-cgroup.h"
42 
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
45 
46 /*
47  * Merge hash stuff.
48  */
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
51 #define ELV_HASH_FN(sec)	\
52 		(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
54 #define rq_hash_key(rq)		(blk_rq_pos(rq) + blk_rq_sectors(rq))
55 
56 /*
57  * Query io scheduler to see if the current process issuing bio may be
58  * merged with rq.
59  */
60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
61 {
62 	struct request_queue *q = rq->q;
63 	struct elevator_queue *e = q->elevator;
64 
65 	if (e->type->ops.elevator_allow_merge_fn)
66 		return e->type->ops.elevator_allow_merge_fn(q, rq, bio);
67 
68 	return 1;
69 }
70 
71 /*
72  * can we safely merge with this request?
73  */
74 bool elv_rq_merge_ok(struct request *rq, struct bio *bio)
75 {
76 	if (!blk_rq_merge_ok(rq, bio))
77 		return 0;
78 
79 	if (!elv_iosched_allow_merge(rq, bio))
80 		return 0;
81 
82 	return 1;
83 }
84 EXPORT_SYMBOL(elv_rq_merge_ok);
85 
86 static struct elevator_type *elevator_find(const char *name)
87 {
88 	struct elevator_type *e;
89 
90 	list_for_each_entry(e, &elv_list, list) {
91 		if (!strcmp(e->elevator_name, name))
92 			return e;
93 	}
94 
95 	return NULL;
96 }
97 
98 static void elevator_put(struct elevator_type *e)
99 {
100 	module_put(e->elevator_owner);
101 }
102 
103 static struct elevator_type *elevator_get(const char *name)
104 {
105 	struct elevator_type *e;
106 
107 	spin_lock(&elv_list_lock);
108 
109 	e = elevator_find(name);
110 	if (!e) {
111 		spin_unlock(&elv_list_lock);
112 		request_module("%s-iosched", name);
113 		spin_lock(&elv_list_lock);
114 		e = elevator_find(name);
115 	}
116 
117 	if (e && !try_module_get(e->elevator_owner))
118 		e = NULL;
119 
120 	spin_unlock(&elv_list_lock);
121 
122 	return e;
123 }
124 
125 static char chosen_elevator[ELV_NAME_MAX];
126 
127 static int __init elevator_setup(char *str)
128 {
129 	/*
130 	 * Be backwards-compatible with previous kernels, so users
131 	 * won't get the wrong elevator.
132 	 */
133 	strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
134 	return 1;
135 }
136 
137 __setup("elevator=", elevator_setup);
138 
139 static struct kobj_type elv_ktype;
140 
141 static struct elevator_queue *elevator_alloc(struct request_queue *q,
142 				  struct elevator_type *e)
143 {
144 	struct elevator_queue *eq;
145 	int i;
146 
147 	eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
148 	if (unlikely(!eq))
149 		goto err;
150 
151 	eq->type = e;
152 	kobject_init(&eq->kobj, &elv_ktype);
153 	mutex_init(&eq->sysfs_lock);
154 
155 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
156 					GFP_KERNEL, q->node);
157 	if (!eq->hash)
158 		goto err;
159 
160 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
161 		INIT_HLIST_HEAD(&eq->hash[i]);
162 
163 	return eq;
164 err:
165 	kfree(eq);
166 	elevator_put(e);
167 	return NULL;
168 }
169 
170 static void elevator_release(struct kobject *kobj)
171 {
172 	struct elevator_queue *e;
173 
174 	e = container_of(kobj, struct elevator_queue, kobj);
175 	elevator_put(e->type);
176 	kfree(e->hash);
177 	kfree(e);
178 }
179 
180 int elevator_init(struct request_queue *q, char *name)
181 {
182 	struct elevator_type *e = NULL;
183 	int err;
184 
185 	if (unlikely(q->elevator))
186 		return 0;
187 
188 	INIT_LIST_HEAD(&q->queue_head);
189 	q->last_merge = NULL;
190 	q->end_sector = 0;
191 	q->boundary_rq = NULL;
192 
193 	if (name) {
194 		e = elevator_get(name);
195 		if (!e)
196 			return -EINVAL;
197 	}
198 
199 	if (!e && *chosen_elevator) {
200 		e = elevator_get(chosen_elevator);
201 		if (!e)
202 			printk(KERN_ERR "I/O scheduler %s not found\n",
203 							chosen_elevator);
204 	}
205 
206 	if (!e) {
207 		e = elevator_get(CONFIG_DEFAULT_IOSCHED);
208 		if (!e) {
209 			printk(KERN_ERR
210 				"Default I/O scheduler not found. " \
211 				"Using noop.\n");
212 			e = elevator_get("noop");
213 		}
214 	}
215 
216 	q->elevator = elevator_alloc(q, e);
217 	if (!q->elevator)
218 		return -ENOMEM;
219 
220 	err = e->ops.elevator_init_fn(q);
221 	if (err) {
222 		kobject_put(&q->elevator->kobj);
223 		return err;
224 	}
225 
226 	return 0;
227 }
228 EXPORT_SYMBOL(elevator_init);
229 
230 void elevator_exit(struct elevator_queue *e)
231 {
232 	mutex_lock(&e->sysfs_lock);
233 	if (e->type->ops.elevator_exit_fn)
234 		e->type->ops.elevator_exit_fn(e);
235 	mutex_unlock(&e->sysfs_lock);
236 
237 	kobject_put(&e->kobj);
238 }
239 EXPORT_SYMBOL(elevator_exit);
240 
241 static inline void __elv_rqhash_del(struct request *rq)
242 {
243 	hlist_del_init(&rq->hash);
244 }
245 
246 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
247 {
248 	if (ELV_ON_HASH(rq))
249 		__elv_rqhash_del(rq);
250 }
251 
252 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
253 {
254 	struct elevator_queue *e = q->elevator;
255 
256 	BUG_ON(ELV_ON_HASH(rq));
257 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
258 }
259 
260 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
261 {
262 	__elv_rqhash_del(rq);
263 	elv_rqhash_add(q, rq);
264 }
265 
266 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
267 {
268 	struct elevator_queue *e = q->elevator;
269 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
270 	struct hlist_node *entry, *next;
271 	struct request *rq;
272 
273 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
274 		BUG_ON(!ELV_ON_HASH(rq));
275 
276 		if (unlikely(!rq_mergeable(rq))) {
277 			__elv_rqhash_del(rq);
278 			continue;
279 		}
280 
281 		if (rq_hash_key(rq) == offset)
282 			return rq;
283 	}
284 
285 	return NULL;
286 }
287 
288 /*
289  * RB-tree support functions for inserting/lookup/removal of requests
290  * in a sorted RB tree.
291  */
292 void elv_rb_add(struct rb_root *root, struct request *rq)
293 {
294 	struct rb_node **p = &root->rb_node;
295 	struct rb_node *parent = NULL;
296 	struct request *__rq;
297 
298 	while (*p) {
299 		parent = *p;
300 		__rq = rb_entry(parent, struct request, rb_node);
301 
302 		if (blk_rq_pos(rq) < blk_rq_pos(__rq))
303 			p = &(*p)->rb_left;
304 		else if (blk_rq_pos(rq) >= blk_rq_pos(__rq))
305 			p = &(*p)->rb_right;
306 	}
307 
308 	rb_link_node(&rq->rb_node, parent, p);
309 	rb_insert_color(&rq->rb_node, root);
310 }
311 EXPORT_SYMBOL(elv_rb_add);
312 
313 void elv_rb_del(struct rb_root *root, struct request *rq)
314 {
315 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
316 	rb_erase(&rq->rb_node, root);
317 	RB_CLEAR_NODE(&rq->rb_node);
318 }
319 EXPORT_SYMBOL(elv_rb_del);
320 
321 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
322 {
323 	struct rb_node *n = root->rb_node;
324 	struct request *rq;
325 
326 	while (n) {
327 		rq = rb_entry(n, struct request, rb_node);
328 
329 		if (sector < blk_rq_pos(rq))
330 			n = n->rb_left;
331 		else if (sector > blk_rq_pos(rq))
332 			n = n->rb_right;
333 		else
334 			return rq;
335 	}
336 
337 	return NULL;
338 }
339 EXPORT_SYMBOL(elv_rb_find);
340 
341 /*
342  * Insert rq into dispatch queue of q.  Queue lock must be held on
343  * entry.  rq is sort instead into the dispatch queue. To be used by
344  * specific elevators.
345  */
346 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
347 {
348 	sector_t boundary;
349 	struct list_head *entry;
350 	int stop_flags;
351 
352 	if (q->last_merge == rq)
353 		q->last_merge = NULL;
354 
355 	elv_rqhash_del(q, rq);
356 
357 	q->nr_sorted--;
358 
359 	boundary = q->end_sector;
360 	stop_flags = REQ_SOFTBARRIER | REQ_STARTED;
361 	list_for_each_prev(entry, &q->queue_head) {
362 		struct request *pos = list_entry_rq(entry);
363 
364 		if ((rq->cmd_flags & REQ_DISCARD) !=
365 		    (pos->cmd_flags & REQ_DISCARD))
366 			break;
367 		if (rq_data_dir(rq) != rq_data_dir(pos))
368 			break;
369 		if (pos->cmd_flags & stop_flags)
370 			break;
371 		if (blk_rq_pos(rq) >= boundary) {
372 			if (blk_rq_pos(pos) < boundary)
373 				continue;
374 		} else {
375 			if (blk_rq_pos(pos) >= boundary)
376 				break;
377 		}
378 		if (blk_rq_pos(rq) >= blk_rq_pos(pos))
379 			break;
380 	}
381 
382 	list_add(&rq->queuelist, entry);
383 }
384 EXPORT_SYMBOL(elv_dispatch_sort);
385 
386 /*
387  * Insert rq into dispatch queue of q.  Queue lock must be held on
388  * entry.  rq is added to the back of the dispatch queue. To be used by
389  * specific elevators.
390  */
391 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
392 {
393 	if (q->last_merge == rq)
394 		q->last_merge = NULL;
395 
396 	elv_rqhash_del(q, rq);
397 
398 	q->nr_sorted--;
399 
400 	q->end_sector = rq_end_sector(rq);
401 	q->boundary_rq = rq;
402 	list_add_tail(&rq->queuelist, &q->queue_head);
403 }
404 EXPORT_SYMBOL(elv_dispatch_add_tail);
405 
406 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
407 {
408 	struct elevator_queue *e = q->elevator;
409 	struct request *__rq;
410 	int ret;
411 
412 	/*
413 	 * Levels of merges:
414 	 * 	nomerges:  No merges at all attempted
415 	 * 	noxmerges: Only simple one-hit cache try
416 	 * 	merges:	   All merge tries attempted
417 	 */
418 	if (blk_queue_nomerges(q))
419 		return ELEVATOR_NO_MERGE;
420 
421 	/*
422 	 * First try one-hit cache.
423 	 */
424 	if (q->last_merge && elv_rq_merge_ok(q->last_merge, bio)) {
425 		ret = blk_try_merge(q->last_merge, bio);
426 		if (ret != ELEVATOR_NO_MERGE) {
427 			*req = q->last_merge;
428 			return ret;
429 		}
430 	}
431 
432 	if (blk_queue_noxmerges(q))
433 		return ELEVATOR_NO_MERGE;
434 
435 	/*
436 	 * See if our hash lookup can find a potential backmerge.
437 	 */
438 	__rq = elv_rqhash_find(q, bio->bi_sector);
439 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
440 		*req = __rq;
441 		return ELEVATOR_BACK_MERGE;
442 	}
443 
444 	if (e->type->ops.elevator_merge_fn)
445 		return e->type->ops.elevator_merge_fn(q, req, bio);
446 
447 	return ELEVATOR_NO_MERGE;
448 }
449 
450 /*
451  * Attempt to do an insertion back merge. Only check for the case where
452  * we can append 'rq' to an existing request, so we can throw 'rq' away
453  * afterwards.
454  *
455  * Returns true if we merged, false otherwise
456  */
457 static bool elv_attempt_insert_merge(struct request_queue *q,
458 				     struct request *rq)
459 {
460 	struct request *__rq;
461 	bool ret;
462 
463 	if (blk_queue_nomerges(q))
464 		return false;
465 
466 	/*
467 	 * First try one-hit cache.
468 	 */
469 	if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq))
470 		return true;
471 
472 	if (blk_queue_noxmerges(q))
473 		return false;
474 
475 	ret = false;
476 	/*
477 	 * See if our hash lookup can find a potential backmerge.
478 	 */
479 	while (1) {
480 		__rq = elv_rqhash_find(q, blk_rq_pos(rq));
481 		if (!__rq || !blk_attempt_req_merge(q, __rq, rq))
482 			break;
483 
484 		/* The merged request could be merged with others, try again */
485 		ret = true;
486 		rq = __rq;
487 	}
488 
489 	return ret;
490 }
491 
492 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
493 {
494 	struct elevator_queue *e = q->elevator;
495 
496 	if (e->type->ops.elevator_merged_fn)
497 		e->type->ops.elevator_merged_fn(q, rq, type);
498 
499 	if (type == ELEVATOR_BACK_MERGE)
500 		elv_rqhash_reposition(q, rq);
501 
502 	q->last_merge = rq;
503 }
504 
505 void elv_merge_requests(struct request_queue *q, struct request *rq,
506 			     struct request *next)
507 {
508 	struct elevator_queue *e = q->elevator;
509 	const int next_sorted = next->cmd_flags & REQ_SORTED;
510 
511 	if (next_sorted && e->type->ops.elevator_merge_req_fn)
512 		e->type->ops.elevator_merge_req_fn(q, rq, next);
513 
514 	elv_rqhash_reposition(q, rq);
515 
516 	if (next_sorted) {
517 		elv_rqhash_del(q, next);
518 		q->nr_sorted--;
519 	}
520 
521 	q->last_merge = rq;
522 }
523 
524 void elv_bio_merged(struct request_queue *q, struct request *rq,
525 			struct bio *bio)
526 {
527 	struct elevator_queue *e = q->elevator;
528 
529 	if (e->type->ops.elevator_bio_merged_fn)
530 		e->type->ops.elevator_bio_merged_fn(q, rq, bio);
531 }
532 
533 void elv_requeue_request(struct request_queue *q, struct request *rq)
534 {
535 	/*
536 	 * it already went through dequeue, we need to decrement the
537 	 * in_flight count again
538 	 */
539 	if (blk_account_rq(rq)) {
540 		q->in_flight[rq_is_sync(rq)]--;
541 		if (rq->cmd_flags & REQ_SORTED)
542 			elv_deactivate_rq(q, rq);
543 	}
544 
545 	rq->cmd_flags &= ~REQ_STARTED;
546 
547 	__elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE);
548 }
549 
550 void elv_drain_elevator(struct request_queue *q)
551 {
552 	static int printed;
553 
554 	lockdep_assert_held(q->queue_lock);
555 
556 	while (q->elevator->type->ops.elevator_dispatch_fn(q, 1))
557 		;
558 	if (q->nr_sorted && printed++ < 10) {
559 		printk(KERN_ERR "%s: forced dispatching is broken "
560 		       "(nr_sorted=%u), please report this\n",
561 		       q->elevator->type->elevator_name, q->nr_sorted);
562 	}
563 }
564 
565 void __elv_add_request(struct request_queue *q, struct request *rq, int where)
566 {
567 	trace_block_rq_insert(q, rq);
568 
569 	rq->q = q;
570 
571 	if (rq->cmd_flags & REQ_SOFTBARRIER) {
572 		/* barriers are scheduling boundary, update end_sector */
573 		if (rq->cmd_type == REQ_TYPE_FS) {
574 			q->end_sector = rq_end_sector(rq);
575 			q->boundary_rq = rq;
576 		}
577 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
578 		    (where == ELEVATOR_INSERT_SORT ||
579 		     where == ELEVATOR_INSERT_SORT_MERGE))
580 		where = ELEVATOR_INSERT_BACK;
581 
582 	switch (where) {
583 	case ELEVATOR_INSERT_REQUEUE:
584 	case ELEVATOR_INSERT_FRONT:
585 		rq->cmd_flags |= REQ_SOFTBARRIER;
586 		list_add(&rq->queuelist, &q->queue_head);
587 		break;
588 
589 	case ELEVATOR_INSERT_BACK:
590 		rq->cmd_flags |= REQ_SOFTBARRIER;
591 		elv_drain_elevator(q);
592 		list_add_tail(&rq->queuelist, &q->queue_head);
593 		/*
594 		 * We kick the queue here for the following reasons.
595 		 * - The elevator might have returned NULL previously
596 		 *   to delay requests and returned them now.  As the
597 		 *   queue wasn't empty before this request, ll_rw_blk
598 		 *   won't run the queue on return, resulting in hang.
599 		 * - Usually, back inserted requests won't be merged
600 		 *   with anything.  There's no point in delaying queue
601 		 *   processing.
602 		 */
603 		__blk_run_queue(q);
604 		break;
605 
606 	case ELEVATOR_INSERT_SORT_MERGE:
607 		/*
608 		 * If we succeed in merging this request with one in the
609 		 * queue already, we are done - rq has now been freed,
610 		 * so no need to do anything further.
611 		 */
612 		if (elv_attempt_insert_merge(q, rq))
613 			break;
614 	case ELEVATOR_INSERT_SORT:
615 		BUG_ON(rq->cmd_type != REQ_TYPE_FS);
616 		rq->cmd_flags |= REQ_SORTED;
617 		q->nr_sorted++;
618 		if (rq_mergeable(rq)) {
619 			elv_rqhash_add(q, rq);
620 			if (!q->last_merge)
621 				q->last_merge = rq;
622 		}
623 
624 		/*
625 		 * Some ioscheds (cfq) run q->request_fn directly, so
626 		 * rq cannot be accessed after calling
627 		 * elevator_add_req_fn.
628 		 */
629 		q->elevator->type->ops.elevator_add_req_fn(q, rq);
630 		break;
631 
632 	case ELEVATOR_INSERT_FLUSH:
633 		rq->cmd_flags |= REQ_SOFTBARRIER;
634 		blk_insert_flush(rq);
635 		break;
636 	default:
637 		printk(KERN_ERR "%s: bad insertion point %d\n",
638 		       __func__, where);
639 		BUG();
640 	}
641 }
642 EXPORT_SYMBOL(__elv_add_request);
643 
644 void elv_add_request(struct request_queue *q, struct request *rq, int where)
645 {
646 	unsigned long flags;
647 
648 	spin_lock_irqsave(q->queue_lock, flags);
649 	__elv_add_request(q, rq, where);
650 	spin_unlock_irqrestore(q->queue_lock, flags);
651 }
652 EXPORT_SYMBOL(elv_add_request);
653 
654 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
655 {
656 	struct elevator_queue *e = q->elevator;
657 
658 	if (e->type->ops.elevator_latter_req_fn)
659 		return e->type->ops.elevator_latter_req_fn(q, rq);
660 	return NULL;
661 }
662 
663 struct request *elv_former_request(struct request_queue *q, struct request *rq)
664 {
665 	struct elevator_queue *e = q->elevator;
666 
667 	if (e->type->ops.elevator_former_req_fn)
668 		return e->type->ops.elevator_former_req_fn(q, rq);
669 	return NULL;
670 }
671 
672 int elv_set_request(struct request_queue *q, struct request *rq,
673 		    struct bio *bio, gfp_t gfp_mask)
674 {
675 	struct elevator_queue *e = q->elevator;
676 
677 	if (e->type->ops.elevator_set_req_fn)
678 		return e->type->ops.elevator_set_req_fn(q, rq, bio, gfp_mask);
679 	return 0;
680 }
681 
682 void elv_put_request(struct request_queue *q, struct request *rq)
683 {
684 	struct elevator_queue *e = q->elevator;
685 
686 	if (e->type->ops.elevator_put_req_fn)
687 		e->type->ops.elevator_put_req_fn(rq);
688 }
689 
690 int elv_may_queue(struct request_queue *q, int rw)
691 {
692 	struct elevator_queue *e = q->elevator;
693 
694 	if (e->type->ops.elevator_may_queue_fn)
695 		return e->type->ops.elevator_may_queue_fn(q, rw);
696 
697 	return ELV_MQUEUE_MAY;
698 }
699 
700 void elv_abort_queue(struct request_queue *q)
701 {
702 	struct request *rq;
703 
704 	blk_abort_flushes(q);
705 
706 	while (!list_empty(&q->queue_head)) {
707 		rq = list_entry_rq(q->queue_head.next);
708 		rq->cmd_flags |= REQ_QUIET;
709 		trace_block_rq_abort(q, rq);
710 		/*
711 		 * Mark this request as started so we don't trigger
712 		 * any debug logic in the end I/O path.
713 		 */
714 		blk_start_request(rq);
715 		__blk_end_request_all(rq, -EIO);
716 	}
717 }
718 EXPORT_SYMBOL(elv_abort_queue);
719 
720 void elv_completed_request(struct request_queue *q, struct request *rq)
721 {
722 	struct elevator_queue *e = q->elevator;
723 
724 	/*
725 	 * request is released from the driver, io must be done
726 	 */
727 	if (blk_account_rq(rq)) {
728 		q->in_flight[rq_is_sync(rq)]--;
729 		if ((rq->cmd_flags & REQ_SORTED) &&
730 		    e->type->ops.elevator_completed_req_fn)
731 			e->type->ops.elevator_completed_req_fn(q, rq);
732 	}
733 }
734 
735 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
736 
737 static ssize_t
738 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
739 {
740 	struct elv_fs_entry *entry = to_elv(attr);
741 	struct elevator_queue *e;
742 	ssize_t error;
743 
744 	if (!entry->show)
745 		return -EIO;
746 
747 	e = container_of(kobj, struct elevator_queue, kobj);
748 	mutex_lock(&e->sysfs_lock);
749 	error = e->type ? entry->show(e, page) : -ENOENT;
750 	mutex_unlock(&e->sysfs_lock);
751 	return error;
752 }
753 
754 static ssize_t
755 elv_attr_store(struct kobject *kobj, struct attribute *attr,
756 	       const char *page, size_t length)
757 {
758 	struct elv_fs_entry *entry = to_elv(attr);
759 	struct elevator_queue *e;
760 	ssize_t error;
761 
762 	if (!entry->store)
763 		return -EIO;
764 
765 	e = container_of(kobj, struct elevator_queue, kobj);
766 	mutex_lock(&e->sysfs_lock);
767 	error = e->type ? entry->store(e, page, length) : -ENOENT;
768 	mutex_unlock(&e->sysfs_lock);
769 	return error;
770 }
771 
772 static const struct sysfs_ops elv_sysfs_ops = {
773 	.show	= elv_attr_show,
774 	.store	= elv_attr_store,
775 };
776 
777 static struct kobj_type elv_ktype = {
778 	.sysfs_ops	= &elv_sysfs_ops,
779 	.release	= elevator_release,
780 };
781 
782 int elv_register_queue(struct request_queue *q)
783 {
784 	struct elevator_queue *e = q->elevator;
785 	int error;
786 
787 	error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
788 	if (!error) {
789 		struct elv_fs_entry *attr = e->type->elevator_attrs;
790 		if (attr) {
791 			while (attr->attr.name) {
792 				if (sysfs_create_file(&e->kobj, &attr->attr))
793 					break;
794 				attr++;
795 			}
796 		}
797 		kobject_uevent(&e->kobj, KOBJ_ADD);
798 		e->registered = 1;
799 	}
800 	return error;
801 }
802 EXPORT_SYMBOL(elv_register_queue);
803 
804 void elv_unregister_queue(struct request_queue *q)
805 {
806 	if (q) {
807 		struct elevator_queue *e = q->elevator;
808 
809 		kobject_uevent(&e->kobj, KOBJ_REMOVE);
810 		kobject_del(&e->kobj);
811 		e->registered = 0;
812 	}
813 }
814 EXPORT_SYMBOL(elv_unregister_queue);
815 
816 int elv_register(struct elevator_type *e)
817 {
818 	char *def = "";
819 
820 	/* create icq_cache if requested */
821 	if (e->icq_size) {
822 		if (WARN_ON(e->icq_size < sizeof(struct io_cq)) ||
823 		    WARN_ON(e->icq_align < __alignof__(struct io_cq)))
824 			return -EINVAL;
825 
826 		snprintf(e->icq_cache_name, sizeof(e->icq_cache_name),
827 			 "%s_io_cq", e->elevator_name);
828 		e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size,
829 						 e->icq_align, 0, NULL);
830 		if (!e->icq_cache)
831 			return -ENOMEM;
832 	}
833 
834 	/* register, don't allow duplicate names */
835 	spin_lock(&elv_list_lock);
836 	if (elevator_find(e->elevator_name)) {
837 		spin_unlock(&elv_list_lock);
838 		if (e->icq_cache)
839 			kmem_cache_destroy(e->icq_cache);
840 		return -EBUSY;
841 	}
842 	list_add_tail(&e->list, &elv_list);
843 	spin_unlock(&elv_list_lock);
844 
845 	/* print pretty message */
846 	if (!strcmp(e->elevator_name, chosen_elevator) ||
847 			(!*chosen_elevator &&
848 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
849 				def = " (default)";
850 
851 	printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
852 								def);
853 	return 0;
854 }
855 EXPORT_SYMBOL_GPL(elv_register);
856 
857 void elv_unregister(struct elevator_type *e)
858 {
859 	/* unregister */
860 	spin_lock(&elv_list_lock);
861 	list_del_init(&e->list);
862 	spin_unlock(&elv_list_lock);
863 
864 	/*
865 	 * Destroy icq_cache if it exists.  icq's are RCU managed.  Make
866 	 * sure all RCU operations are complete before proceeding.
867 	 */
868 	if (e->icq_cache) {
869 		rcu_barrier();
870 		kmem_cache_destroy(e->icq_cache);
871 		e->icq_cache = NULL;
872 	}
873 }
874 EXPORT_SYMBOL_GPL(elv_unregister);
875 
876 /*
877  * switch to new_e io scheduler. be careful not to introduce deadlocks -
878  * we don't free the old io scheduler, before we have allocated what we
879  * need for the new one. this way we have a chance of going back to the old
880  * one, if the new one fails init for some reason.
881  */
882 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
883 {
884 	struct elevator_queue *old = q->elevator;
885 	bool registered = old->registered;
886 	int err;
887 
888 	/*
889 	 * Turn on BYPASS and drain all requests w/ elevator private data.
890 	 * Block layer doesn't call into a quiesced elevator - all requests
891 	 * are directly put on the dispatch list without elevator data
892 	 * using INSERT_BACK.  All requests have SOFTBARRIER set and no
893 	 * merge happens either.
894 	 */
895 	blk_queue_bypass_start(q);
896 
897 	/* unregister and clear all auxiliary data of the old elevator */
898 	if (registered)
899 		elv_unregister_queue(q);
900 
901 	spin_lock_irq(q->queue_lock);
902 	ioc_clear_queue(q);
903 	spin_unlock_irq(q->queue_lock);
904 
905 	/* allocate, init and register new elevator */
906 	err = -ENOMEM;
907 	q->elevator = elevator_alloc(q, new_e);
908 	if (!q->elevator)
909 		goto fail_init;
910 
911 	err = new_e->ops.elevator_init_fn(q);
912 	if (err) {
913 		kobject_put(&q->elevator->kobj);
914 		goto fail_init;
915 	}
916 
917 	if (registered) {
918 		err = elv_register_queue(q);
919 		if (err)
920 			goto fail_register;
921 	}
922 
923 	/* done, kill the old one and finish */
924 	elevator_exit(old);
925 	blk_queue_bypass_end(q);
926 
927 	blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name);
928 
929 	return 0;
930 
931 fail_register:
932 	elevator_exit(q->elevator);
933 fail_init:
934 	/* switch failed, restore and re-register old elevator */
935 	q->elevator = old;
936 	elv_register_queue(q);
937 	blk_queue_bypass_end(q);
938 
939 	return err;
940 }
941 
942 /*
943  * Switch this queue to the given IO scheduler.
944  */
945 int elevator_change(struct request_queue *q, const char *name)
946 {
947 	char elevator_name[ELV_NAME_MAX];
948 	struct elevator_type *e;
949 
950 	if (!q->elevator)
951 		return -ENXIO;
952 
953 	strlcpy(elevator_name, name, sizeof(elevator_name));
954 	e = elevator_get(strstrip(elevator_name));
955 	if (!e) {
956 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
957 		return -EINVAL;
958 	}
959 
960 	if (!strcmp(elevator_name, q->elevator->type->elevator_name)) {
961 		elevator_put(e);
962 		return 0;
963 	}
964 
965 	return elevator_switch(q, e);
966 }
967 EXPORT_SYMBOL(elevator_change);
968 
969 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
970 			  size_t count)
971 {
972 	int ret;
973 
974 	if (!q->elevator)
975 		return count;
976 
977 	ret = elevator_change(q, name);
978 	if (!ret)
979 		return count;
980 
981 	printk(KERN_ERR "elevator: switch to %s failed\n", name);
982 	return ret;
983 }
984 
985 ssize_t elv_iosched_show(struct request_queue *q, char *name)
986 {
987 	struct elevator_queue *e = q->elevator;
988 	struct elevator_type *elv;
989 	struct elevator_type *__e;
990 	int len = 0;
991 
992 	if (!q->elevator || !blk_queue_stackable(q))
993 		return sprintf(name, "none\n");
994 
995 	elv = e->type;
996 
997 	spin_lock(&elv_list_lock);
998 	list_for_each_entry(__e, &elv_list, list) {
999 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1000 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1001 		else
1002 			len += sprintf(name+len, "%s ", __e->elevator_name);
1003 	}
1004 	spin_unlock(&elv_list_lock);
1005 
1006 	len += sprintf(len+name, "\n");
1007 	return len;
1008 }
1009 
1010 struct request *elv_rb_former_request(struct request_queue *q,
1011 				      struct request *rq)
1012 {
1013 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1014 
1015 	if (rbprev)
1016 		return rb_entry_rq(rbprev);
1017 
1018 	return NULL;
1019 }
1020 EXPORT_SYMBOL(elv_rb_former_request);
1021 
1022 struct request *elv_rb_latter_request(struct request_queue *q,
1023 				      struct request *rq)
1024 {
1025 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1026 
1027 	if (rbnext)
1028 		return rb_entry_rq(rbnext);
1029 
1030 	return NULL;
1031 }
1032 EXPORT_SYMBOL(elv_rb_latter_request);
1033