1 /* 2 * Block device elevator/IO-scheduler. 3 * 4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * 6 * 30042000 Jens Axboe <axboe@kernel.dk> : 7 * 8 * Split the elevator a bit so that it is possible to choose a different 9 * one or even write a new "plug in". There are three pieces: 10 * - elevator_fn, inserts a new request in the queue list 11 * - elevator_merge_fn, decides whether a new buffer can be merged with 12 * an existing request 13 * - elevator_dequeue_fn, called when a request is taken off the active list 14 * 15 * 20082000 Dave Jones <davej@suse.de> : 16 * Removed tests for max-bomb-segments, which was breaking elvtune 17 * when run without -bN 18 * 19 * Jens: 20 * - Rework again to work with bio instead of buffer_heads 21 * - loose bi_dev comparisons, partition handling is right now 22 * - completely modularize elevator setup and teardown 23 * 24 */ 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/blkdev.h> 28 #include <linux/elevator.h> 29 #include <linux/bio.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/compiler.h> 34 #include <linux/delay.h> 35 #include <linux/blktrace_api.h> 36 #include <linux/hash.h> 37 #include <linux/uaccess.h> 38 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 43 static DEFINE_SPINLOCK(elv_list_lock); 44 static LIST_HEAD(elv_list); 45 46 /* 47 * Merge hash stuff. 48 */ 49 static const int elv_hash_shift = 6; 50 #define ELV_HASH_BLOCK(sec) ((sec) >> 3) 51 #define ELV_HASH_FN(sec) \ 52 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift)) 53 #define ELV_HASH_ENTRIES (1 << elv_hash_shift) 54 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq)) 55 56 /* 57 * Query io scheduler to see if the current process issuing bio may be 58 * merged with rq. 59 */ 60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio) 61 { 62 struct request_queue *q = rq->q; 63 struct elevator_queue *e = q->elevator; 64 65 if (e->ops->elevator_allow_merge_fn) 66 return e->ops->elevator_allow_merge_fn(q, rq, bio); 67 68 return 1; 69 } 70 71 /* 72 * can we safely merge with this request? 73 */ 74 int elv_rq_merge_ok(struct request *rq, struct bio *bio) 75 { 76 if (!rq_mergeable(rq)) 77 return 0; 78 79 /* 80 * Don't merge file system requests and discard requests 81 */ 82 if (bio_rw_flagged(bio, BIO_RW_DISCARD) != 83 bio_rw_flagged(rq->bio, BIO_RW_DISCARD)) 84 return 0; 85 86 /* 87 * different data direction or already started, don't merge 88 */ 89 if (bio_data_dir(bio) != rq_data_dir(rq)) 90 return 0; 91 92 /* 93 * must be same device and not a special request 94 */ 95 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special) 96 return 0; 97 98 /* 99 * only merge integrity protected bio into ditto rq 100 */ 101 if (bio_integrity(bio) != blk_integrity_rq(rq)) 102 return 0; 103 104 if (!elv_iosched_allow_merge(rq, bio)) 105 return 0; 106 107 return 1; 108 } 109 EXPORT_SYMBOL(elv_rq_merge_ok); 110 111 static inline int elv_try_merge(struct request *__rq, struct bio *bio) 112 { 113 int ret = ELEVATOR_NO_MERGE; 114 115 /* 116 * we can merge and sequence is ok, check if it's possible 117 */ 118 if (elv_rq_merge_ok(__rq, bio)) { 119 if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector) 120 ret = ELEVATOR_BACK_MERGE; 121 else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector) 122 ret = ELEVATOR_FRONT_MERGE; 123 } 124 125 return ret; 126 } 127 128 static struct elevator_type *elevator_find(const char *name) 129 { 130 struct elevator_type *e; 131 132 list_for_each_entry(e, &elv_list, list) { 133 if (!strcmp(e->elevator_name, name)) 134 return e; 135 } 136 137 return NULL; 138 } 139 140 static void elevator_put(struct elevator_type *e) 141 { 142 module_put(e->elevator_owner); 143 } 144 145 static struct elevator_type *elevator_get(const char *name) 146 { 147 struct elevator_type *e; 148 149 spin_lock(&elv_list_lock); 150 151 e = elevator_find(name); 152 if (!e) { 153 char elv[ELV_NAME_MAX + strlen("-iosched")]; 154 155 spin_unlock(&elv_list_lock); 156 157 snprintf(elv, sizeof(elv), "%s-iosched", name); 158 159 request_module("%s", elv); 160 spin_lock(&elv_list_lock); 161 e = elevator_find(name); 162 } 163 164 if (e && !try_module_get(e->elevator_owner)) 165 e = NULL; 166 167 spin_unlock(&elv_list_lock); 168 169 return e; 170 } 171 172 static void *elevator_init_queue(struct request_queue *q, 173 struct elevator_queue *eq) 174 { 175 return eq->ops->elevator_init_fn(q); 176 } 177 178 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq, 179 void *data) 180 { 181 q->elevator = eq; 182 eq->elevator_data = data; 183 } 184 185 static char chosen_elevator[16]; 186 187 static int __init elevator_setup(char *str) 188 { 189 /* 190 * Be backwards-compatible with previous kernels, so users 191 * won't get the wrong elevator. 192 */ 193 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 194 return 1; 195 } 196 197 __setup("elevator=", elevator_setup); 198 199 static struct kobj_type elv_ktype; 200 201 static struct elevator_queue *elevator_alloc(struct request_queue *q, 202 struct elevator_type *e) 203 { 204 struct elevator_queue *eq; 205 int i; 206 207 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node); 208 if (unlikely(!eq)) 209 goto err; 210 211 eq->ops = &e->ops; 212 eq->elevator_type = e; 213 kobject_init(&eq->kobj, &elv_ktype); 214 mutex_init(&eq->sysfs_lock); 215 216 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, 217 GFP_KERNEL, q->node); 218 if (!eq->hash) 219 goto err; 220 221 for (i = 0; i < ELV_HASH_ENTRIES; i++) 222 INIT_HLIST_HEAD(&eq->hash[i]); 223 224 return eq; 225 err: 226 kfree(eq); 227 elevator_put(e); 228 return NULL; 229 } 230 231 static void elevator_release(struct kobject *kobj) 232 { 233 struct elevator_queue *e; 234 235 e = container_of(kobj, struct elevator_queue, kobj); 236 elevator_put(e->elevator_type); 237 kfree(e->hash); 238 kfree(e); 239 } 240 241 int elevator_init(struct request_queue *q, char *name) 242 { 243 struct elevator_type *e = NULL; 244 struct elevator_queue *eq; 245 int ret = 0; 246 void *data; 247 248 INIT_LIST_HEAD(&q->queue_head); 249 q->last_merge = NULL; 250 q->end_sector = 0; 251 q->boundary_rq = NULL; 252 253 if (name) { 254 e = elevator_get(name); 255 if (!e) 256 return -EINVAL; 257 } 258 259 if (!e && *chosen_elevator) { 260 e = elevator_get(chosen_elevator); 261 if (!e) 262 printk(KERN_ERR "I/O scheduler %s not found\n", 263 chosen_elevator); 264 } 265 266 if (!e) { 267 e = elevator_get(CONFIG_DEFAULT_IOSCHED); 268 if (!e) { 269 printk(KERN_ERR 270 "Default I/O scheduler not found. " \ 271 "Using noop.\n"); 272 e = elevator_get("noop"); 273 } 274 } 275 276 eq = elevator_alloc(q, e); 277 if (!eq) 278 return -ENOMEM; 279 280 data = elevator_init_queue(q, eq); 281 if (!data) { 282 kobject_put(&eq->kobj); 283 return -ENOMEM; 284 } 285 286 elevator_attach(q, eq, data); 287 return ret; 288 } 289 EXPORT_SYMBOL(elevator_init); 290 291 void elevator_exit(struct elevator_queue *e) 292 { 293 mutex_lock(&e->sysfs_lock); 294 if (e->ops->elevator_exit_fn) 295 e->ops->elevator_exit_fn(e); 296 e->ops = NULL; 297 mutex_unlock(&e->sysfs_lock); 298 299 kobject_put(&e->kobj); 300 } 301 EXPORT_SYMBOL(elevator_exit); 302 303 static inline void __elv_rqhash_del(struct request *rq) 304 { 305 hlist_del_init(&rq->hash); 306 } 307 308 static void elv_rqhash_del(struct request_queue *q, struct request *rq) 309 { 310 if (ELV_ON_HASH(rq)) 311 __elv_rqhash_del(rq); 312 } 313 314 static void elv_rqhash_add(struct request_queue *q, struct request *rq) 315 { 316 struct elevator_queue *e = q->elevator; 317 318 BUG_ON(ELV_ON_HASH(rq)); 319 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]); 320 } 321 322 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq) 323 { 324 __elv_rqhash_del(rq); 325 elv_rqhash_add(q, rq); 326 } 327 328 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) 329 { 330 struct elevator_queue *e = q->elevator; 331 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)]; 332 struct hlist_node *entry, *next; 333 struct request *rq; 334 335 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) { 336 BUG_ON(!ELV_ON_HASH(rq)); 337 338 if (unlikely(!rq_mergeable(rq))) { 339 __elv_rqhash_del(rq); 340 continue; 341 } 342 343 if (rq_hash_key(rq) == offset) 344 return rq; 345 } 346 347 return NULL; 348 } 349 350 /* 351 * RB-tree support functions for inserting/lookup/removal of requests 352 * in a sorted RB tree. 353 */ 354 struct request *elv_rb_add(struct rb_root *root, struct request *rq) 355 { 356 struct rb_node **p = &root->rb_node; 357 struct rb_node *parent = NULL; 358 struct request *__rq; 359 360 while (*p) { 361 parent = *p; 362 __rq = rb_entry(parent, struct request, rb_node); 363 364 if (blk_rq_pos(rq) < blk_rq_pos(__rq)) 365 p = &(*p)->rb_left; 366 else if (blk_rq_pos(rq) > blk_rq_pos(__rq)) 367 p = &(*p)->rb_right; 368 else 369 return __rq; 370 } 371 372 rb_link_node(&rq->rb_node, parent, p); 373 rb_insert_color(&rq->rb_node, root); 374 return NULL; 375 } 376 EXPORT_SYMBOL(elv_rb_add); 377 378 void elv_rb_del(struct rb_root *root, struct request *rq) 379 { 380 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 381 rb_erase(&rq->rb_node, root); 382 RB_CLEAR_NODE(&rq->rb_node); 383 } 384 EXPORT_SYMBOL(elv_rb_del); 385 386 struct request *elv_rb_find(struct rb_root *root, sector_t sector) 387 { 388 struct rb_node *n = root->rb_node; 389 struct request *rq; 390 391 while (n) { 392 rq = rb_entry(n, struct request, rb_node); 393 394 if (sector < blk_rq_pos(rq)) 395 n = n->rb_left; 396 else if (sector > blk_rq_pos(rq)) 397 n = n->rb_right; 398 else 399 return rq; 400 } 401 402 return NULL; 403 } 404 EXPORT_SYMBOL(elv_rb_find); 405 406 /* 407 * Insert rq into dispatch queue of q. Queue lock must be held on 408 * entry. rq is sort instead into the dispatch queue. To be used by 409 * specific elevators. 410 */ 411 void elv_dispatch_sort(struct request_queue *q, struct request *rq) 412 { 413 sector_t boundary; 414 struct list_head *entry; 415 int stop_flags; 416 417 if (q->last_merge == rq) 418 q->last_merge = NULL; 419 420 elv_rqhash_del(q, rq); 421 422 q->nr_sorted--; 423 424 boundary = q->end_sector; 425 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED; 426 list_for_each_prev(entry, &q->queue_head) { 427 struct request *pos = list_entry_rq(entry); 428 429 if (blk_discard_rq(rq) != blk_discard_rq(pos)) 430 break; 431 if (rq_data_dir(rq) != rq_data_dir(pos)) 432 break; 433 if (pos->cmd_flags & stop_flags) 434 break; 435 if (blk_rq_pos(rq) >= boundary) { 436 if (blk_rq_pos(pos) < boundary) 437 continue; 438 } else { 439 if (blk_rq_pos(pos) >= boundary) 440 break; 441 } 442 if (blk_rq_pos(rq) >= blk_rq_pos(pos)) 443 break; 444 } 445 446 list_add(&rq->queuelist, entry); 447 } 448 EXPORT_SYMBOL(elv_dispatch_sort); 449 450 /* 451 * Insert rq into dispatch queue of q. Queue lock must be held on 452 * entry. rq is added to the back of the dispatch queue. To be used by 453 * specific elevators. 454 */ 455 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq) 456 { 457 if (q->last_merge == rq) 458 q->last_merge = NULL; 459 460 elv_rqhash_del(q, rq); 461 462 q->nr_sorted--; 463 464 q->end_sector = rq_end_sector(rq); 465 q->boundary_rq = rq; 466 list_add_tail(&rq->queuelist, &q->queue_head); 467 } 468 EXPORT_SYMBOL(elv_dispatch_add_tail); 469 470 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio) 471 { 472 struct elevator_queue *e = q->elevator; 473 struct request *__rq; 474 int ret; 475 476 /* 477 * Levels of merges: 478 * nomerges: No merges at all attempted 479 * noxmerges: Only simple one-hit cache try 480 * merges: All merge tries attempted 481 */ 482 if (blk_queue_nomerges(q)) 483 return ELEVATOR_NO_MERGE; 484 485 /* 486 * First try one-hit cache. 487 */ 488 if (q->last_merge) { 489 ret = elv_try_merge(q->last_merge, bio); 490 if (ret != ELEVATOR_NO_MERGE) { 491 *req = q->last_merge; 492 return ret; 493 } 494 } 495 496 if (blk_queue_noxmerges(q)) 497 return ELEVATOR_NO_MERGE; 498 499 /* 500 * See if our hash lookup can find a potential backmerge. 501 */ 502 __rq = elv_rqhash_find(q, bio->bi_sector); 503 if (__rq && elv_rq_merge_ok(__rq, bio)) { 504 *req = __rq; 505 return ELEVATOR_BACK_MERGE; 506 } 507 508 if (e->ops->elevator_merge_fn) 509 return e->ops->elevator_merge_fn(q, req, bio); 510 511 return ELEVATOR_NO_MERGE; 512 } 513 514 void elv_merged_request(struct request_queue *q, struct request *rq, int type) 515 { 516 struct elevator_queue *e = q->elevator; 517 518 if (e->ops->elevator_merged_fn) 519 e->ops->elevator_merged_fn(q, rq, type); 520 521 if (type == ELEVATOR_BACK_MERGE) 522 elv_rqhash_reposition(q, rq); 523 524 q->last_merge = rq; 525 } 526 527 void elv_merge_requests(struct request_queue *q, struct request *rq, 528 struct request *next) 529 { 530 struct elevator_queue *e = q->elevator; 531 532 if (e->ops->elevator_merge_req_fn) 533 e->ops->elevator_merge_req_fn(q, rq, next); 534 535 elv_rqhash_reposition(q, rq); 536 elv_rqhash_del(q, next); 537 538 q->nr_sorted--; 539 q->last_merge = rq; 540 } 541 542 void elv_requeue_request(struct request_queue *q, struct request *rq) 543 { 544 /* 545 * it already went through dequeue, we need to decrement the 546 * in_flight count again 547 */ 548 if (blk_account_rq(rq)) { 549 q->in_flight[rq_is_sync(rq)]--; 550 if (blk_sorted_rq(rq)) 551 elv_deactivate_rq(q, rq); 552 } 553 554 rq->cmd_flags &= ~REQ_STARTED; 555 556 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE); 557 } 558 559 void elv_drain_elevator(struct request_queue *q) 560 { 561 static int printed; 562 while (q->elevator->ops->elevator_dispatch_fn(q, 1)) 563 ; 564 if (q->nr_sorted == 0) 565 return; 566 if (printed++ < 10) { 567 printk(KERN_ERR "%s: forced dispatching is broken " 568 "(nr_sorted=%u), please report this\n", 569 q->elevator->elevator_type->elevator_name, q->nr_sorted); 570 } 571 } 572 573 /* 574 * Call with queue lock held, interrupts disabled 575 */ 576 void elv_quiesce_start(struct request_queue *q) 577 { 578 if (!q->elevator) 579 return; 580 581 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q); 582 583 /* 584 * make sure we don't have any requests in flight 585 */ 586 elv_drain_elevator(q); 587 while (q->rq.elvpriv) { 588 __blk_run_queue(q); 589 spin_unlock_irq(q->queue_lock); 590 msleep(10); 591 spin_lock_irq(q->queue_lock); 592 elv_drain_elevator(q); 593 } 594 } 595 596 void elv_quiesce_end(struct request_queue *q) 597 { 598 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 599 } 600 601 void elv_insert(struct request_queue *q, struct request *rq, int where) 602 { 603 struct list_head *pos; 604 unsigned ordseq; 605 int unplug_it = 1; 606 607 trace_block_rq_insert(q, rq); 608 609 rq->q = q; 610 611 switch (where) { 612 case ELEVATOR_INSERT_FRONT: 613 rq->cmd_flags |= REQ_SOFTBARRIER; 614 615 list_add(&rq->queuelist, &q->queue_head); 616 break; 617 618 case ELEVATOR_INSERT_BACK: 619 rq->cmd_flags |= REQ_SOFTBARRIER; 620 elv_drain_elevator(q); 621 list_add_tail(&rq->queuelist, &q->queue_head); 622 /* 623 * We kick the queue here for the following reasons. 624 * - The elevator might have returned NULL previously 625 * to delay requests and returned them now. As the 626 * queue wasn't empty before this request, ll_rw_blk 627 * won't run the queue on return, resulting in hang. 628 * - Usually, back inserted requests won't be merged 629 * with anything. There's no point in delaying queue 630 * processing. 631 */ 632 __blk_run_queue(q); 633 break; 634 635 case ELEVATOR_INSERT_SORT: 636 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq)); 637 rq->cmd_flags |= REQ_SORTED; 638 q->nr_sorted++; 639 if (rq_mergeable(rq)) { 640 elv_rqhash_add(q, rq); 641 if (!q->last_merge) 642 q->last_merge = rq; 643 } 644 645 /* 646 * Some ioscheds (cfq) run q->request_fn directly, so 647 * rq cannot be accessed after calling 648 * elevator_add_req_fn. 649 */ 650 q->elevator->ops->elevator_add_req_fn(q, rq); 651 break; 652 653 case ELEVATOR_INSERT_REQUEUE: 654 /* 655 * If ordered flush isn't in progress, we do front 656 * insertion; otherwise, requests should be requeued 657 * in ordseq order. 658 */ 659 rq->cmd_flags |= REQ_SOFTBARRIER; 660 661 /* 662 * Most requeues happen because of a busy condition, 663 * don't force unplug of the queue for that case. 664 */ 665 unplug_it = 0; 666 667 if (q->ordseq == 0) { 668 list_add(&rq->queuelist, &q->queue_head); 669 break; 670 } 671 672 ordseq = blk_ordered_req_seq(rq); 673 674 list_for_each(pos, &q->queue_head) { 675 struct request *pos_rq = list_entry_rq(pos); 676 if (ordseq <= blk_ordered_req_seq(pos_rq)) 677 break; 678 } 679 680 list_add_tail(&rq->queuelist, pos); 681 break; 682 683 default: 684 printk(KERN_ERR "%s: bad insertion point %d\n", 685 __func__, where); 686 BUG(); 687 } 688 689 if (unplug_it && blk_queue_plugged(q)) { 690 int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC] 691 - queue_in_flight(q); 692 693 if (nrq >= q->unplug_thresh) 694 __generic_unplug_device(q); 695 } 696 } 697 698 void __elv_add_request(struct request_queue *q, struct request *rq, int where, 699 int plug) 700 { 701 if (q->ordcolor) 702 rq->cmd_flags |= REQ_ORDERED_COLOR; 703 704 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) { 705 /* 706 * toggle ordered color 707 */ 708 if (blk_barrier_rq(rq)) 709 q->ordcolor ^= 1; 710 711 /* 712 * barriers implicitly indicate back insertion 713 */ 714 if (where == ELEVATOR_INSERT_SORT) 715 where = ELEVATOR_INSERT_BACK; 716 717 /* 718 * this request is scheduling boundary, update 719 * end_sector 720 */ 721 if (blk_fs_request(rq) || blk_discard_rq(rq)) { 722 q->end_sector = rq_end_sector(rq); 723 q->boundary_rq = rq; 724 } 725 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && 726 where == ELEVATOR_INSERT_SORT) 727 where = ELEVATOR_INSERT_BACK; 728 729 if (plug) 730 blk_plug_device(q); 731 732 elv_insert(q, rq, where); 733 } 734 EXPORT_SYMBOL(__elv_add_request); 735 736 void elv_add_request(struct request_queue *q, struct request *rq, int where, 737 int plug) 738 { 739 unsigned long flags; 740 741 spin_lock_irqsave(q->queue_lock, flags); 742 __elv_add_request(q, rq, where, plug); 743 spin_unlock_irqrestore(q->queue_lock, flags); 744 } 745 EXPORT_SYMBOL(elv_add_request); 746 747 int elv_queue_empty(struct request_queue *q) 748 { 749 struct elevator_queue *e = q->elevator; 750 751 if (!list_empty(&q->queue_head)) 752 return 0; 753 754 if (e->ops->elevator_queue_empty_fn) 755 return e->ops->elevator_queue_empty_fn(q); 756 757 return 1; 758 } 759 EXPORT_SYMBOL(elv_queue_empty); 760 761 struct request *elv_latter_request(struct request_queue *q, struct request *rq) 762 { 763 struct elevator_queue *e = q->elevator; 764 765 if (e->ops->elevator_latter_req_fn) 766 return e->ops->elevator_latter_req_fn(q, rq); 767 return NULL; 768 } 769 770 struct request *elv_former_request(struct request_queue *q, struct request *rq) 771 { 772 struct elevator_queue *e = q->elevator; 773 774 if (e->ops->elevator_former_req_fn) 775 return e->ops->elevator_former_req_fn(q, rq); 776 return NULL; 777 } 778 779 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask) 780 { 781 struct elevator_queue *e = q->elevator; 782 783 if (e->ops->elevator_set_req_fn) 784 return e->ops->elevator_set_req_fn(q, rq, gfp_mask); 785 786 rq->elevator_private = NULL; 787 return 0; 788 } 789 790 void elv_put_request(struct request_queue *q, struct request *rq) 791 { 792 struct elevator_queue *e = q->elevator; 793 794 if (e->ops->elevator_put_req_fn) 795 e->ops->elevator_put_req_fn(rq); 796 } 797 798 int elv_may_queue(struct request_queue *q, int rw) 799 { 800 struct elevator_queue *e = q->elevator; 801 802 if (e->ops->elevator_may_queue_fn) 803 return e->ops->elevator_may_queue_fn(q, rw); 804 805 return ELV_MQUEUE_MAY; 806 } 807 808 void elv_abort_queue(struct request_queue *q) 809 { 810 struct request *rq; 811 812 while (!list_empty(&q->queue_head)) { 813 rq = list_entry_rq(q->queue_head.next); 814 rq->cmd_flags |= REQ_QUIET; 815 trace_block_rq_abort(q, rq); 816 /* 817 * Mark this request as started so we don't trigger 818 * any debug logic in the end I/O path. 819 */ 820 blk_start_request(rq); 821 __blk_end_request_all(rq, -EIO); 822 } 823 } 824 EXPORT_SYMBOL(elv_abort_queue); 825 826 void elv_completed_request(struct request_queue *q, struct request *rq) 827 { 828 struct elevator_queue *e = q->elevator; 829 830 /* 831 * request is released from the driver, io must be done 832 */ 833 if (blk_account_rq(rq)) { 834 q->in_flight[rq_is_sync(rq)]--; 835 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn) 836 e->ops->elevator_completed_req_fn(q, rq); 837 } 838 839 /* 840 * Check if the queue is waiting for fs requests to be 841 * drained for flush sequence. 842 */ 843 if (unlikely(q->ordseq)) { 844 struct request *next = NULL; 845 846 if (!list_empty(&q->queue_head)) 847 next = list_entry_rq(q->queue_head.next); 848 849 if (!queue_in_flight(q) && 850 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN && 851 (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) { 852 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0); 853 __blk_run_queue(q); 854 } 855 } 856 } 857 858 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) 859 860 static ssize_t 861 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 862 { 863 struct elv_fs_entry *entry = to_elv(attr); 864 struct elevator_queue *e; 865 ssize_t error; 866 867 if (!entry->show) 868 return -EIO; 869 870 e = container_of(kobj, struct elevator_queue, kobj); 871 mutex_lock(&e->sysfs_lock); 872 error = e->ops ? entry->show(e, page) : -ENOENT; 873 mutex_unlock(&e->sysfs_lock); 874 return error; 875 } 876 877 static ssize_t 878 elv_attr_store(struct kobject *kobj, struct attribute *attr, 879 const char *page, size_t length) 880 { 881 struct elv_fs_entry *entry = to_elv(attr); 882 struct elevator_queue *e; 883 ssize_t error; 884 885 if (!entry->store) 886 return -EIO; 887 888 e = container_of(kobj, struct elevator_queue, kobj); 889 mutex_lock(&e->sysfs_lock); 890 error = e->ops ? entry->store(e, page, length) : -ENOENT; 891 mutex_unlock(&e->sysfs_lock); 892 return error; 893 } 894 895 static const struct sysfs_ops elv_sysfs_ops = { 896 .show = elv_attr_show, 897 .store = elv_attr_store, 898 }; 899 900 static struct kobj_type elv_ktype = { 901 .sysfs_ops = &elv_sysfs_ops, 902 .release = elevator_release, 903 }; 904 905 int elv_register_queue(struct request_queue *q) 906 { 907 struct elevator_queue *e = q->elevator; 908 int error; 909 910 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched"); 911 if (!error) { 912 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs; 913 if (attr) { 914 while (attr->attr.name) { 915 if (sysfs_create_file(&e->kobj, &attr->attr)) 916 break; 917 attr++; 918 } 919 } 920 kobject_uevent(&e->kobj, KOBJ_ADD); 921 } 922 return error; 923 } 924 925 static void __elv_unregister_queue(struct elevator_queue *e) 926 { 927 kobject_uevent(&e->kobj, KOBJ_REMOVE); 928 kobject_del(&e->kobj); 929 } 930 931 void elv_unregister_queue(struct request_queue *q) 932 { 933 if (q) 934 __elv_unregister_queue(q->elevator); 935 } 936 937 void elv_register(struct elevator_type *e) 938 { 939 char *def = ""; 940 941 spin_lock(&elv_list_lock); 942 BUG_ON(elevator_find(e->elevator_name)); 943 list_add_tail(&e->list, &elv_list); 944 spin_unlock(&elv_list_lock); 945 946 if (!strcmp(e->elevator_name, chosen_elevator) || 947 (!*chosen_elevator && 948 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED))) 949 def = " (default)"; 950 951 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, 952 def); 953 } 954 EXPORT_SYMBOL_GPL(elv_register); 955 956 void elv_unregister(struct elevator_type *e) 957 { 958 struct task_struct *g, *p; 959 960 /* 961 * Iterate every thread in the process to remove the io contexts. 962 */ 963 if (e->ops.trim) { 964 read_lock(&tasklist_lock); 965 do_each_thread(g, p) { 966 task_lock(p); 967 if (p->io_context) 968 e->ops.trim(p->io_context); 969 task_unlock(p); 970 } while_each_thread(g, p); 971 read_unlock(&tasklist_lock); 972 } 973 974 spin_lock(&elv_list_lock); 975 list_del_init(&e->list); 976 spin_unlock(&elv_list_lock); 977 } 978 EXPORT_SYMBOL_GPL(elv_unregister); 979 980 /* 981 * switch to new_e io scheduler. be careful not to introduce deadlocks - 982 * we don't free the old io scheduler, before we have allocated what we 983 * need for the new one. this way we have a chance of going back to the old 984 * one, if the new one fails init for some reason. 985 */ 986 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e) 987 { 988 struct elevator_queue *old_elevator, *e; 989 void *data; 990 991 /* 992 * Allocate new elevator 993 */ 994 e = elevator_alloc(q, new_e); 995 if (!e) 996 return 0; 997 998 data = elevator_init_queue(q, e); 999 if (!data) { 1000 kobject_put(&e->kobj); 1001 return 0; 1002 } 1003 1004 /* 1005 * Turn on BYPASS and drain all requests w/ elevator private data 1006 */ 1007 spin_lock_irq(q->queue_lock); 1008 elv_quiesce_start(q); 1009 1010 /* 1011 * Remember old elevator. 1012 */ 1013 old_elevator = q->elevator; 1014 1015 /* 1016 * attach and start new elevator 1017 */ 1018 elevator_attach(q, e, data); 1019 1020 spin_unlock_irq(q->queue_lock); 1021 1022 __elv_unregister_queue(old_elevator); 1023 1024 if (elv_register_queue(q)) 1025 goto fail_register; 1026 1027 /* 1028 * finally exit old elevator and turn off BYPASS. 1029 */ 1030 elevator_exit(old_elevator); 1031 spin_lock_irq(q->queue_lock); 1032 elv_quiesce_end(q); 1033 spin_unlock_irq(q->queue_lock); 1034 1035 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name); 1036 1037 return 1; 1038 1039 fail_register: 1040 /* 1041 * switch failed, exit the new io scheduler and reattach the old 1042 * one again (along with re-adding the sysfs dir) 1043 */ 1044 elevator_exit(e); 1045 q->elevator = old_elevator; 1046 elv_register_queue(q); 1047 1048 spin_lock_irq(q->queue_lock); 1049 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 1050 spin_unlock_irq(q->queue_lock); 1051 1052 return 0; 1053 } 1054 1055 ssize_t elv_iosched_store(struct request_queue *q, const char *name, 1056 size_t count) 1057 { 1058 char elevator_name[ELV_NAME_MAX]; 1059 struct elevator_type *e; 1060 1061 if (!q->elevator) 1062 return count; 1063 1064 strlcpy(elevator_name, name, sizeof(elevator_name)); 1065 e = elevator_get(strstrip(elevator_name)); 1066 if (!e) { 1067 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 1068 return -EINVAL; 1069 } 1070 1071 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) { 1072 elevator_put(e); 1073 return count; 1074 } 1075 1076 if (!elevator_switch(q, e)) 1077 printk(KERN_ERR "elevator: switch to %s failed\n", 1078 elevator_name); 1079 return count; 1080 } 1081 1082 ssize_t elv_iosched_show(struct request_queue *q, char *name) 1083 { 1084 struct elevator_queue *e = q->elevator; 1085 struct elevator_type *elv; 1086 struct elevator_type *__e; 1087 int len = 0; 1088 1089 if (!q->elevator) 1090 return sprintf(name, "none\n"); 1091 1092 elv = e->elevator_type; 1093 1094 spin_lock(&elv_list_lock); 1095 list_for_each_entry(__e, &elv_list, list) { 1096 if (!strcmp(elv->elevator_name, __e->elevator_name)) 1097 len += sprintf(name+len, "[%s] ", elv->elevator_name); 1098 else 1099 len += sprintf(name+len, "%s ", __e->elevator_name); 1100 } 1101 spin_unlock(&elv_list_lock); 1102 1103 len += sprintf(len+name, "\n"); 1104 return len; 1105 } 1106 1107 struct request *elv_rb_former_request(struct request_queue *q, 1108 struct request *rq) 1109 { 1110 struct rb_node *rbprev = rb_prev(&rq->rb_node); 1111 1112 if (rbprev) 1113 return rb_entry_rq(rbprev); 1114 1115 return NULL; 1116 } 1117 EXPORT_SYMBOL(elv_rb_former_request); 1118 1119 struct request *elv_rb_latter_request(struct request_queue *q, 1120 struct request *rq) 1121 { 1122 struct rb_node *rbnext = rb_next(&rq->rb_node); 1123 1124 if (rbnext) 1125 return rb_entry_rq(rbnext); 1126 1127 return NULL; 1128 } 1129 EXPORT_SYMBOL(elv_rb_latter_request); 1130