1 /* 2 * Block device elevator/IO-scheduler. 3 * 4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * 6 * 30042000 Jens Axboe <axboe@kernel.dk> : 7 * 8 * Split the elevator a bit so that it is possible to choose a different 9 * one or even write a new "plug in". There are three pieces: 10 * - elevator_fn, inserts a new request in the queue list 11 * - elevator_merge_fn, decides whether a new buffer can be merged with 12 * an existing request 13 * - elevator_dequeue_fn, called when a request is taken off the active list 14 * 15 * 20082000 Dave Jones <davej@suse.de> : 16 * Removed tests for max-bomb-segments, which was breaking elvtune 17 * when run without -bN 18 * 19 * Jens: 20 * - Rework again to work with bio instead of buffer_heads 21 * - loose bi_dev comparisons, partition handling is right now 22 * - completely modularize elevator setup and teardown 23 * 24 */ 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/blkdev.h> 28 #include <linux/elevator.h> 29 #include <linux/bio.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/compiler.h> 34 #include <linux/blktrace_api.h> 35 #include <linux/hash.h> 36 #include <linux/uaccess.h> 37 38 #include <trace/events/block.h> 39 40 #include "blk.h" 41 #include "blk-cgroup.h" 42 43 static DEFINE_SPINLOCK(elv_list_lock); 44 static LIST_HEAD(elv_list); 45 46 /* 47 * Merge hash stuff. 48 */ 49 static const int elv_hash_shift = 6; 50 #define ELV_HASH_BLOCK(sec) ((sec) >> 3) 51 #define ELV_HASH_FN(sec) \ 52 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift)) 53 #define ELV_HASH_ENTRIES (1 << elv_hash_shift) 54 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq)) 55 56 /* 57 * Query io scheduler to see if the current process issuing bio may be 58 * merged with rq. 59 */ 60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio) 61 { 62 struct request_queue *q = rq->q; 63 struct elevator_queue *e = q->elevator; 64 65 if (e->type->ops.elevator_allow_merge_fn) 66 return e->type->ops.elevator_allow_merge_fn(q, rq, bio); 67 68 return 1; 69 } 70 71 /* 72 * can we safely merge with this request? 73 */ 74 bool elv_rq_merge_ok(struct request *rq, struct bio *bio) 75 { 76 if (!blk_rq_merge_ok(rq, bio)) 77 return 0; 78 79 if (!elv_iosched_allow_merge(rq, bio)) 80 return 0; 81 82 return 1; 83 } 84 EXPORT_SYMBOL(elv_rq_merge_ok); 85 86 static struct elevator_type *elevator_find(const char *name) 87 { 88 struct elevator_type *e; 89 90 list_for_each_entry(e, &elv_list, list) { 91 if (!strcmp(e->elevator_name, name)) 92 return e; 93 } 94 95 return NULL; 96 } 97 98 static void elevator_put(struct elevator_type *e) 99 { 100 module_put(e->elevator_owner); 101 } 102 103 static struct elevator_type *elevator_get(const char *name) 104 { 105 struct elevator_type *e; 106 107 spin_lock(&elv_list_lock); 108 109 e = elevator_find(name); 110 if (!e) { 111 spin_unlock(&elv_list_lock); 112 request_module("%s-iosched", name); 113 spin_lock(&elv_list_lock); 114 e = elevator_find(name); 115 } 116 117 if (e && !try_module_get(e->elevator_owner)) 118 e = NULL; 119 120 spin_unlock(&elv_list_lock); 121 122 return e; 123 } 124 125 static char chosen_elevator[ELV_NAME_MAX]; 126 127 static int __init elevator_setup(char *str) 128 { 129 /* 130 * Be backwards-compatible with previous kernels, so users 131 * won't get the wrong elevator. 132 */ 133 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 134 return 1; 135 } 136 137 __setup("elevator=", elevator_setup); 138 139 static struct kobj_type elv_ktype; 140 141 static struct elevator_queue *elevator_alloc(struct request_queue *q, 142 struct elevator_type *e) 143 { 144 struct elevator_queue *eq; 145 int i; 146 147 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node); 148 if (unlikely(!eq)) 149 goto err; 150 151 eq->type = e; 152 kobject_init(&eq->kobj, &elv_ktype); 153 mutex_init(&eq->sysfs_lock); 154 155 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, 156 GFP_KERNEL, q->node); 157 if (!eq->hash) 158 goto err; 159 160 for (i = 0; i < ELV_HASH_ENTRIES; i++) 161 INIT_HLIST_HEAD(&eq->hash[i]); 162 163 return eq; 164 err: 165 kfree(eq); 166 elevator_put(e); 167 return NULL; 168 } 169 170 static void elevator_release(struct kobject *kobj) 171 { 172 struct elevator_queue *e; 173 174 e = container_of(kobj, struct elevator_queue, kobj); 175 elevator_put(e->type); 176 kfree(e->hash); 177 kfree(e); 178 } 179 180 int elevator_init(struct request_queue *q, char *name) 181 { 182 struct elevator_type *e = NULL; 183 int err; 184 185 if (unlikely(q->elevator)) 186 return 0; 187 188 INIT_LIST_HEAD(&q->queue_head); 189 q->last_merge = NULL; 190 q->end_sector = 0; 191 q->boundary_rq = NULL; 192 193 if (name) { 194 e = elevator_get(name); 195 if (!e) 196 return -EINVAL; 197 } 198 199 if (!e && *chosen_elevator) { 200 e = elevator_get(chosen_elevator); 201 if (!e) 202 printk(KERN_ERR "I/O scheduler %s not found\n", 203 chosen_elevator); 204 } 205 206 if (!e) { 207 e = elevator_get(CONFIG_DEFAULT_IOSCHED); 208 if (!e) { 209 printk(KERN_ERR 210 "Default I/O scheduler not found. " \ 211 "Using noop.\n"); 212 e = elevator_get("noop"); 213 } 214 } 215 216 q->elevator = elevator_alloc(q, e); 217 if (!q->elevator) 218 return -ENOMEM; 219 220 err = e->ops.elevator_init_fn(q); 221 if (err) { 222 kobject_put(&q->elevator->kobj); 223 return err; 224 } 225 226 return 0; 227 } 228 EXPORT_SYMBOL(elevator_init); 229 230 void elevator_exit(struct elevator_queue *e) 231 { 232 mutex_lock(&e->sysfs_lock); 233 if (e->type->ops.elevator_exit_fn) 234 e->type->ops.elevator_exit_fn(e); 235 mutex_unlock(&e->sysfs_lock); 236 237 kobject_put(&e->kobj); 238 } 239 EXPORT_SYMBOL(elevator_exit); 240 241 static inline void __elv_rqhash_del(struct request *rq) 242 { 243 hlist_del_init(&rq->hash); 244 } 245 246 static void elv_rqhash_del(struct request_queue *q, struct request *rq) 247 { 248 if (ELV_ON_HASH(rq)) 249 __elv_rqhash_del(rq); 250 } 251 252 static void elv_rqhash_add(struct request_queue *q, struct request *rq) 253 { 254 struct elevator_queue *e = q->elevator; 255 256 BUG_ON(ELV_ON_HASH(rq)); 257 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]); 258 } 259 260 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq) 261 { 262 __elv_rqhash_del(rq); 263 elv_rqhash_add(q, rq); 264 } 265 266 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) 267 { 268 struct elevator_queue *e = q->elevator; 269 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)]; 270 struct hlist_node *entry, *next; 271 struct request *rq; 272 273 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) { 274 BUG_ON(!ELV_ON_HASH(rq)); 275 276 if (unlikely(!rq_mergeable(rq))) { 277 __elv_rqhash_del(rq); 278 continue; 279 } 280 281 if (rq_hash_key(rq) == offset) 282 return rq; 283 } 284 285 return NULL; 286 } 287 288 /* 289 * RB-tree support functions for inserting/lookup/removal of requests 290 * in a sorted RB tree. 291 */ 292 void elv_rb_add(struct rb_root *root, struct request *rq) 293 { 294 struct rb_node **p = &root->rb_node; 295 struct rb_node *parent = NULL; 296 struct request *__rq; 297 298 while (*p) { 299 parent = *p; 300 __rq = rb_entry(parent, struct request, rb_node); 301 302 if (blk_rq_pos(rq) < blk_rq_pos(__rq)) 303 p = &(*p)->rb_left; 304 else if (blk_rq_pos(rq) >= blk_rq_pos(__rq)) 305 p = &(*p)->rb_right; 306 } 307 308 rb_link_node(&rq->rb_node, parent, p); 309 rb_insert_color(&rq->rb_node, root); 310 } 311 EXPORT_SYMBOL(elv_rb_add); 312 313 void elv_rb_del(struct rb_root *root, struct request *rq) 314 { 315 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 316 rb_erase(&rq->rb_node, root); 317 RB_CLEAR_NODE(&rq->rb_node); 318 } 319 EXPORT_SYMBOL(elv_rb_del); 320 321 struct request *elv_rb_find(struct rb_root *root, sector_t sector) 322 { 323 struct rb_node *n = root->rb_node; 324 struct request *rq; 325 326 while (n) { 327 rq = rb_entry(n, struct request, rb_node); 328 329 if (sector < blk_rq_pos(rq)) 330 n = n->rb_left; 331 else if (sector > blk_rq_pos(rq)) 332 n = n->rb_right; 333 else 334 return rq; 335 } 336 337 return NULL; 338 } 339 EXPORT_SYMBOL(elv_rb_find); 340 341 /* 342 * Insert rq into dispatch queue of q. Queue lock must be held on 343 * entry. rq is sort instead into the dispatch queue. To be used by 344 * specific elevators. 345 */ 346 void elv_dispatch_sort(struct request_queue *q, struct request *rq) 347 { 348 sector_t boundary; 349 struct list_head *entry; 350 int stop_flags; 351 352 if (q->last_merge == rq) 353 q->last_merge = NULL; 354 355 elv_rqhash_del(q, rq); 356 357 q->nr_sorted--; 358 359 boundary = q->end_sector; 360 stop_flags = REQ_SOFTBARRIER | REQ_STARTED; 361 list_for_each_prev(entry, &q->queue_head) { 362 struct request *pos = list_entry_rq(entry); 363 364 if ((rq->cmd_flags & REQ_DISCARD) != 365 (pos->cmd_flags & REQ_DISCARD)) 366 break; 367 if (rq_data_dir(rq) != rq_data_dir(pos)) 368 break; 369 if (pos->cmd_flags & stop_flags) 370 break; 371 if (blk_rq_pos(rq) >= boundary) { 372 if (blk_rq_pos(pos) < boundary) 373 continue; 374 } else { 375 if (blk_rq_pos(pos) >= boundary) 376 break; 377 } 378 if (blk_rq_pos(rq) >= blk_rq_pos(pos)) 379 break; 380 } 381 382 list_add(&rq->queuelist, entry); 383 } 384 EXPORT_SYMBOL(elv_dispatch_sort); 385 386 /* 387 * Insert rq into dispatch queue of q. Queue lock must be held on 388 * entry. rq is added to the back of the dispatch queue. To be used by 389 * specific elevators. 390 */ 391 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq) 392 { 393 if (q->last_merge == rq) 394 q->last_merge = NULL; 395 396 elv_rqhash_del(q, rq); 397 398 q->nr_sorted--; 399 400 q->end_sector = rq_end_sector(rq); 401 q->boundary_rq = rq; 402 list_add_tail(&rq->queuelist, &q->queue_head); 403 } 404 EXPORT_SYMBOL(elv_dispatch_add_tail); 405 406 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio) 407 { 408 struct elevator_queue *e = q->elevator; 409 struct request *__rq; 410 int ret; 411 412 /* 413 * Levels of merges: 414 * nomerges: No merges at all attempted 415 * noxmerges: Only simple one-hit cache try 416 * merges: All merge tries attempted 417 */ 418 if (blk_queue_nomerges(q)) 419 return ELEVATOR_NO_MERGE; 420 421 /* 422 * First try one-hit cache. 423 */ 424 if (q->last_merge && elv_rq_merge_ok(q->last_merge, bio)) { 425 ret = blk_try_merge(q->last_merge, bio); 426 if (ret != ELEVATOR_NO_MERGE) { 427 *req = q->last_merge; 428 return ret; 429 } 430 } 431 432 if (blk_queue_noxmerges(q)) 433 return ELEVATOR_NO_MERGE; 434 435 /* 436 * See if our hash lookup can find a potential backmerge. 437 */ 438 __rq = elv_rqhash_find(q, bio->bi_sector); 439 if (__rq && elv_rq_merge_ok(__rq, bio)) { 440 *req = __rq; 441 return ELEVATOR_BACK_MERGE; 442 } 443 444 if (e->type->ops.elevator_merge_fn) 445 return e->type->ops.elevator_merge_fn(q, req, bio); 446 447 return ELEVATOR_NO_MERGE; 448 } 449 450 /* 451 * Attempt to do an insertion back merge. Only check for the case where 452 * we can append 'rq' to an existing request, so we can throw 'rq' away 453 * afterwards. 454 * 455 * Returns true if we merged, false otherwise 456 */ 457 static bool elv_attempt_insert_merge(struct request_queue *q, 458 struct request *rq) 459 { 460 struct request *__rq; 461 bool ret; 462 463 if (blk_queue_nomerges(q)) 464 return false; 465 466 /* 467 * First try one-hit cache. 468 */ 469 if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq)) 470 return true; 471 472 if (blk_queue_noxmerges(q)) 473 return false; 474 475 ret = false; 476 /* 477 * See if our hash lookup can find a potential backmerge. 478 */ 479 while (1) { 480 __rq = elv_rqhash_find(q, blk_rq_pos(rq)); 481 if (!__rq || !blk_attempt_req_merge(q, __rq, rq)) 482 break; 483 484 /* The merged request could be merged with others, try again */ 485 ret = true; 486 rq = __rq; 487 } 488 489 return ret; 490 } 491 492 void elv_merged_request(struct request_queue *q, struct request *rq, int type) 493 { 494 struct elevator_queue *e = q->elevator; 495 496 if (e->type->ops.elevator_merged_fn) 497 e->type->ops.elevator_merged_fn(q, rq, type); 498 499 if (type == ELEVATOR_BACK_MERGE) 500 elv_rqhash_reposition(q, rq); 501 502 q->last_merge = rq; 503 } 504 505 void elv_merge_requests(struct request_queue *q, struct request *rq, 506 struct request *next) 507 { 508 struct elevator_queue *e = q->elevator; 509 const int next_sorted = next->cmd_flags & REQ_SORTED; 510 511 if (next_sorted && e->type->ops.elevator_merge_req_fn) 512 e->type->ops.elevator_merge_req_fn(q, rq, next); 513 514 elv_rqhash_reposition(q, rq); 515 516 if (next_sorted) { 517 elv_rqhash_del(q, next); 518 q->nr_sorted--; 519 } 520 521 q->last_merge = rq; 522 } 523 524 void elv_bio_merged(struct request_queue *q, struct request *rq, 525 struct bio *bio) 526 { 527 struct elevator_queue *e = q->elevator; 528 529 if (e->type->ops.elevator_bio_merged_fn) 530 e->type->ops.elevator_bio_merged_fn(q, rq, bio); 531 } 532 533 void elv_requeue_request(struct request_queue *q, struct request *rq) 534 { 535 /* 536 * it already went through dequeue, we need to decrement the 537 * in_flight count again 538 */ 539 if (blk_account_rq(rq)) { 540 q->in_flight[rq_is_sync(rq)]--; 541 if (rq->cmd_flags & REQ_SORTED) 542 elv_deactivate_rq(q, rq); 543 } 544 545 rq->cmd_flags &= ~REQ_STARTED; 546 547 __elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE); 548 } 549 550 void elv_drain_elevator(struct request_queue *q) 551 { 552 static int printed; 553 554 lockdep_assert_held(q->queue_lock); 555 556 while (q->elevator->type->ops.elevator_dispatch_fn(q, 1)) 557 ; 558 if (q->nr_sorted && printed++ < 10) { 559 printk(KERN_ERR "%s: forced dispatching is broken " 560 "(nr_sorted=%u), please report this\n", 561 q->elevator->type->elevator_name, q->nr_sorted); 562 } 563 } 564 565 void __elv_add_request(struct request_queue *q, struct request *rq, int where) 566 { 567 trace_block_rq_insert(q, rq); 568 569 rq->q = q; 570 571 if (rq->cmd_flags & REQ_SOFTBARRIER) { 572 /* barriers are scheduling boundary, update end_sector */ 573 if (rq->cmd_type == REQ_TYPE_FS) { 574 q->end_sector = rq_end_sector(rq); 575 q->boundary_rq = rq; 576 } 577 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && 578 (where == ELEVATOR_INSERT_SORT || 579 where == ELEVATOR_INSERT_SORT_MERGE)) 580 where = ELEVATOR_INSERT_BACK; 581 582 switch (where) { 583 case ELEVATOR_INSERT_REQUEUE: 584 case ELEVATOR_INSERT_FRONT: 585 rq->cmd_flags |= REQ_SOFTBARRIER; 586 list_add(&rq->queuelist, &q->queue_head); 587 break; 588 589 case ELEVATOR_INSERT_BACK: 590 rq->cmd_flags |= REQ_SOFTBARRIER; 591 elv_drain_elevator(q); 592 list_add_tail(&rq->queuelist, &q->queue_head); 593 /* 594 * We kick the queue here for the following reasons. 595 * - The elevator might have returned NULL previously 596 * to delay requests and returned them now. As the 597 * queue wasn't empty before this request, ll_rw_blk 598 * won't run the queue on return, resulting in hang. 599 * - Usually, back inserted requests won't be merged 600 * with anything. There's no point in delaying queue 601 * processing. 602 */ 603 __blk_run_queue(q); 604 break; 605 606 case ELEVATOR_INSERT_SORT_MERGE: 607 /* 608 * If we succeed in merging this request with one in the 609 * queue already, we are done - rq has now been freed, 610 * so no need to do anything further. 611 */ 612 if (elv_attempt_insert_merge(q, rq)) 613 break; 614 case ELEVATOR_INSERT_SORT: 615 BUG_ON(rq->cmd_type != REQ_TYPE_FS); 616 rq->cmd_flags |= REQ_SORTED; 617 q->nr_sorted++; 618 if (rq_mergeable(rq)) { 619 elv_rqhash_add(q, rq); 620 if (!q->last_merge) 621 q->last_merge = rq; 622 } 623 624 /* 625 * Some ioscheds (cfq) run q->request_fn directly, so 626 * rq cannot be accessed after calling 627 * elevator_add_req_fn. 628 */ 629 q->elevator->type->ops.elevator_add_req_fn(q, rq); 630 break; 631 632 case ELEVATOR_INSERT_FLUSH: 633 rq->cmd_flags |= REQ_SOFTBARRIER; 634 blk_insert_flush(rq); 635 break; 636 default: 637 printk(KERN_ERR "%s: bad insertion point %d\n", 638 __func__, where); 639 BUG(); 640 } 641 } 642 EXPORT_SYMBOL(__elv_add_request); 643 644 void elv_add_request(struct request_queue *q, struct request *rq, int where) 645 { 646 unsigned long flags; 647 648 spin_lock_irqsave(q->queue_lock, flags); 649 __elv_add_request(q, rq, where); 650 spin_unlock_irqrestore(q->queue_lock, flags); 651 } 652 EXPORT_SYMBOL(elv_add_request); 653 654 struct request *elv_latter_request(struct request_queue *q, struct request *rq) 655 { 656 struct elevator_queue *e = q->elevator; 657 658 if (e->type->ops.elevator_latter_req_fn) 659 return e->type->ops.elevator_latter_req_fn(q, rq); 660 return NULL; 661 } 662 663 struct request *elv_former_request(struct request_queue *q, struct request *rq) 664 { 665 struct elevator_queue *e = q->elevator; 666 667 if (e->type->ops.elevator_former_req_fn) 668 return e->type->ops.elevator_former_req_fn(q, rq); 669 return NULL; 670 } 671 672 int elv_set_request(struct request_queue *q, struct request *rq, 673 struct bio *bio, gfp_t gfp_mask) 674 { 675 struct elevator_queue *e = q->elevator; 676 677 if (e->type->ops.elevator_set_req_fn) 678 return e->type->ops.elevator_set_req_fn(q, rq, bio, gfp_mask); 679 return 0; 680 } 681 682 void elv_put_request(struct request_queue *q, struct request *rq) 683 { 684 struct elevator_queue *e = q->elevator; 685 686 if (e->type->ops.elevator_put_req_fn) 687 e->type->ops.elevator_put_req_fn(rq); 688 } 689 690 int elv_may_queue(struct request_queue *q, int rw) 691 { 692 struct elevator_queue *e = q->elevator; 693 694 if (e->type->ops.elevator_may_queue_fn) 695 return e->type->ops.elevator_may_queue_fn(q, rw); 696 697 return ELV_MQUEUE_MAY; 698 } 699 700 void elv_abort_queue(struct request_queue *q) 701 { 702 struct request *rq; 703 704 blk_abort_flushes(q); 705 706 while (!list_empty(&q->queue_head)) { 707 rq = list_entry_rq(q->queue_head.next); 708 rq->cmd_flags |= REQ_QUIET; 709 trace_block_rq_abort(q, rq); 710 /* 711 * Mark this request as started so we don't trigger 712 * any debug logic in the end I/O path. 713 */ 714 blk_start_request(rq); 715 __blk_end_request_all(rq, -EIO); 716 } 717 } 718 EXPORT_SYMBOL(elv_abort_queue); 719 720 void elv_completed_request(struct request_queue *q, struct request *rq) 721 { 722 struct elevator_queue *e = q->elevator; 723 724 /* 725 * request is released from the driver, io must be done 726 */ 727 if (blk_account_rq(rq)) { 728 q->in_flight[rq_is_sync(rq)]--; 729 if ((rq->cmd_flags & REQ_SORTED) && 730 e->type->ops.elevator_completed_req_fn) 731 e->type->ops.elevator_completed_req_fn(q, rq); 732 } 733 } 734 735 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) 736 737 static ssize_t 738 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 739 { 740 struct elv_fs_entry *entry = to_elv(attr); 741 struct elevator_queue *e; 742 ssize_t error; 743 744 if (!entry->show) 745 return -EIO; 746 747 e = container_of(kobj, struct elevator_queue, kobj); 748 mutex_lock(&e->sysfs_lock); 749 error = e->type ? entry->show(e, page) : -ENOENT; 750 mutex_unlock(&e->sysfs_lock); 751 return error; 752 } 753 754 static ssize_t 755 elv_attr_store(struct kobject *kobj, struct attribute *attr, 756 const char *page, size_t length) 757 { 758 struct elv_fs_entry *entry = to_elv(attr); 759 struct elevator_queue *e; 760 ssize_t error; 761 762 if (!entry->store) 763 return -EIO; 764 765 e = container_of(kobj, struct elevator_queue, kobj); 766 mutex_lock(&e->sysfs_lock); 767 error = e->type ? entry->store(e, page, length) : -ENOENT; 768 mutex_unlock(&e->sysfs_lock); 769 return error; 770 } 771 772 static const struct sysfs_ops elv_sysfs_ops = { 773 .show = elv_attr_show, 774 .store = elv_attr_store, 775 }; 776 777 static struct kobj_type elv_ktype = { 778 .sysfs_ops = &elv_sysfs_ops, 779 .release = elevator_release, 780 }; 781 782 int elv_register_queue(struct request_queue *q) 783 { 784 struct elevator_queue *e = q->elevator; 785 int error; 786 787 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched"); 788 if (!error) { 789 struct elv_fs_entry *attr = e->type->elevator_attrs; 790 if (attr) { 791 while (attr->attr.name) { 792 if (sysfs_create_file(&e->kobj, &attr->attr)) 793 break; 794 attr++; 795 } 796 } 797 kobject_uevent(&e->kobj, KOBJ_ADD); 798 e->registered = 1; 799 } 800 return error; 801 } 802 EXPORT_SYMBOL(elv_register_queue); 803 804 void elv_unregister_queue(struct request_queue *q) 805 { 806 if (q) { 807 struct elevator_queue *e = q->elevator; 808 809 kobject_uevent(&e->kobj, KOBJ_REMOVE); 810 kobject_del(&e->kobj); 811 e->registered = 0; 812 } 813 } 814 EXPORT_SYMBOL(elv_unregister_queue); 815 816 int elv_register(struct elevator_type *e) 817 { 818 char *def = ""; 819 820 /* create icq_cache if requested */ 821 if (e->icq_size) { 822 if (WARN_ON(e->icq_size < sizeof(struct io_cq)) || 823 WARN_ON(e->icq_align < __alignof__(struct io_cq))) 824 return -EINVAL; 825 826 snprintf(e->icq_cache_name, sizeof(e->icq_cache_name), 827 "%s_io_cq", e->elevator_name); 828 e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size, 829 e->icq_align, 0, NULL); 830 if (!e->icq_cache) 831 return -ENOMEM; 832 } 833 834 /* register, don't allow duplicate names */ 835 spin_lock(&elv_list_lock); 836 if (elevator_find(e->elevator_name)) { 837 spin_unlock(&elv_list_lock); 838 if (e->icq_cache) 839 kmem_cache_destroy(e->icq_cache); 840 return -EBUSY; 841 } 842 list_add_tail(&e->list, &elv_list); 843 spin_unlock(&elv_list_lock); 844 845 /* print pretty message */ 846 if (!strcmp(e->elevator_name, chosen_elevator) || 847 (!*chosen_elevator && 848 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED))) 849 def = " (default)"; 850 851 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, 852 def); 853 return 0; 854 } 855 EXPORT_SYMBOL_GPL(elv_register); 856 857 void elv_unregister(struct elevator_type *e) 858 { 859 /* unregister */ 860 spin_lock(&elv_list_lock); 861 list_del_init(&e->list); 862 spin_unlock(&elv_list_lock); 863 864 /* 865 * Destroy icq_cache if it exists. icq's are RCU managed. Make 866 * sure all RCU operations are complete before proceeding. 867 */ 868 if (e->icq_cache) { 869 rcu_barrier(); 870 kmem_cache_destroy(e->icq_cache); 871 e->icq_cache = NULL; 872 } 873 } 874 EXPORT_SYMBOL_GPL(elv_unregister); 875 876 /* 877 * switch to new_e io scheduler. be careful not to introduce deadlocks - 878 * we don't free the old io scheduler, before we have allocated what we 879 * need for the new one. this way we have a chance of going back to the old 880 * one, if the new one fails init for some reason. 881 */ 882 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e) 883 { 884 struct elevator_queue *old = q->elevator; 885 bool registered = old->registered; 886 int err; 887 888 /* 889 * Turn on BYPASS and drain all requests w/ elevator private data. 890 * Block layer doesn't call into a quiesced elevator - all requests 891 * are directly put on the dispatch list without elevator data 892 * using INSERT_BACK. All requests have SOFTBARRIER set and no 893 * merge happens either. 894 */ 895 blk_queue_bypass_start(q); 896 897 /* unregister and clear all auxiliary data of the old elevator */ 898 if (registered) 899 elv_unregister_queue(q); 900 901 spin_lock_irq(q->queue_lock); 902 ioc_clear_queue(q); 903 spin_unlock_irq(q->queue_lock); 904 905 /* allocate, init and register new elevator */ 906 err = -ENOMEM; 907 q->elevator = elevator_alloc(q, new_e); 908 if (!q->elevator) 909 goto fail_init; 910 911 err = new_e->ops.elevator_init_fn(q); 912 if (err) { 913 kobject_put(&q->elevator->kobj); 914 goto fail_init; 915 } 916 917 if (registered) { 918 err = elv_register_queue(q); 919 if (err) 920 goto fail_register; 921 } 922 923 /* done, kill the old one and finish */ 924 elevator_exit(old); 925 blk_queue_bypass_end(q); 926 927 blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name); 928 929 return 0; 930 931 fail_register: 932 elevator_exit(q->elevator); 933 fail_init: 934 /* switch failed, restore and re-register old elevator */ 935 q->elevator = old; 936 elv_register_queue(q); 937 blk_queue_bypass_end(q); 938 939 return err; 940 } 941 942 /* 943 * Switch this queue to the given IO scheduler. 944 */ 945 int elevator_change(struct request_queue *q, const char *name) 946 { 947 char elevator_name[ELV_NAME_MAX]; 948 struct elevator_type *e; 949 950 if (!q->elevator) 951 return -ENXIO; 952 953 strlcpy(elevator_name, name, sizeof(elevator_name)); 954 e = elevator_get(strstrip(elevator_name)); 955 if (!e) { 956 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 957 return -EINVAL; 958 } 959 960 if (!strcmp(elevator_name, q->elevator->type->elevator_name)) { 961 elevator_put(e); 962 return 0; 963 } 964 965 return elevator_switch(q, e); 966 } 967 EXPORT_SYMBOL(elevator_change); 968 969 ssize_t elv_iosched_store(struct request_queue *q, const char *name, 970 size_t count) 971 { 972 int ret; 973 974 if (!q->elevator) 975 return count; 976 977 ret = elevator_change(q, name); 978 if (!ret) 979 return count; 980 981 printk(KERN_ERR "elevator: switch to %s failed\n", name); 982 return ret; 983 } 984 985 ssize_t elv_iosched_show(struct request_queue *q, char *name) 986 { 987 struct elevator_queue *e = q->elevator; 988 struct elevator_type *elv; 989 struct elevator_type *__e; 990 int len = 0; 991 992 if (!q->elevator || !blk_queue_stackable(q)) 993 return sprintf(name, "none\n"); 994 995 elv = e->type; 996 997 spin_lock(&elv_list_lock); 998 list_for_each_entry(__e, &elv_list, list) { 999 if (!strcmp(elv->elevator_name, __e->elevator_name)) 1000 len += sprintf(name+len, "[%s] ", elv->elevator_name); 1001 else 1002 len += sprintf(name+len, "%s ", __e->elevator_name); 1003 } 1004 spin_unlock(&elv_list_lock); 1005 1006 len += sprintf(len+name, "\n"); 1007 return len; 1008 } 1009 1010 struct request *elv_rb_former_request(struct request_queue *q, 1011 struct request *rq) 1012 { 1013 struct rb_node *rbprev = rb_prev(&rq->rb_node); 1014 1015 if (rbprev) 1016 return rb_entry_rq(rbprev); 1017 1018 return NULL; 1019 } 1020 EXPORT_SYMBOL(elv_rb_former_request); 1021 1022 struct request *elv_rb_latter_request(struct request_queue *q, 1023 struct request *rq) 1024 { 1025 struct rb_node *rbnext = rb_next(&rq->rb_node); 1026 1027 if (rbnext) 1028 return rb_entry_rq(rbnext); 1029 1030 return NULL; 1031 } 1032 EXPORT_SYMBOL(elv_rb_latter_request); 1033