xref: /linux/block/elevator.c (revision b454cc6636d254fbf6049b73e9560aee76fb04a3)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 
38 #include <asm/uaccess.h>
39 
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
42 
43 /*
44  * Merge hash stuff.
45  */
46 static const int elv_hash_shift = 6;
47 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
48 #define ELV_HASH_FN(sec)	(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
49 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
50 #define rq_hash_key(rq)		((rq)->sector + (rq)->nr_sectors)
51 #define ELV_ON_HASH(rq)		(!hlist_unhashed(&(rq)->hash))
52 
53 /*
54  * Query io scheduler to see if the current process issuing bio may be
55  * merged with rq.
56  */
57 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
58 {
59 	request_queue_t *q = rq->q;
60 	elevator_t *e = q->elevator;
61 
62 	if (e->ops->elevator_allow_merge_fn)
63 		return e->ops->elevator_allow_merge_fn(q, rq, bio);
64 
65 	return 1;
66 }
67 
68 /*
69  * can we safely merge with this request?
70  */
71 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
72 {
73 	if (!rq_mergeable(rq))
74 		return 0;
75 
76 	/*
77 	 * different data direction or already started, don't merge
78 	 */
79 	if (bio_data_dir(bio) != rq_data_dir(rq))
80 		return 0;
81 
82 	/*
83 	 * must be same device and not a special request
84 	 */
85 	if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
86 		return 0;
87 
88 	if (!elv_iosched_allow_merge(rq, bio))
89 		return 0;
90 
91 	return 1;
92 }
93 EXPORT_SYMBOL(elv_rq_merge_ok);
94 
95 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
96 {
97 	int ret = ELEVATOR_NO_MERGE;
98 
99 	/*
100 	 * we can merge and sequence is ok, check if it's possible
101 	 */
102 	if (elv_rq_merge_ok(__rq, bio)) {
103 		if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
104 			ret = ELEVATOR_BACK_MERGE;
105 		else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
106 			ret = ELEVATOR_FRONT_MERGE;
107 	}
108 
109 	return ret;
110 }
111 
112 static struct elevator_type *elevator_find(const char *name)
113 {
114 	struct elevator_type *e;
115 	struct list_head *entry;
116 
117 	list_for_each(entry, &elv_list) {
118 
119 		e = list_entry(entry, struct elevator_type, list);
120 
121 		if (!strcmp(e->elevator_name, name))
122 			return e;
123 	}
124 
125 	return NULL;
126 }
127 
128 static void elevator_put(struct elevator_type *e)
129 {
130 	module_put(e->elevator_owner);
131 }
132 
133 static struct elevator_type *elevator_get(const char *name)
134 {
135 	struct elevator_type *e;
136 
137 	spin_lock_irq(&elv_list_lock);
138 
139 	e = elevator_find(name);
140 	if (e && !try_module_get(e->elevator_owner))
141 		e = NULL;
142 
143 	spin_unlock_irq(&elv_list_lock);
144 
145 	return e;
146 }
147 
148 static void *elevator_init_queue(request_queue_t *q, struct elevator_queue *eq)
149 {
150 	return eq->ops->elevator_init_fn(q);
151 }
152 
153 static void elevator_attach(request_queue_t *q, struct elevator_queue *eq,
154 			   void *data)
155 {
156 	q->elevator = eq;
157 	eq->elevator_data = data;
158 }
159 
160 static char chosen_elevator[16];
161 
162 static int __init elevator_setup(char *str)
163 {
164 	/*
165 	 * Be backwards-compatible with previous kernels, so users
166 	 * won't get the wrong elevator.
167 	 */
168 	if (!strcmp(str, "as"))
169 		strcpy(chosen_elevator, "anticipatory");
170 	else
171 		strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
172 	return 1;
173 }
174 
175 __setup("elevator=", elevator_setup);
176 
177 static struct kobj_type elv_ktype;
178 
179 static elevator_t *elevator_alloc(request_queue_t *q, struct elevator_type *e)
180 {
181 	elevator_t *eq;
182 	int i;
183 
184 	eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL, q->node);
185 	if (unlikely(!eq))
186 		goto err;
187 
188 	memset(eq, 0, sizeof(*eq));
189 	eq->ops = &e->ops;
190 	eq->elevator_type = e;
191 	kobject_init(&eq->kobj);
192 	snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
193 	eq->kobj.ktype = &elv_ktype;
194 	mutex_init(&eq->sysfs_lock);
195 
196 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
197 					GFP_KERNEL, q->node);
198 	if (!eq->hash)
199 		goto err;
200 
201 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
202 		INIT_HLIST_HEAD(&eq->hash[i]);
203 
204 	return eq;
205 err:
206 	kfree(eq);
207 	elevator_put(e);
208 	return NULL;
209 }
210 
211 static void elevator_release(struct kobject *kobj)
212 {
213 	elevator_t *e = container_of(kobj, elevator_t, kobj);
214 
215 	elevator_put(e->elevator_type);
216 	kfree(e->hash);
217 	kfree(e);
218 }
219 
220 int elevator_init(request_queue_t *q, char *name)
221 {
222 	struct elevator_type *e = NULL;
223 	struct elevator_queue *eq;
224 	int ret = 0;
225 	void *data;
226 
227 	INIT_LIST_HEAD(&q->queue_head);
228 	q->last_merge = NULL;
229 	q->end_sector = 0;
230 	q->boundary_rq = NULL;
231 
232 	if (name && !(e = elevator_get(name)))
233 		return -EINVAL;
234 
235 	if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
236 		printk("I/O scheduler %s not found\n", chosen_elevator);
237 
238 	if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
239 		printk("Default I/O scheduler not found, using no-op\n");
240 		e = elevator_get("noop");
241 	}
242 
243 	eq = elevator_alloc(q, e);
244 	if (!eq)
245 		return -ENOMEM;
246 
247 	data = elevator_init_queue(q, eq);
248 	if (!data) {
249 		kobject_put(&eq->kobj);
250 		return -ENOMEM;
251 	}
252 
253 	elevator_attach(q, eq, data);
254 	return ret;
255 }
256 
257 EXPORT_SYMBOL(elevator_init);
258 
259 void elevator_exit(elevator_t *e)
260 {
261 	mutex_lock(&e->sysfs_lock);
262 	if (e->ops->elevator_exit_fn)
263 		e->ops->elevator_exit_fn(e);
264 	e->ops = NULL;
265 	mutex_unlock(&e->sysfs_lock);
266 
267 	kobject_put(&e->kobj);
268 }
269 
270 EXPORT_SYMBOL(elevator_exit);
271 
272 static inline void __elv_rqhash_del(struct request *rq)
273 {
274 	hlist_del_init(&rq->hash);
275 }
276 
277 static void elv_rqhash_del(request_queue_t *q, struct request *rq)
278 {
279 	if (ELV_ON_HASH(rq))
280 		__elv_rqhash_del(rq);
281 }
282 
283 static void elv_rqhash_add(request_queue_t *q, struct request *rq)
284 {
285 	elevator_t *e = q->elevator;
286 
287 	BUG_ON(ELV_ON_HASH(rq));
288 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
289 }
290 
291 static void elv_rqhash_reposition(request_queue_t *q, struct request *rq)
292 {
293 	__elv_rqhash_del(rq);
294 	elv_rqhash_add(q, rq);
295 }
296 
297 static struct request *elv_rqhash_find(request_queue_t *q, sector_t offset)
298 {
299 	elevator_t *e = q->elevator;
300 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
301 	struct hlist_node *entry, *next;
302 	struct request *rq;
303 
304 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
305 		BUG_ON(!ELV_ON_HASH(rq));
306 
307 		if (unlikely(!rq_mergeable(rq))) {
308 			__elv_rqhash_del(rq);
309 			continue;
310 		}
311 
312 		if (rq_hash_key(rq) == offset)
313 			return rq;
314 	}
315 
316 	return NULL;
317 }
318 
319 /*
320  * RB-tree support functions for inserting/lookup/removal of requests
321  * in a sorted RB tree.
322  */
323 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
324 {
325 	struct rb_node **p = &root->rb_node;
326 	struct rb_node *parent = NULL;
327 	struct request *__rq;
328 
329 	while (*p) {
330 		parent = *p;
331 		__rq = rb_entry(parent, struct request, rb_node);
332 
333 		if (rq->sector < __rq->sector)
334 			p = &(*p)->rb_left;
335 		else if (rq->sector > __rq->sector)
336 			p = &(*p)->rb_right;
337 		else
338 			return __rq;
339 	}
340 
341 	rb_link_node(&rq->rb_node, parent, p);
342 	rb_insert_color(&rq->rb_node, root);
343 	return NULL;
344 }
345 
346 EXPORT_SYMBOL(elv_rb_add);
347 
348 void elv_rb_del(struct rb_root *root, struct request *rq)
349 {
350 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
351 	rb_erase(&rq->rb_node, root);
352 	RB_CLEAR_NODE(&rq->rb_node);
353 }
354 
355 EXPORT_SYMBOL(elv_rb_del);
356 
357 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
358 {
359 	struct rb_node *n = root->rb_node;
360 	struct request *rq;
361 
362 	while (n) {
363 		rq = rb_entry(n, struct request, rb_node);
364 
365 		if (sector < rq->sector)
366 			n = n->rb_left;
367 		else if (sector > rq->sector)
368 			n = n->rb_right;
369 		else
370 			return rq;
371 	}
372 
373 	return NULL;
374 }
375 
376 EXPORT_SYMBOL(elv_rb_find);
377 
378 /*
379  * Insert rq into dispatch queue of q.  Queue lock must be held on
380  * entry.  rq is sort insted into the dispatch queue. To be used by
381  * specific elevators.
382  */
383 void elv_dispatch_sort(request_queue_t *q, struct request *rq)
384 {
385 	sector_t boundary;
386 	struct list_head *entry;
387 
388 	if (q->last_merge == rq)
389 		q->last_merge = NULL;
390 
391 	elv_rqhash_del(q, rq);
392 
393 	q->nr_sorted--;
394 
395 	boundary = q->end_sector;
396 
397 	list_for_each_prev(entry, &q->queue_head) {
398 		struct request *pos = list_entry_rq(entry);
399 
400 		if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
401 			break;
402 		if (rq->sector >= boundary) {
403 			if (pos->sector < boundary)
404 				continue;
405 		} else {
406 			if (pos->sector >= boundary)
407 				break;
408 		}
409 		if (rq->sector >= pos->sector)
410 			break;
411 	}
412 
413 	list_add(&rq->queuelist, entry);
414 }
415 
416 EXPORT_SYMBOL(elv_dispatch_sort);
417 
418 /*
419  * Insert rq into dispatch queue of q.  Queue lock must be held on
420  * entry.  rq is added to the back of the dispatch queue. To be used by
421  * specific elevators.
422  */
423 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
424 {
425 	if (q->last_merge == rq)
426 		q->last_merge = NULL;
427 
428 	elv_rqhash_del(q, rq);
429 
430 	q->nr_sorted--;
431 
432 	q->end_sector = rq_end_sector(rq);
433 	q->boundary_rq = rq;
434 	list_add_tail(&rq->queuelist, &q->queue_head);
435 }
436 
437 EXPORT_SYMBOL(elv_dispatch_add_tail);
438 
439 int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
440 {
441 	elevator_t *e = q->elevator;
442 	struct request *__rq;
443 	int ret;
444 
445 	/*
446 	 * First try one-hit cache.
447 	 */
448 	if (q->last_merge) {
449 		ret = elv_try_merge(q->last_merge, bio);
450 		if (ret != ELEVATOR_NO_MERGE) {
451 			*req = q->last_merge;
452 			return ret;
453 		}
454 	}
455 
456 	/*
457 	 * See if our hash lookup can find a potential backmerge.
458 	 */
459 	__rq = elv_rqhash_find(q, bio->bi_sector);
460 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
461 		*req = __rq;
462 		return ELEVATOR_BACK_MERGE;
463 	}
464 
465 	if (e->ops->elevator_merge_fn)
466 		return e->ops->elevator_merge_fn(q, req, bio);
467 
468 	return ELEVATOR_NO_MERGE;
469 }
470 
471 void elv_merged_request(request_queue_t *q, struct request *rq, int type)
472 {
473 	elevator_t *e = q->elevator;
474 
475 	if (e->ops->elevator_merged_fn)
476 		e->ops->elevator_merged_fn(q, rq, type);
477 
478 	if (type == ELEVATOR_BACK_MERGE)
479 		elv_rqhash_reposition(q, rq);
480 
481 	q->last_merge = rq;
482 }
483 
484 void elv_merge_requests(request_queue_t *q, struct request *rq,
485 			     struct request *next)
486 {
487 	elevator_t *e = q->elevator;
488 
489 	if (e->ops->elevator_merge_req_fn)
490 		e->ops->elevator_merge_req_fn(q, rq, next);
491 
492 	elv_rqhash_reposition(q, rq);
493 	elv_rqhash_del(q, next);
494 
495 	q->nr_sorted--;
496 	q->last_merge = rq;
497 }
498 
499 void elv_requeue_request(request_queue_t *q, struct request *rq)
500 {
501 	elevator_t *e = q->elevator;
502 
503 	/*
504 	 * it already went through dequeue, we need to decrement the
505 	 * in_flight count again
506 	 */
507 	if (blk_account_rq(rq)) {
508 		q->in_flight--;
509 		if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
510 			e->ops->elevator_deactivate_req_fn(q, rq);
511 	}
512 
513 	rq->cmd_flags &= ~REQ_STARTED;
514 
515 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
516 }
517 
518 static void elv_drain_elevator(request_queue_t *q)
519 {
520 	static int printed;
521 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
522 		;
523 	if (q->nr_sorted == 0)
524 		return;
525 	if (printed++ < 10) {
526 		printk(KERN_ERR "%s: forced dispatching is broken "
527 		       "(nr_sorted=%u), please report this\n",
528 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
529 	}
530 }
531 
532 void elv_insert(request_queue_t *q, struct request *rq, int where)
533 {
534 	struct list_head *pos;
535 	unsigned ordseq;
536 	int unplug_it = 1;
537 
538 	blk_add_trace_rq(q, rq, BLK_TA_INSERT);
539 
540 	rq->q = q;
541 
542 	switch (where) {
543 	case ELEVATOR_INSERT_FRONT:
544 		rq->cmd_flags |= REQ_SOFTBARRIER;
545 
546 		list_add(&rq->queuelist, &q->queue_head);
547 		break;
548 
549 	case ELEVATOR_INSERT_BACK:
550 		rq->cmd_flags |= REQ_SOFTBARRIER;
551 		elv_drain_elevator(q);
552 		list_add_tail(&rq->queuelist, &q->queue_head);
553 		/*
554 		 * We kick the queue here for the following reasons.
555 		 * - The elevator might have returned NULL previously
556 		 *   to delay requests and returned them now.  As the
557 		 *   queue wasn't empty before this request, ll_rw_blk
558 		 *   won't run the queue on return, resulting in hang.
559 		 * - Usually, back inserted requests won't be merged
560 		 *   with anything.  There's no point in delaying queue
561 		 *   processing.
562 		 */
563 		blk_remove_plug(q);
564 		q->request_fn(q);
565 		break;
566 
567 	case ELEVATOR_INSERT_SORT:
568 		BUG_ON(!blk_fs_request(rq));
569 		rq->cmd_flags |= REQ_SORTED;
570 		q->nr_sorted++;
571 		if (rq_mergeable(rq)) {
572 			elv_rqhash_add(q, rq);
573 			if (!q->last_merge)
574 				q->last_merge = rq;
575 		}
576 
577 		/*
578 		 * Some ioscheds (cfq) run q->request_fn directly, so
579 		 * rq cannot be accessed after calling
580 		 * elevator_add_req_fn.
581 		 */
582 		q->elevator->ops->elevator_add_req_fn(q, rq);
583 		break;
584 
585 	case ELEVATOR_INSERT_REQUEUE:
586 		/*
587 		 * If ordered flush isn't in progress, we do front
588 		 * insertion; otherwise, requests should be requeued
589 		 * in ordseq order.
590 		 */
591 		rq->cmd_flags |= REQ_SOFTBARRIER;
592 
593 		/*
594 		 * Most requeues happen because of a busy condition,
595 		 * don't force unplug of the queue for that case.
596 		 */
597 		unplug_it = 0;
598 
599 		if (q->ordseq == 0) {
600 			list_add(&rq->queuelist, &q->queue_head);
601 			break;
602 		}
603 
604 		ordseq = blk_ordered_req_seq(rq);
605 
606 		list_for_each(pos, &q->queue_head) {
607 			struct request *pos_rq = list_entry_rq(pos);
608 			if (ordseq <= blk_ordered_req_seq(pos_rq))
609 				break;
610 		}
611 
612 		list_add_tail(&rq->queuelist, pos);
613 		break;
614 
615 	default:
616 		printk(KERN_ERR "%s: bad insertion point %d\n",
617 		       __FUNCTION__, where);
618 		BUG();
619 	}
620 
621 	if (unplug_it && blk_queue_plugged(q)) {
622 		int nrq = q->rq.count[READ] + q->rq.count[WRITE]
623 			- q->in_flight;
624 
625 		if (nrq >= q->unplug_thresh)
626 			__generic_unplug_device(q);
627 	}
628 }
629 
630 void __elv_add_request(request_queue_t *q, struct request *rq, int where,
631 		       int plug)
632 {
633 	if (q->ordcolor)
634 		rq->cmd_flags |= REQ_ORDERED_COLOR;
635 
636 	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
637 		/*
638 		 * toggle ordered color
639 		 */
640 		if (blk_barrier_rq(rq))
641 			q->ordcolor ^= 1;
642 
643 		/*
644 		 * barriers implicitly indicate back insertion
645 		 */
646 		if (where == ELEVATOR_INSERT_SORT)
647 			where = ELEVATOR_INSERT_BACK;
648 
649 		/*
650 		 * this request is scheduling boundary, update
651 		 * end_sector
652 		 */
653 		if (blk_fs_request(rq)) {
654 			q->end_sector = rq_end_sector(rq);
655 			q->boundary_rq = rq;
656 		}
657 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
658 		where = ELEVATOR_INSERT_BACK;
659 
660 	if (plug)
661 		blk_plug_device(q);
662 
663 	elv_insert(q, rq, where);
664 }
665 
666 EXPORT_SYMBOL(__elv_add_request);
667 
668 void elv_add_request(request_queue_t *q, struct request *rq, int where,
669 		     int plug)
670 {
671 	unsigned long flags;
672 
673 	spin_lock_irqsave(q->queue_lock, flags);
674 	__elv_add_request(q, rq, where, plug);
675 	spin_unlock_irqrestore(q->queue_lock, flags);
676 }
677 
678 EXPORT_SYMBOL(elv_add_request);
679 
680 static inline struct request *__elv_next_request(request_queue_t *q)
681 {
682 	struct request *rq;
683 
684 	while (1) {
685 		while (!list_empty(&q->queue_head)) {
686 			rq = list_entry_rq(q->queue_head.next);
687 			if (blk_do_ordered(q, &rq))
688 				return rq;
689 		}
690 
691 		if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
692 			return NULL;
693 	}
694 }
695 
696 struct request *elv_next_request(request_queue_t *q)
697 {
698 	struct request *rq;
699 	int ret;
700 
701 	while ((rq = __elv_next_request(q)) != NULL) {
702 		if (!(rq->cmd_flags & REQ_STARTED)) {
703 			elevator_t *e = q->elevator;
704 
705 			/*
706 			 * This is the first time the device driver
707 			 * sees this request (possibly after
708 			 * requeueing).  Notify IO scheduler.
709 			 */
710 			if (blk_sorted_rq(rq) &&
711 			    e->ops->elevator_activate_req_fn)
712 				e->ops->elevator_activate_req_fn(q, rq);
713 
714 			/*
715 			 * just mark as started even if we don't start
716 			 * it, a request that has been delayed should
717 			 * not be passed by new incoming requests
718 			 */
719 			rq->cmd_flags |= REQ_STARTED;
720 			blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
721 		}
722 
723 		if (!q->boundary_rq || q->boundary_rq == rq) {
724 			q->end_sector = rq_end_sector(rq);
725 			q->boundary_rq = NULL;
726 		}
727 
728 		if ((rq->cmd_flags & REQ_DONTPREP) || !q->prep_rq_fn)
729 			break;
730 
731 		ret = q->prep_rq_fn(q, rq);
732 		if (ret == BLKPREP_OK) {
733 			break;
734 		} else if (ret == BLKPREP_DEFER) {
735 			/*
736 			 * the request may have been (partially) prepped.
737 			 * we need to keep this request in the front to
738 			 * avoid resource deadlock.  REQ_STARTED will
739 			 * prevent other fs requests from passing this one.
740 			 */
741 			rq = NULL;
742 			break;
743 		} else if (ret == BLKPREP_KILL) {
744 			int nr_bytes = rq->hard_nr_sectors << 9;
745 
746 			if (!nr_bytes)
747 				nr_bytes = rq->data_len;
748 
749 			blkdev_dequeue_request(rq);
750 			rq->cmd_flags |= REQ_QUIET;
751 			end_that_request_chunk(rq, 0, nr_bytes);
752 			end_that_request_last(rq, 0);
753 		} else {
754 			printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
755 								ret);
756 			break;
757 		}
758 	}
759 
760 	return rq;
761 }
762 
763 EXPORT_SYMBOL(elv_next_request);
764 
765 void elv_dequeue_request(request_queue_t *q, struct request *rq)
766 {
767 	BUG_ON(list_empty(&rq->queuelist));
768 	BUG_ON(ELV_ON_HASH(rq));
769 
770 	list_del_init(&rq->queuelist);
771 
772 	/*
773 	 * the time frame between a request being removed from the lists
774 	 * and to it is freed is accounted as io that is in progress at
775 	 * the driver side.
776 	 */
777 	if (blk_account_rq(rq))
778 		q->in_flight++;
779 }
780 
781 EXPORT_SYMBOL(elv_dequeue_request);
782 
783 int elv_queue_empty(request_queue_t *q)
784 {
785 	elevator_t *e = q->elevator;
786 
787 	if (!list_empty(&q->queue_head))
788 		return 0;
789 
790 	if (e->ops->elevator_queue_empty_fn)
791 		return e->ops->elevator_queue_empty_fn(q);
792 
793 	return 1;
794 }
795 
796 EXPORT_SYMBOL(elv_queue_empty);
797 
798 struct request *elv_latter_request(request_queue_t *q, struct request *rq)
799 {
800 	elevator_t *e = q->elevator;
801 
802 	if (e->ops->elevator_latter_req_fn)
803 		return e->ops->elevator_latter_req_fn(q, rq);
804 	return NULL;
805 }
806 
807 struct request *elv_former_request(request_queue_t *q, struct request *rq)
808 {
809 	elevator_t *e = q->elevator;
810 
811 	if (e->ops->elevator_former_req_fn)
812 		return e->ops->elevator_former_req_fn(q, rq);
813 	return NULL;
814 }
815 
816 int elv_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
817 {
818 	elevator_t *e = q->elevator;
819 
820 	if (e->ops->elevator_set_req_fn)
821 		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
822 
823 	rq->elevator_private = NULL;
824 	return 0;
825 }
826 
827 void elv_put_request(request_queue_t *q, struct request *rq)
828 {
829 	elevator_t *e = q->elevator;
830 
831 	if (e->ops->elevator_put_req_fn)
832 		e->ops->elevator_put_req_fn(rq);
833 }
834 
835 int elv_may_queue(request_queue_t *q, int rw)
836 {
837 	elevator_t *e = q->elevator;
838 
839 	if (e->ops->elevator_may_queue_fn)
840 		return e->ops->elevator_may_queue_fn(q, rw);
841 
842 	return ELV_MQUEUE_MAY;
843 }
844 
845 void elv_completed_request(request_queue_t *q, struct request *rq)
846 {
847 	elevator_t *e = q->elevator;
848 
849 	/*
850 	 * request is released from the driver, io must be done
851 	 */
852 	if (blk_account_rq(rq)) {
853 		q->in_flight--;
854 		if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
855 			e->ops->elevator_completed_req_fn(q, rq);
856 	}
857 
858 	/*
859 	 * Check if the queue is waiting for fs requests to be
860 	 * drained for flush sequence.
861 	 */
862 	if (unlikely(q->ordseq)) {
863 		struct request *first_rq = list_entry_rq(q->queue_head.next);
864 		if (q->in_flight == 0 &&
865 		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
866 		    blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
867 			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
868 			q->request_fn(q);
869 		}
870 	}
871 }
872 
873 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
874 
875 static ssize_t
876 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
877 {
878 	elevator_t *e = container_of(kobj, elevator_t, kobj);
879 	struct elv_fs_entry *entry = to_elv(attr);
880 	ssize_t error;
881 
882 	if (!entry->show)
883 		return -EIO;
884 
885 	mutex_lock(&e->sysfs_lock);
886 	error = e->ops ? entry->show(e, page) : -ENOENT;
887 	mutex_unlock(&e->sysfs_lock);
888 	return error;
889 }
890 
891 static ssize_t
892 elv_attr_store(struct kobject *kobj, struct attribute *attr,
893 	       const char *page, size_t length)
894 {
895 	elevator_t *e = container_of(kobj, elevator_t, kobj);
896 	struct elv_fs_entry *entry = to_elv(attr);
897 	ssize_t error;
898 
899 	if (!entry->store)
900 		return -EIO;
901 
902 	mutex_lock(&e->sysfs_lock);
903 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
904 	mutex_unlock(&e->sysfs_lock);
905 	return error;
906 }
907 
908 static struct sysfs_ops elv_sysfs_ops = {
909 	.show	= elv_attr_show,
910 	.store	= elv_attr_store,
911 };
912 
913 static struct kobj_type elv_ktype = {
914 	.sysfs_ops	= &elv_sysfs_ops,
915 	.release	= elevator_release,
916 };
917 
918 int elv_register_queue(struct request_queue *q)
919 {
920 	elevator_t *e = q->elevator;
921 	int error;
922 
923 	e->kobj.parent = &q->kobj;
924 
925 	error = kobject_add(&e->kobj);
926 	if (!error) {
927 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
928 		if (attr) {
929 			while (attr->attr.name) {
930 				if (sysfs_create_file(&e->kobj, &attr->attr))
931 					break;
932 				attr++;
933 			}
934 		}
935 		kobject_uevent(&e->kobj, KOBJ_ADD);
936 	}
937 	return error;
938 }
939 
940 static void __elv_unregister_queue(elevator_t *e)
941 {
942 	kobject_uevent(&e->kobj, KOBJ_REMOVE);
943 	kobject_del(&e->kobj);
944 }
945 
946 void elv_unregister_queue(struct request_queue *q)
947 {
948 	if (q)
949 		__elv_unregister_queue(q->elevator);
950 }
951 
952 int elv_register(struct elevator_type *e)
953 {
954 	spin_lock_irq(&elv_list_lock);
955 	BUG_ON(elevator_find(e->elevator_name));
956 	list_add_tail(&e->list, &elv_list);
957 	spin_unlock_irq(&elv_list_lock);
958 
959 	printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
960 	if (!strcmp(e->elevator_name, chosen_elevator) ||
961 			(!*chosen_elevator &&
962 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
963 				printk(" (default)");
964 	printk("\n");
965 	return 0;
966 }
967 EXPORT_SYMBOL_GPL(elv_register);
968 
969 void elv_unregister(struct elevator_type *e)
970 {
971 	struct task_struct *g, *p;
972 
973 	/*
974 	 * Iterate every thread in the process to remove the io contexts.
975 	 */
976 	if (e->ops.trim) {
977 		read_lock(&tasklist_lock);
978 		do_each_thread(g, p) {
979 			task_lock(p);
980 			if (p->io_context)
981 				e->ops.trim(p->io_context);
982 			task_unlock(p);
983 		} while_each_thread(g, p);
984 		read_unlock(&tasklist_lock);
985 	}
986 
987 	spin_lock_irq(&elv_list_lock);
988 	list_del_init(&e->list);
989 	spin_unlock_irq(&elv_list_lock);
990 }
991 EXPORT_SYMBOL_GPL(elv_unregister);
992 
993 /*
994  * switch to new_e io scheduler. be careful not to introduce deadlocks -
995  * we don't free the old io scheduler, before we have allocated what we
996  * need for the new one. this way we have a chance of going back to the old
997  * one, if the new one fails init for some reason.
998  */
999 static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
1000 {
1001 	elevator_t *old_elevator, *e;
1002 	void *data;
1003 
1004 	/*
1005 	 * Allocate new elevator
1006 	 */
1007 	e = elevator_alloc(q, new_e);
1008 	if (!e)
1009 		return 0;
1010 
1011 	data = elevator_init_queue(q, e);
1012 	if (!data) {
1013 		kobject_put(&e->kobj);
1014 		return 0;
1015 	}
1016 
1017 	/*
1018 	 * Turn on BYPASS and drain all requests w/ elevator private data
1019 	 */
1020 	spin_lock_irq(q->queue_lock);
1021 
1022 	set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1023 
1024 	elv_drain_elevator(q);
1025 
1026 	while (q->rq.elvpriv) {
1027 		blk_remove_plug(q);
1028 		q->request_fn(q);
1029 		spin_unlock_irq(q->queue_lock);
1030 		msleep(10);
1031 		spin_lock_irq(q->queue_lock);
1032 		elv_drain_elevator(q);
1033 	}
1034 
1035 	/*
1036 	 * Remember old elevator.
1037 	 */
1038 	old_elevator = q->elevator;
1039 
1040 	/*
1041 	 * attach and start new elevator
1042 	 */
1043 	elevator_attach(q, e, data);
1044 
1045 	spin_unlock_irq(q->queue_lock);
1046 
1047 	__elv_unregister_queue(old_elevator);
1048 
1049 	if (elv_register_queue(q))
1050 		goto fail_register;
1051 
1052 	/*
1053 	 * finally exit old elevator and turn off BYPASS.
1054 	 */
1055 	elevator_exit(old_elevator);
1056 	clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1057 	return 1;
1058 
1059 fail_register:
1060 	/*
1061 	 * switch failed, exit the new io scheduler and reattach the old
1062 	 * one again (along with re-adding the sysfs dir)
1063 	 */
1064 	elevator_exit(e);
1065 	q->elevator = old_elevator;
1066 	elv_register_queue(q);
1067 	clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1068 	return 0;
1069 }
1070 
1071 ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
1072 {
1073 	char elevator_name[ELV_NAME_MAX];
1074 	size_t len;
1075 	struct elevator_type *e;
1076 
1077 	elevator_name[sizeof(elevator_name) - 1] = '\0';
1078 	strncpy(elevator_name, name, sizeof(elevator_name) - 1);
1079 	len = strlen(elevator_name);
1080 
1081 	if (len && elevator_name[len - 1] == '\n')
1082 		elevator_name[len - 1] = '\0';
1083 
1084 	e = elevator_get(elevator_name);
1085 	if (!e) {
1086 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1087 		return -EINVAL;
1088 	}
1089 
1090 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1091 		elevator_put(e);
1092 		return count;
1093 	}
1094 
1095 	if (!elevator_switch(q, e))
1096 		printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
1097 	return count;
1098 }
1099 
1100 ssize_t elv_iosched_show(request_queue_t *q, char *name)
1101 {
1102 	elevator_t *e = q->elevator;
1103 	struct elevator_type *elv = e->elevator_type;
1104 	struct list_head *entry;
1105 	int len = 0;
1106 
1107 	spin_lock_irq(&elv_list_lock);
1108 	list_for_each(entry, &elv_list) {
1109 		struct elevator_type *__e;
1110 
1111 		__e = list_entry(entry, struct elevator_type, list);
1112 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1113 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1114 		else
1115 			len += sprintf(name+len, "%s ", __e->elevator_name);
1116 	}
1117 	spin_unlock_irq(&elv_list_lock);
1118 
1119 	len += sprintf(len+name, "\n");
1120 	return len;
1121 }
1122 
1123 struct request *elv_rb_former_request(request_queue_t *q, struct request *rq)
1124 {
1125 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1126 
1127 	if (rbprev)
1128 		return rb_entry_rq(rbprev);
1129 
1130 	return NULL;
1131 }
1132 
1133 EXPORT_SYMBOL(elv_rb_former_request);
1134 
1135 struct request *elv_rb_latter_request(request_queue_t *q, struct request *rq)
1136 {
1137 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1138 
1139 	if (rbnext)
1140 		return rb_entry_rq(rbnext);
1141 
1142 	return NULL;
1143 }
1144 
1145 EXPORT_SYMBOL(elv_rb_latter_request);
1146