xref: /linux/block/elevator.c (revision a5c4300389bb33ade2515c082709217f0614cf15)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
38 
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
45 
46 /*
47  * Merge hash stuff.
48  */
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
51 #define ELV_HASH_FN(sec)	\
52 		(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
54 #define rq_hash_key(rq)		(blk_rq_pos(rq) + blk_rq_sectors(rq))
55 
56 /*
57  * Query io scheduler to see if the current process issuing bio may be
58  * merged with rq.
59  */
60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
61 {
62 	struct request_queue *q = rq->q;
63 	struct elevator_queue *e = q->elevator;
64 
65 	if (e->ops->elevator_allow_merge_fn)
66 		return e->ops->elevator_allow_merge_fn(q, rq, bio);
67 
68 	return 1;
69 }
70 
71 /*
72  * can we safely merge with this request?
73  */
74 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
75 {
76 	if (!rq_mergeable(rq))
77 		return 0;
78 
79 	/*
80 	 * Don't merge file system requests and discard requests
81 	 */
82 	if (bio_rw_flagged(bio, BIO_RW_DISCARD) !=
83 	    bio_rw_flagged(rq->bio, BIO_RW_DISCARD))
84 		return 0;
85 
86 	/*
87 	 * different data direction or already started, don't merge
88 	 */
89 	if (bio_data_dir(bio) != rq_data_dir(rq))
90 		return 0;
91 
92 	/*
93 	 * must be same device and not a special request
94 	 */
95 	if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
96 		return 0;
97 
98 	/*
99 	 * only merge integrity protected bio into ditto rq
100 	 */
101 	if (bio_integrity(bio) != blk_integrity_rq(rq))
102 		return 0;
103 
104 	if (!elv_iosched_allow_merge(rq, bio))
105 		return 0;
106 
107 	return 1;
108 }
109 EXPORT_SYMBOL(elv_rq_merge_ok);
110 
111 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
112 {
113 	int ret = ELEVATOR_NO_MERGE;
114 
115 	/*
116 	 * we can merge and sequence is ok, check if it's possible
117 	 */
118 	if (elv_rq_merge_ok(__rq, bio)) {
119 		if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
120 			ret = ELEVATOR_BACK_MERGE;
121 		else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
122 			ret = ELEVATOR_FRONT_MERGE;
123 	}
124 
125 	return ret;
126 }
127 
128 static struct elevator_type *elevator_find(const char *name)
129 {
130 	struct elevator_type *e;
131 
132 	list_for_each_entry(e, &elv_list, list) {
133 		if (!strcmp(e->elevator_name, name))
134 			return e;
135 	}
136 
137 	return NULL;
138 }
139 
140 static void elevator_put(struct elevator_type *e)
141 {
142 	module_put(e->elevator_owner);
143 }
144 
145 static struct elevator_type *elevator_get(const char *name)
146 {
147 	struct elevator_type *e;
148 
149 	spin_lock(&elv_list_lock);
150 
151 	e = elevator_find(name);
152 	if (!e) {
153 		char elv[ELV_NAME_MAX + strlen("-iosched")];
154 
155 		spin_unlock(&elv_list_lock);
156 
157 		snprintf(elv, sizeof(elv), "%s-iosched", name);
158 
159 		request_module("%s", elv);
160 		spin_lock(&elv_list_lock);
161 		e = elevator_find(name);
162 	}
163 
164 	if (e && !try_module_get(e->elevator_owner))
165 		e = NULL;
166 
167 	spin_unlock(&elv_list_lock);
168 
169 	return e;
170 }
171 
172 static void *elevator_init_queue(struct request_queue *q,
173 				 struct elevator_queue *eq)
174 {
175 	return eq->ops->elevator_init_fn(q);
176 }
177 
178 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
179 			   void *data)
180 {
181 	q->elevator = eq;
182 	eq->elevator_data = data;
183 }
184 
185 static char chosen_elevator[16];
186 
187 static int __init elevator_setup(char *str)
188 {
189 	/*
190 	 * Be backwards-compatible with previous kernels, so users
191 	 * won't get the wrong elevator.
192 	 */
193 	strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
194 	return 1;
195 }
196 
197 __setup("elevator=", elevator_setup);
198 
199 static struct kobj_type elv_ktype;
200 
201 static struct elevator_queue *elevator_alloc(struct request_queue *q,
202 				  struct elevator_type *e)
203 {
204 	struct elevator_queue *eq;
205 	int i;
206 
207 	eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
208 	if (unlikely(!eq))
209 		goto err;
210 
211 	eq->ops = &e->ops;
212 	eq->elevator_type = e;
213 	kobject_init(&eq->kobj, &elv_ktype);
214 	mutex_init(&eq->sysfs_lock);
215 
216 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
217 					GFP_KERNEL, q->node);
218 	if (!eq->hash)
219 		goto err;
220 
221 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
222 		INIT_HLIST_HEAD(&eq->hash[i]);
223 
224 	return eq;
225 err:
226 	kfree(eq);
227 	elevator_put(e);
228 	return NULL;
229 }
230 
231 static void elevator_release(struct kobject *kobj)
232 {
233 	struct elevator_queue *e;
234 
235 	e = container_of(kobj, struct elevator_queue, kobj);
236 	elevator_put(e->elevator_type);
237 	kfree(e->hash);
238 	kfree(e);
239 }
240 
241 int elevator_init(struct request_queue *q, char *name)
242 {
243 	struct elevator_type *e = NULL;
244 	struct elevator_queue *eq;
245 	int ret = 0;
246 	void *data;
247 
248 	INIT_LIST_HEAD(&q->queue_head);
249 	q->last_merge = NULL;
250 	q->end_sector = 0;
251 	q->boundary_rq = NULL;
252 
253 	if (name) {
254 		e = elevator_get(name);
255 		if (!e)
256 			return -EINVAL;
257 	}
258 
259 	if (!e && *chosen_elevator) {
260 		e = elevator_get(chosen_elevator);
261 		if (!e)
262 			printk(KERN_ERR "I/O scheduler %s not found\n",
263 							chosen_elevator);
264 	}
265 
266 	if (!e) {
267 		e = elevator_get(CONFIG_DEFAULT_IOSCHED);
268 		if (!e) {
269 			printk(KERN_ERR
270 				"Default I/O scheduler not found. " \
271 				"Using noop.\n");
272 			e = elevator_get("noop");
273 		}
274 	}
275 
276 	eq = elevator_alloc(q, e);
277 	if (!eq)
278 		return -ENOMEM;
279 
280 	data = elevator_init_queue(q, eq);
281 	if (!data) {
282 		kobject_put(&eq->kobj);
283 		return -ENOMEM;
284 	}
285 
286 	elevator_attach(q, eq, data);
287 	return ret;
288 }
289 EXPORT_SYMBOL(elevator_init);
290 
291 void elevator_exit(struct elevator_queue *e)
292 {
293 	mutex_lock(&e->sysfs_lock);
294 	if (e->ops->elevator_exit_fn)
295 		e->ops->elevator_exit_fn(e);
296 	e->ops = NULL;
297 	mutex_unlock(&e->sysfs_lock);
298 
299 	kobject_put(&e->kobj);
300 }
301 EXPORT_SYMBOL(elevator_exit);
302 
303 static inline void __elv_rqhash_del(struct request *rq)
304 {
305 	hlist_del_init(&rq->hash);
306 }
307 
308 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
309 {
310 	if (ELV_ON_HASH(rq))
311 		__elv_rqhash_del(rq);
312 }
313 
314 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
315 {
316 	struct elevator_queue *e = q->elevator;
317 
318 	BUG_ON(ELV_ON_HASH(rq));
319 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
320 }
321 
322 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
323 {
324 	__elv_rqhash_del(rq);
325 	elv_rqhash_add(q, rq);
326 }
327 
328 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
329 {
330 	struct elevator_queue *e = q->elevator;
331 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
332 	struct hlist_node *entry, *next;
333 	struct request *rq;
334 
335 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
336 		BUG_ON(!ELV_ON_HASH(rq));
337 
338 		if (unlikely(!rq_mergeable(rq))) {
339 			__elv_rqhash_del(rq);
340 			continue;
341 		}
342 
343 		if (rq_hash_key(rq) == offset)
344 			return rq;
345 	}
346 
347 	return NULL;
348 }
349 
350 /*
351  * RB-tree support functions for inserting/lookup/removal of requests
352  * in a sorted RB tree.
353  */
354 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
355 {
356 	struct rb_node **p = &root->rb_node;
357 	struct rb_node *parent = NULL;
358 	struct request *__rq;
359 
360 	while (*p) {
361 		parent = *p;
362 		__rq = rb_entry(parent, struct request, rb_node);
363 
364 		if (blk_rq_pos(rq) < blk_rq_pos(__rq))
365 			p = &(*p)->rb_left;
366 		else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
367 			p = &(*p)->rb_right;
368 		else
369 			return __rq;
370 	}
371 
372 	rb_link_node(&rq->rb_node, parent, p);
373 	rb_insert_color(&rq->rb_node, root);
374 	return NULL;
375 }
376 EXPORT_SYMBOL(elv_rb_add);
377 
378 void elv_rb_del(struct rb_root *root, struct request *rq)
379 {
380 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
381 	rb_erase(&rq->rb_node, root);
382 	RB_CLEAR_NODE(&rq->rb_node);
383 }
384 EXPORT_SYMBOL(elv_rb_del);
385 
386 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
387 {
388 	struct rb_node *n = root->rb_node;
389 	struct request *rq;
390 
391 	while (n) {
392 		rq = rb_entry(n, struct request, rb_node);
393 
394 		if (sector < blk_rq_pos(rq))
395 			n = n->rb_left;
396 		else if (sector > blk_rq_pos(rq))
397 			n = n->rb_right;
398 		else
399 			return rq;
400 	}
401 
402 	return NULL;
403 }
404 EXPORT_SYMBOL(elv_rb_find);
405 
406 /*
407  * Insert rq into dispatch queue of q.  Queue lock must be held on
408  * entry.  rq is sort instead into the dispatch queue. To be used by
409  * specific elevators.
410  */
411 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
412 {
413 	sector_t boundary;
414 	struct list_head *entry;
415 	int stop_flags;
416 
417 	if (q->last_merge == rq)
418 		q->last_merge = NULL;
419 
420 	elv_rqhash_del(q, rq);
421 
422 	q->nr_sorted--;
423 
424 	boundary = q->end_sector;
425 	stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
426 	list_for_each_prev(entry, &q->queue_head) {
427 		struct request *pos = list_entry_rq(entry);
428 
429 		if (blk_discard_rq(rq) != blk_discard_rq(pos))
430 			break;
431 		if (rq_data_dir(rq) != rq_data_dir(pos))
432 			break;
433 		if (pos->cmd_flags & stop_flags)
434 			break;
435 		if (blk_rq_pos(rq) >= boundary) {
436 			if (blk_rq_pos(pos) < boundary)
437 				continue;
438 		} else {
439 			if (blk_rq_pos(pos) >= boundary)
440 				break;
441 		}
442 		if (blk_rq_pos(rq) >= blk_rq_pos(pos))
443 			break;
444 	}
445 
446 	list_add(&rq->queuelist, entry);
447 }
448 EXPORT_SYMBOL(elv_dispatch_sort);
449 
450 /*
451  * Insert rq into dispatch queue of q.  Queue lock must be held on
452  * entry.  rq is added to the back of the dispatch queue. To be used by
453  * specific elevators.
454  */
455 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
456 {
457 	if (q->last_merge == rq)
458 		q->last_merge = NULL;
459 
460 	elv_rqhash_del(q, rq);
461 
462 	q->nr_sorted--;
463 
464 	q->end_sector = rq_end_sector(rq);
465 	q->boundary_rq = rq;
466 	list_add_tail(&rq->queuelist, &q->queue_head);
467 }
468 EXPORT_SYMBOL(elv_dispatch_add_tail);
469 
470 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
471 {
472 	struct elevator_queue *e = q->elevator;
473 	struct request *__rq;
474 	int ret;
475 
476 	/*
477 	 * Levels of merges:
478 	 * 	nomerges:  No merges at all attempted
479 	 * 	noxmerges: Only simple one-hit cache try
480 	 * 	merges:	   All merge tries attempted
481 	 */
482 	if (blk_queue_nomerges(q))
483 		return ELEVATOR_NO_MERGE;
484 
485 	/*
486 	 * First try one-hit cache.
487 	 */
488 	if (q->last_merge) {
489 		ret = elv_try_merge(q->last_merge, bio);
490 		if (ret != ELEVATOR_NO_MERGE) {
491 			*req = q->last_merge;
492 			return ret;
493 		}
494 	}
495 
496 	if (blk_queue_noxmerges(q))
497 		return ELEVATOR_NO_MERGE;
498 
499 	/*
500 	 * See if our hash lookup can find a potential backmerge.
501 	 */
502 	__rq = elv_rqhash_find(q, bio->bi_sector);
503 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
504 		*req = __rq;
505 		return ELEVATOR_BACK_MERGE;
506 	}
507 
508 	if (e->ops->elevator_merge_fn)
509 		return e->ops->elevator_merge_fn(q, req, bio);
510 
511 	return ELEVATOR_NO_MERGE;
512 }
513 
514 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
515 {
516 	struct elevator_queue *e = q->elevator;
517 
518 	if (e->ops->elevator_merged_fn)
519 		e->ops->elevator_merged_fn(q, rq, type);
520 
521 	if (type == ELEVATOR_BACK_MERGE)
522 		elv_rqhash_reposition(q, rq);
523 
524 	q->last_merge = rq;
525 }
526 
527 void elv_merge_requests(struct request_queue *q, struct request *rq,
528 			     struct request *next)
529 {
530 	struct elevator_queue *e = q->elevator;
531 
532 	if (e->ops->elevator_merge_req_fn)
533 		e->ops->elevator_merge_req_fn(q, rq, next);
534 
535 	elv_rqhash_reposition(q, rq);
536 	elv_rqhash_del(q, next);
537 
538 	q->nr_sorted--;
539 	q->last_merge = rq;
540 }
541 
542 void elv_bio_merged(struct request_queue *q, struct request *rq,
543 			struct bio *bio)
544 {
545 	struct elevator_queue *e = q->elevator;
546 
547 	if (e->ops->elevator_bio_merged_fn)
548 		e->ops->elevator_bio_merged_fn(q, rq, bio);
549 }
550 
551 void elv_requeue_request(struct request_queue *q, struct request *rq)
552 {
553 	/*
554 	 * it already went through dequeue, we need to decrement the
555 	 * in_flight count again
556 	 */
557 	if (blk_account_rq(rq)) {
558 		q->in_flight[rq_is_sync(rq)]--;
559 		if (blk_sorted_rq(rq))
560 			elv_deactivate_rq(q, rq);
561 	}
562 
563 	rq->cmd_flags &= ~REQ_STARTED;
564 
565 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
566 }
567 
568 void elv_drain_elevator(struct request_queue *q)
569 {
570 	static int printed;
571 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
572 		;
573 	if (q->nr_sorted == 0)
574 		return;
575 	if (printed++ < 10) {
576 		printk(KERN_ERR "%s: forced dispatching is broken "
577 		       "(nr_sorted=%u), please report this\n",
578 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
579 	}
580 }
581 
582 /*
583  * Call with queue lock held, interrupts disabled
584  */
585 void elv_quiesce_start(struct request_queue *q)
586 {
587 	if (!q->elevator)
588 		return;
589 
590 	queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
591 
592 	/*
593 	 * make sure we don't have any requests in flight
594 	 */
595 	elv_drain_elevator(q);
596 	while (q->rq.elvpriv) {
597 		__blk_run_queue(q);
598 		spin_unlock_irq(q->queue_lock);
599 		msleep(10);
600 		spin_lock_irq(q->queue_lock);
601 		elv_drain_elevator(q);
602 	}
603 }
604 
605 void elv_quiesce_end(struct request_queue *q)
606 {
607 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
608 }
609 
610 void elv_insert(struct request_queue *q, struct request *rq, int where)
611 {
612 	struct list_head *pos;
613 	unsigned ordseq;
614 	int unplug_it = 1;
615 
616 	trace_block_rq_insert(q, rq);
617 
618 	rq->q = q;
619 
620 	switch (where) {
621 	case ELEVATOR_INSERT_FRONT:
622 		rq->cmd_flags |= REQ_SOFTBARRIER;
623 
624 		list_add(&rq->queuelist, &q->queue_head);
625 		break;
626 
627 	case ELEVATOR_INSERT_BACK:
628 		rq->cmd_flags |= REQ_SOFTBARRIER;
629 		elv_drain_elevator(q);
630 		list_add_tail(&rq->queuelist, &q->queue_head);
631 		/*
632 		 * We kick the queue here for the following reasons.
633 		 * - The elevator might have returned NULL previously
634 		 *   to delay requests and returned them now.  As the
635 		 *   queue wasn't empty before this request, ll_rw_blk
636 		 *   won't run the queue on return, resulting in hang.
637 		 * - Usually, back inserted requests won't be merged
638 		 *   with anything.  There's no point in delaying queue
639 		 *   processing.
640 		 */
641 		__blk_run_queue(q);
642 		break;
643 
644 	case ELEVATOR_INSERT_SORT:
645 		BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
646 		rq->cmd_flags |= REQ_SORTED;
647 		q->nr_sorted++;
648 		if (rq_mergeable(rq)) {
649 			elv_rqhash_add(q, rq);
650 			if (!q->last_merge)
651 				q->last_merge = rq;
652 		}
653 
654 		/*
655 		 * Some ioscheds (cfq) run q->request_fn directly, so
656 		 * rq cannot be accessed after calling
657 		 * elevator_add_req_fn.
658 		 */
659 		q->elevator->ops->elevator_add_req_fn(q, rq);
660 		break;
661 
662 	case ELEVATOR_INSERT_REQUEUE:
663 		/*
664 		 * If ordered flush isn't in progress, we do front
665 		 * insertion; otherwise, requests should be requeued
666 		 * in ordseq order.
667 		 */
668 		rq->cmd_flags |= REQ_SOFTBARRIER;
669 
670 		/*
671 		 * Most requeues happen because of a busy condition,
672 		 * don't force unplug of the queue for that case.
673 		 */
674 		unplug_it = 0;
675 
676 		if (q->ordseq == 0) {
677 			list_add(&rq->queuelist, &q->queue_head);
678 			break;
679 		}
680 
681 		ordseq = blk_ordered_req_seq(rq);
682 
683 		list_for_each(pos, &q->queue_head) {
684 			struct request *pos_rq = list_entry_rq(pos);
685 			if (ordseq <= blk_ordered_req_seq(pos_rq))
686 				break;
687 		}
688 
689 		list_add_tail(&rq->queuelist, pos);
690 		break;
691 
692 	default:
693 		printk(KERN_ERR "%s: bad insertion point %d\n",
694 		       __func__, where);
695 		BUG();
696 	}
697 
698 	if (unplug_it && blk_queue_plugged(q)) {
699 		int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
700 				- queue_in_flight(q);
701 
702 		if (nrq >= q->unplug_thresh)
703 			__generic_unplug_device(q);
704 	}
705 }
706 
707 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
708 		       int plug)
709 {
710 	if (q->ordcolor)
711 		rq->cmd_flags |= REQ_ORDERED_COLOR;
712 
713 	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
714 		/*
715 		 * toggle ordered color
716 		 */
717 		if (blk_barrier_rq(rq))
718 			q->ordcolor ^= 1;
719 
720 		/*
721 		 * barriers implicitly indicate back insertion
722 		 */
723 		if (where == ELEVATOR_INSERT_SORT)
724 			where = ELEVATOR_INSERT_BACK;
725 
726 		/*
727 		 * this request is scheduling boundary, update
728 		 * end_sector
729 		 */
730 		if (blk_fs_request(rq) || blk_discard_rq(rq)) {
731 			q->end_sector = rq_end_sector(rq);
732 			q->boundary_rq = rq;
733 		}
734 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
735 		    where == ELEVATOR_INSERT_SORT)
736 		where = ELEVATOR_INSERT_BACK;
737 
738 	if (plug)
739 		blk_plug_device(q);
740 
741 	elv_insert(q, rq, where);
742 }
743 EXPORT_SYMBOL(__elv_add_request);
744 
745 void elv_add_request(struct request_queue *q, struct request *rq, int where,
746 		     int plug)
747 {
748 	unsigned long flags;
749 
750 	spin_lock_irqsave(q->queue_lock, flags);
751 	__elv_add_request(q, rq, where, plug);
752 	spin_unlock_irqrestore(q->queue_lock, flags);
753 }
754 EXPORT_SYMBOL(elv_add_request);
755 
756 int elv_queue_empty(struct request_queue *q)
757 {
758 	struct elevator_queue *e = q->elevator;
759 
760 	if (!list_empty(&q->queue_head))
761 		return 0;
762 
763 	if (e->ops->elevator_queue_empty_fn)
764 		return e->ops->elevator_queue_empty_fn(q);
765 
766 	return 1;
767 }
768 EXPORT_SYMBOL(elv_queue_empty);
769 
770 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
771 {
772 	struct elevator_queue *e = q->elevator;
773 
774 	if (e->ops->elevator_latter_req_fn)
775 		return e->ops->elevator_latter_req_fn(q, rq);
776 	return NULL;
777 }
778 
779 struct request *elv_former_request(struct request_queue *q, struct request *rq)
780 {
781 	struct elevator_queue *e = q->elevator;
782 
783 	if (e->ops->elevator_former_req_fn)
784 		return e->ops->elevator_former_req_fn(q, rq);
785 	return NULL;
786 }
787 
788 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
789 {
790 	struct elevator_queue *e = q->elevator;
791 
792 	if (e->ops->elevator_set_req_fn)
793 		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
794 
795 	rq->elevator_private = NULL;
796 	return 0;
797 }
798 
799 void elv_put_request(struct request_queue *q, struct request *rq)
800 {
801 	struct elevator_queue *e = q->elevator;
802 
803 	if (e->ops->elevator_put_req_fn)
804 		e->ops->elevator_put_req_fn(rq);
805 }
806 
807 int elv_may_queue(struct request_queue *q, int rw)
808 {
809 	struct elevator_queue *e = q->elevator;
810 
811 	if (e->ops->elevator_may_queue_fn)
812 		return e->ops->elevator_may_queue_fn(q, rw);
813 
814 	return ELV_MQUEUE_MAY;
815 }
816 
817 void elv_abort_queue(struct request_queue *q)
818 {
819 	struct request *rq;
820 
821 	while (!list_empty(&q->queue_head)) {
822 		rq = list_entry_rq(q->queue_head.next);
823 		rq->cmd_flags |= REQ_QUIET;
824 		trace_block_rq_abort(q, rq);
825 		/*
826 		 * Mark this request as started so we don't trigger
827 		 * any debug logic in the end I/O path.
828 		 */
829 		blk_start_request(rq);
830 		__blk_end_request_all(rq, -EIO);
831 	}
832 }
833 EXPORT_SYMBOL(elv_abort_queue);
834 
835 void elv_completed_request(struct request_queue *q, struct request *rq)
836 {
837 	struct elevator_queue *e = q->elevator;
838 
839 	/*
840 	 * request is released from the driver, io must be done
841 	 */
842 	if (blk_account_rq(rq)) {
843 		q->in_flight[rq_is_sync(rq)]--;
844 		if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
845 			e->ops->elevator_completed_req_fn(q, rq);
846 	}
847 
848 	/*
849 	 * Check if the queue is waiting for fs requests to be
850 	 * drained for flush sequence.
851 	 */
852 	if (unlikely(q->ordseq)) {
853 		struct request *next = NULL;
854 
855 		if (!list_empty(&q->queue_head))
856 			next = list_entry_rq(q->queue_head.next);
857 
858 		if (!queue_in_flight(q) &&
859 		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
860 		    (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
861 			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
862 			__blk_run_queue(q);
863 		}
864 	}
865 }
866 
867 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
868 
869 static ssize_t
870 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
871 {
872 	struct elv_fs_entry *entry = to_elv(attr);
873 	struct elevator_queue *e;
874 	ssize_t error;
875 
876 	if (!entry->show)
877 		return -EIO;
878 
879 	e = container_of(kobj, struct elevator_queue, kobj);
880 	mutex_lock(&e->sysfs_lock);
881 	error = e->ops ? entry->show(e, page) : -ENOENT;
882 	mutex_unlock(&e->sysfs_lock);
883 	return error;
884 }
885 
886 static ssize_t
887 elv_attr_store(struct kobject *kobj, struct attribute *attr,
888 	       const char *page, size_t length)
889 {
890 	struct elv_fs_entry *entry = to_elv(attr);
891 	struct elevator_queue *e;
892 	ssize_t error;
893 
894 	if (!entry->store)
895 		return -EIO;
896 
897 	e = container_of(kobj, struct elevator_queue, kobj);
898 	mutex_lock(&e->sysfs_lock);
899 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
900 	mutex_unlock(&e->sysfs_lock);
901 	return error;
902 }
903 
904 static const struct sysfs_ops elv_sysfs_ops = {
905 	.show	= elv_attr_show,
906 	.store	= elv_attr_store,
907 };
908 
909 static struct kobj_type elv_ktype = {
910 	.sysfs_ops	= &elv_sysfs_ops,
911 	.release	= elevator_release,
912 };
913 
914 int elv_register_queue(struct request_queue *q)
915 {
916 	struct elevator_queue *e = q->elevator;
917 	int error;
918 
919 	error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
920 	if (!error) {
921 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
922 		if (attr) {
923 			while (attr->attr.name) {
924 				if (sysfs_create_file(&e->kobj, &attr->attr))
925 					break;
926 				attr++;
927 			}
928 		}
929 		kobject_uevent(&e->kobj, KOBJ_ADD);
930 	}
931 	return error;
932 }
933 EXPORT_SYMBOL(elv_register_queue);
934 
935 static void __elv_unregister_queue(struct elevator_queue *e)
936 {
937 	kobject_uevent(&e->kobj, KOBJ_REMOVE);
938 	kobject_del(&e->kobj);
939 }
940 
941 void elv_unregister_queue(struct request_queue *q)
942 {
943 	if (q)
944 		__elv_unregister_queue(q->elevator);
945 }
946 EXPORT_SYMBOL(elv_unregister_queue);
947 
948 void elv_register(struct elevator_type *e)
949 {
950 	char *def = "";
951 
952 	spin_lock(&elv_list_lock);
953 	BUG_ON(elevator_find(e->elevator_name));
954 	list_add_tail(&e->list, &elv_list);
955 	spin_unlock(&elv_list_lock);
956 
957 	if (!strcmp(e->elevator_name, chosen_elevator) ||
958 			(!*chosen_elevator &&
959 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
960 				def = " (default)";
961 
962 	printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
963 								def);
964 }
965 EXPORT_SYMBOL_GPL(elv_register);
966 
967 void elv_unregister(struct elevator_type *e)
968 {
969 	struct task_struct *g, *p;
970 
971 	/*
972 	 * Iterate every thread in the process to remove the io contexts.
973 	 */
974 	if (e->ops.trim) {
975 		read_lock(&tasklist_lock);
976 		do_each_thread(g, p) {
977 			task_lock(p);
978 			if (p->io_context)
979 				e->ops.trim(p->io_context);
980 			task_unlock(p);
981 		} while_each_thread(g, p);
982 		read_unlock(&tasklist_lock);
983 	}
984 
985 	spin_lock(&elv_list_lock);
986 	list_del_init(&e->list);
987 	spin_unlock(&elv_list_lock);
988 }
989 EXPORT_SYMBOL_GPL(elv_unregister);
990 
991 /*
992  * switch to new_e io scheduler. be careful not to introduce deadlocks -
993  * we don't free the old io scheduler, before we have allocated what we
994  * need for the new one. this way we have a chance of going back to the old
995  * one, if the new one fails init for some reason.
996  */
997 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
998 {
999 	struct elevator_queue *old_elevator, *e;
1000 	void *data;
1001 
1002 	/*
1003 	 * Allocate new elevator
1004 	 */
1005 	e = elevator_alloc(q, new_e);
1006 	if (!e)
1007 		return 0;
1008 
1009 	data = elevator_init_queue(q, e);
1010 	if (!data) {
1011 		kobject_put(&e->kobj);
1012 		return 0;
1013 	}
1014 
1015 	/*
1016 	 * Turn on BYPASS and drain all requests w/ elevator private data
1017 	 */
1018 	spin_lock_irq(q->queue_lock);
1019 	elv_quiesce_start(q);
1020 
1021 	/*
1022 	 * Remember old elevator.
1023 	 */
1024 	old_elevator = q->elevator;
1025 
1026 	/*
1027 	 * attach and start new elevator
1028 	 */
1029 	elevator_attach(q, e, data);
1030 
1031 	spin_unlock_irq(q->queue_lock);
1032 
1033 	__elv_unregister_queue(old_elevator);
1034 
1035 	if (elv_register_queue(q))
1036 		goto fail_register;
1037 
1038 	/*
1039 	 * finally exit old elevator and turn off BYPASS.
1040 	 */
1041 	elevator_exit(old_elevator);
1042 	spin_lock_irq(q->queue_lock);
1043 	elv_quiesce_end(q);
1044 	spin_unlock_irq(q->queue_lock);
1045 
1046 	blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1047 
1048 	return 1;
1049 
1050 fail_register:
1051 	/*
1052 	 * switch failed, exit the new io scheduler and reattach the old
1053 	 * one again (along with re-adding the sysfs dir)
1054 	 */
1055 	elevator_exit(e);
1056 	q->elevator = old_elevator;
1057 	elv_register_queue(q);
1058 
1059 	spin_lock_irq(q->queue_lock);
1060 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1061 	spin_unlock_irq(q->queue_lock);
1062 
1063 	return 0;
1064 }
1065 
1066 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1067 			  size_t count)
1068 {
1069 	char elevator_name[ELV_NAME_MAX];
1070 	struct elevator_type *e;
1071 
1072 	if (!q->elevator)
1073 		return count;
1074 
1075 	strlcpy(elevator_name, name, sizeof(elevator_name));
1076 	e = elevator_get(strstrip(elevator_name));
1077 	if (!e) {
1078 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1079 		return -EINVAL;
1080 	}
1081 
1082 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1083 		elevator_put(e);
1084 		return count;
1085 	}
1086 
1087 	if (!elevator_switch(q, e))
1088 		printk(KERN_ERR "elevator: switch to %s failed\n",
1089 							elevator_name);
1090 	return count;
1091 }
1092 
1093 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1094 {
1095 	struct elevator_queue *e = q->elevator;
1096 	struct elevator_type *elv;
1097 	struct elevator_type *__e;
1098 	int len = 0;
1099 
1100 	if (!q->elevator)
1101 		return sprintf(name, "none\n");
1102 
1103 	elv = e->elevator_type;
1104 
1105 	spin_lock(&elv_list_lock);
1106 	list_for_each_entry(__e, &elv_list, list) {
1107 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1108 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1109 		else
1110 			len += sprintf(name+len, "%s ", __e->elevator_name);
1111 	}
1112 	spin_unlock(&elv_list_lock);
1113 
1114 	len += sprintf(len+name, "\n");
1115 	return len;
1116 }
1117 
1118 struct request *elv_rb_former_request(struct request_queue *q,
1119 				      struct request *rq)
1120 {
1121 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1122 
1123 	if (rbprev)
1124 		return rb_entry_rq(rbprev);
1125 
1126 	return NULL;
1127 }
1128 EXPORT_SYMBOL(elv_rb_former_request);
1129 
1130 struct request *elv_rb_latter_request(struct request_queue *q,
1131 				      struct request *rq)
1132 {
1133 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1134 
1135 	if (rbnext)
1136 		return rb_entry_rq(rbnext);
1137 
1138 	return NULL;
1139 }
1140 EXPORT_SYMBOL(elv_rb_latter_request);
1141