1 /* 2 * Block device elevator/IO-scheduler. 3 * 4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * 6 * 30042000 Jens Axboe <axboe@kernel.dk> : 7 * 8 * Split the elevator a bit so that it is possible to choose a different 9 * one or even write a new "plug in". There are three pieces: 10 * - elevator_fn, inserts a new request in the queue list 11 * - elevator_merge_fn, decides whether a new buffer can be merged with 12 * an existing request 13 * - elevator_dequeue_fn, called when a request is taken off the active list 14 * 15 * 20082000 Dave Jones <davej@suse.de> : 16 * Removed tests for max-bomb-segments, which was breaking elvtune 17 * when run without -bN 18 * 19 * Jens: 20 * - Rework again to work with bio instead of buffer_heads 21 * - loose bi_dev comparisons, partition handling is right now 22 * - completely modularize elevator setup and teardown 23 * 24 */ 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/blkdev.h> 28 #include <linux/elevator.h> 29 #include <linux/bio.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/compiler.h> 34 #include <linux/delay.h> 35 #include <linux/blktrace_api.h> 36 #include <linux/hash.h> 37 #include <linux/uaccess.h> 38 39 #include "blk.h" 40 41 static DEFINE_SPINLOCK(elv_list_lock); 42 static LIST_HEAD(elv_list); 43 44 /* 45 * Merge hash stuff. 46 */ 47 static const int elv_hash_shift = 6; 48 #define ELV_HASH_BLOCK(sec) ((sec) >> 3) 49 #define ELV_HASH_FN(sec) \ 50 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift)) 51 #define ELV_HASH_ENTRIES (1 << elv_hash_shift) 52 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) 53 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash)) 54 55 /* 56 * Query io scheduler to see if the current process issuing bio may be 57 * merged with rq. 58 */ 59 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio) 60 { 61 struct request_queue *q = rq->q; 62 elevator_t *e = q->elevator; 63 64 if (e->ops->elevator_allow_merge_fn) 65 return e->ops->elevator_allow_merge_fn(q, rq, bio); 66 67 return 1; 68 } 69 70 /* 71 * can we safely merge with this request? 72 */ 73 int elv_rq_merge_ok(struct request *rq, struct bio *bio) 74 { 75 if (!rq_mergeable(rq)) 76 return 0; 77 78 /* 79 * Don't merge file system requests and discard requests 80 */ 81 if (bio_discard(bio) != bio_discard(rq->bio)) 82 return 0; 83 84 /* 85 * different data direction or already started, don't merge 86 */ 87 if (bio_data_dir(bio) != rq_data_dir(rq)) 88 return 0; 89 90 /* 91 * must be same device and not a special request 92 */ 93 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special) 94 return 0; 95 96 /* 97 * only merge integrity protected bio into ditto rq 98 */ 99 if (bio_integrity(bio) != blk_integrity_rq(rq)) 100 return 0; 101 102 if (!elv_iosched_allow_merge(rq, bio)) 103 return 0; 104 105 return 1; 106 } 107 EXPORT_SYMBOL(elv_rq_merge_ok); 108 109 static inline int elv_try_merge(struct request *__rq, struct bio *bio) 110 { 111 int ret = ELEVATOR_NO_MERGE; 112 113 /* 114 * we can merge and sequence is ok, check if it's possible 115 */ 116 if (elv_rq_merge_ok(__rq, bio)) { 117 if (__rq->sector + __rq->nr_sectors == bio->bi_sector) 118 ret = ELEVATOR_BACK_MERGE; 119 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector) 120 ret = ELEVATOR_FRONT_MERGE; 121 } 122 123 return ret; 124 } 125 126 static struct elevator_type *elevator_find(const char *name) 127 { 128 struct elevator_type *e; 129 130 list_for_each_entry(e, &elv_list, list) { 131 if (!strcmp(e->elevator_name, name)) 132 return e; 133 } 134 135 return NULL; 136 } 137 138 static void elevator_put(struct elevator_type *e) 139 { 140 module_put(e->elevator_owner); 141 } 142 143 static struct elevator_type *elevator_get(const char *name) 144 { 145 struct elevator_type *e; 146 147 spin_lock(&elv_list_lock); 148 149 e = elevator_find(name); 150 if (!e) { 151 char elv[ELV_NAME_MAX + strlen("-iosched")]; 152 153 spin_unlock(&elv_list_lock); 154 155 if (!strcmp(name, "anticipatory")) 156 sprintf(elv, "as-iosched"); 157 else 158 sprintf(elv, "%s-iosched", name); 159 160 request_module("%s", elv); 161 spin_lock(&elv_list_lock); 162 e = elevator_find(name); 163 } 164 165 if (e && !try_module_get(e->elevator_owner)) 166 e = NULL; 167 168 spin_unlock(&elv_list_lock); 169 170 return e; 171 } 172 173 static void *elevator_init_queue(struct request_queue *q, 174 struct elevator_queue *eq) 175 { 176 return eq->ops->elevator_init_fn(q); 177 } 178 179 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq, 180 void *data) 181 { 182 q->elevator = eq; 183 eq->elevator_data = data; 184 } 185 186 static char chosen_elevator[16]; 187 188 static int __init elevator_setup(char *str) 189 { 190 /* 191 * Be backwards-compatible with previous kernels, so users 192 * won't get the wrong elevator. 193 */ 194 if (!strcmp(str, "as")) 195 strcpy(chosen_elevator, "anticipatory"); 196 else 197 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 198 return 1; 199 } 200 201 __setup("elevator=", elevator_setup); 202 203 static struct kobj_type elv_ktype; 204 205 static elevator_t *elevator_alloc(struct request_queue *q, 206 struct elevator_type *e) 207 { 208 elevator_t *eq; 209 int i; 210 211 eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node); 212 if (unlikely(!eq)) 213 goto err; 214 215 eq->ops = &e->ops; 216 eq->elevator_type = e; 217 kobject_init(&eq->kobj, &elv_ktype); 218 mutex_init(&eq->sysfs_lock); 219 220 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, 221 GFP_KERNEL, q->node); 222 if (!eq->hash) 223 goto err; 224 225 for (i = 0; i < ELV_HASH_ENTRIES; i++) 226 INIT_HLIST_HEAD(&eq->hash[i]); 227 228 return eq; 229 err: 230 kfree(eq); 231 elevator_put(e); 232 return NULL; 233 } 234 235 static void elevator_release(struct kobject *kobj) 236 { 237 elevator_t *e = container_of(kobj, elevator_t, kobj); 238 239 elevator_put(e->elevator_type); 240 kfree(e->hash); 241 kfree(e); 242 } 243 244 int elevator_init(struct request_queue *q, char *name) 245 { 246 struct elevator_type *e = NULL; 247 struct elevator_queue *eq; 248 int ret = 0; 249 void *data; 250 251 INIT_LIST_HEAD(&q->queue_head); 252 q->last_merge = NULL; 253 q->end_sector = 0; 254 q->boundary_rq = NULL; 255 256 if (name) { 257 e = elevator_get(name); 258 if (!e) 259 return -EINVAL; 260 } 261 262 if (!e && *chosen_elevator) { 263 e = elevator_get(chosen_elevator); 264 if (!e) 265 printk(KERN_ERR "I/O scheduler %s not found\n", 266 chosen_elevator); 267 } 268 269 if (!e) { 270 e = elevator_get(CONFIG_DEFAULT_IOSCHED); 271 if (!e) { 272 printk(KERN_ERR 273 "Default I/O scheduler not found. " \ 274 "Using noop.\n"); 275 e = elevator_get("noop"); 276 } 277 } 278 279 eq = elevator_alloc(q, e); 280 if (!eq) 281 return -ENOMEM; 282 283 data = elevator_init_queue(q, eq); 284 if (!data) { 285 kobject_put(&eq->kobj); 286 return -ENOMEM; 287 } 288 289 elevator_attach(q, eq, data); 290 return ret; 291 } 292 EXPORT_SYMBOL(elevator_init); 293 294 void elevator_exit(elevator_t *e) 295 { 296 mutex_lock(&e->sysfs_lock); 297 if (e->ops->elevator_exit_fn) 298 e->ops->elevator_exit_fn(e); 299 e->ops = NULL; 300 mutex_unlock(&e->sysfs_lock); 301 302 kobject_put(&e->kobj); 303 } 304 EXPORT_SYMBOL(elevator_exit); 305 306 static void elv_activate_rq(struct request_queue *q, struct request *rq) 307 { 308 elevator_t *e = q->elevator; 309 310 if (e->ops->elevator_activate_req_fn) 311 e->ops->elevator_activate_req_fn(q, rq); 312 } 313 314 static void elv_deactivate_rq(struct request_queue *q, struct request *rq) 315 { 316 elevator_t *e = q->elevator; 317 318 if (e->ops->elevator_deactivate_req_fn) 319 e->ops->elevator_deactivate_req_fn(q, rq); 320 } 321 322 static inline void __elv_rqhash_del(struct request *rq) 323 { 324 hlist_del_init(&rq->hash); 325 } 326 327 static void elv_rqhash_del(struct request_queue *q, struct request *rq) 328 { 329 if (ELV_ON_HASH(rq)) 330 __elv_rqhash_del(rq); 331 } 332 333 static void elv_rqhash_add(struct request_queue *q, struct request *rq) 334 { 335 elevator_t *e = q->elevator; 336 337 BUG_ON(ELV_ON_HASH(rq)); 338 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]); 339 } 340 341 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq) 342 { 343 __elv_rqhash_del(rq); 344 elv_rqhash_add(q, rq); 345 } 346 347 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) 348 { 349 elevator_t *e = q->elevator; 350 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)]; 351 struct hlist_node *entry, *next; 352 struct request *rq; 353 354 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) { 355 BUG_ON(!ELV_ON_HASH(rq)); 356 357 if (unlikely(!rq_mergeable(rq))) { 358 __elv_rqhash_del(rq); 359 continue; 360 } 361 362 if (rq_hash_key(rq) == offset) 363 return rq; 364 } 365 366 return NULL; 367 } 368 369 /* 370 * RB-tree support functions for inserting/lookup/removal of requests 371 * in a sorted RB tree. 372 */ 373 struct request *elv_rb_add(struct rb_root *root, struct request *rq) 374 { 375 struct rb_node **p = &root->rb_node; 376 struct rb_node *parent = NULL; 377 struct request *__rq; 378 379 while (*p) { 380 parent = *p; 381 __rq = rb_entry(parent, struct request, rb_node); 382 383 if (rq->sector < __rq->sector) 384 p = &(*p)->rb_left; 385 else if (rq->sector > __rq->sector) 386 p = &(*p)->rb_right; 387 else 388 return __rq; 389 } 390 391 rb_link_node(&rq->rb_node, parent, p); 392 rb_insert_color(&rq->rb_node, root); 393 return NULL; 394 } 395 EXPORT_SYMBOL(elv_rb_add); 396 397 void elv_rb_del(struct rb_root *root, struct request *rq) 398 { 399 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 400 rb_erase(&rq->rb_node, root); 401 RB_CLEAR_NODE(&rq->rb_node); 402 } 403 EXPORT_SYMBOL(elv_rb_del); 404 405 struct request *elv_rb_find(struct rb_root *root, sector_t sector) 406 { 407 struct rb_node *n = root->rb_node; 408 struct request *rq; 409 410 while (n) { 411 rq = rb_entry(n, struct request, rb_node); 412 413 if (sector < rq->sector) 414 n = n->rb_left; 415 else if (sector > rq->sector) 416 n = n->rb_right; 417 else 418 return rq; 419 } 420 421 return NULL; 422 } 423 EXPORT_SYMBOL(elv_rb_find); 424 425 /* 426 * Insert rq into dispatch queue of q. Queue lock must be held on 427 * entry. rq is sort instead into the dispatch queue. To be used by 428 * specific elevators. 429 */ 430 void elv_dispatch_sort(struct request_queue *q, struct request *rq) 431 { 432 sector_t boundary; 433 struct list_head *entry; 434 int stop_flags; 435 436 if (q->last_merge == rq) 437 q->last_merge = NULL; 438 439 elv_rqhash_del(q, rq); 440 441 q->nr_sorted--; 442 443 boundary = q->end_sector; 444 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED; 445 list_for_each_prev(entry, &q->queue_head) { 446 struct request *pos = list_entry_rq(entry); 447 448 if (blk_discard_rq(rq) != blk_discard_rq(pos)) 449 break; 450 if (rq_data_dir(rq) != rq_data_dir(pos)) 451 break; 452 if (pos->cmd_flags & stop_flags) 453 break; 454 if (rq->sector >= boundary) { 455 if (pos->sector < boundary) 456 continue; 457 } else { 458 if (pos->sector >= boundary) 459 break; 460 } 461 if (rq->sector >= pos->sector) 462 break; 463 } 464 465 list_add(&rq->queuelist, entry); 466 } 467 EXPORT_SYMBOL(elv_dispatch_sort); 468 469 /* 470 * Insert rq into dispatch queue of q. Queue lock must be held on 471 * entry. rq is added to the back of the dispatch queue. To be used by 472 * specific elevators. 473 */ 474 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq) 475 { 476 if (q->last_merge == rq) 477 q->last_merge = NULL; 478 479 elv_rqhash_del(q, rq); 480 481 q->nr_sorted--; 482 483 q->end_sector = rq_end_sector(rq); 484 q->boundary_rq = rq; 485 list_add_tail(&rq->queuelist, &q->queue_head); 486 } 487 EXPORT_SYMBOL(elv_dispatch_add_tail); 488 489 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio) 490 { 491 elevator_t *e = q->elevator; 492 struct request *__rq; 493 int ret; 494 495 /* 496 * First try one-hit cache. 497 */ 498 if (q->last_merge) { 499 ret = elv_try_merge(q->last_merge, bio); 500 if (ret != ELEVATOR_NO_MERGE) { 501 *req = q->last_merge; 502 return ret; 503 } 504 } 505 506 if (blk_queue_nomerges(q)) 507 return ELEVATOR_NO_MERGE; 508 509 /* 510 * See if our hash lookup can find a potential backmerge. 511 */ 512 __rq = elv_rqhash_find(q, bio->bi_sector); 513 if (__rq && elv_rq_merge_ok(__rq, bio)) { 514 *req = __rq; 515 return ELEVATOR_BACK_MERGE; 516 } 517 518 if (e->ops->elevator_merge_fn) 519 return e->ops->elevator_merge_fn(q, req, bio); 520 521 return ELEVATOR_NO_MERGE; 522 } 523 524 void elv_merged_request(struct request_queue *q, struct request *rq, int type) 525 { 526 elevator_t *e = q->elevator; 527 528 if (e->ops->elevator_merged_fn) 529 e->ops->elevator_merged_fn(q, rq, type); 530 531 if (type == ELEVATOR_BACK_MERGE) 532 elv_rqhash_reposition(q, rq); 533 534 q->last_merge = rq; 535 } 536 537 void elv_merge_requests(struct request_queue *q, struct request *rq, 538 struct request *next) 539 { 540 elevator_t *e = q->elevator; 541 542 if (e->ops->elevator_merge_req_fn) 543 e->ops->elevator_merge_req_fn(q, rq, next); 544 545 elv_rqhash_reposition(q, rq); 546 elv_rqhash_del(q, next); 547 548 q->nr_sorted--; 549 q->last_merge = rq; 550 } 551 552 void elv_requeue_request(struct request_queue *q, struct request *rq) 553 { 554 /* 555 * it already went through dequeue, we need to decrement the 556 * in_flight count again 557 */ 558 if (blk_account_rq(rq)) { 559 q->in_flight--; 560 if (blk_sorted_rq(rq)) 561 elv_deactivate_rq(q, rq); 562 } 563 564 rq->cmd_flags &= ~REQ_STARTED; 565 566 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE); 567 } 568 569 static void elv_drain_elevator(struct request_queue *q) 570 { 571 static int printed; 572 while (q->elevator->ops->elevator_dispatch_fn(q, 1)) 573 ; 574 if (q->nr_sorted == 0) 575 return; 576 if (printed++ < 10) { 577 printk(KERN_ERR "%s: forced dispatching is broken " 578 "(nr_sorted=%u), please report this\n", 579 q->elevator->elevator_type->elevator_name, q->nr_sorted); 580 } 581 } 582 583 void elv_insert(struct request_queue *q, struct request *rq, int where) 584 { 585 struct list_head *pos; 586 unsigned ordseq; 587 int unplug_it = 1; 588 589 blk_add_trace_rq(q, rq, BLK_TA_INSERT); 590 591 rq->q = q; 592 593 switch (where) { 594 case ELEVATOR_INSERT_FRONT: 595 rq->cmd_flags |= REQ_SOFTBARRIER; 596 597 list_add(&rq->queuelist, &q->queue_head); 598 break; 599 600 case ELEVATOR_INSERT_BACK: 601 rq->cmd_flags |= REQ_SOFTBARRIER; 602 elv_drain_elevator(q); 603 list_add_tail(&rq->queuelist, &q->queue_head); 604 /* 605 * We kick the queue here for the following reasons. 606 * - The elevator might have returned NULL previously 607 * to delay requests and returned them now. As the 608 * queue wasn't empty before this request, ll_rw_blk 609 * won't run the queue on return, resulting in hang. 610 * - Usually, back inserted requests won't be merged 611 * with anything. There's no point in delaying queue 612 * processing. 613 */ 614 blk_remove_plug(q); 615 blk_start_queueing(q); 616 break; 617 618 case ELEVATOR_INSERT_SORT: 619 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq)); 620 rq->cmd_flags |= REQ_SORTED; 621 q->nr_sorted++; 622 if (rq_mergeable(rq)) { 623 elv_rqhash_add(q, rq); 624 if (!q->last_merge) 625 q->last_merge = rq; 626 } 627 628 /* 629 * Some ioscheds (cfq) run q->request_fn directly, so 630 * rq cannot be accessed after calling 631 * elevator_add_req_fn. 632 */ 633 q->elevator->ops->elevator_add_req_fn(q, rq); 634 break; 635 636 case ELEVATOR_INSERT_REQUEUE: 637 /* 638 * If ordered flush isn't in progress, we do front 639 * insertion; otherwise, requests should be requeued 640 * in ordseq order. 641 */ 642 rq->cmd_flags |= REQ_SOFTBARRIER; 643 644 /* 645 * Most requeues happen because of a busy condition, 646 * don't force unplug of the queue for that case. 647 */ 648 unplug_it = 0; 649 650 if (q->ordseq == 0) { 651 list_add(&rq->queuelist, &q->queue_head); 652 break; 653 } 654 655 ordseq = blk_ordered_req_seq(rq); 656 657 list_for_each(pos, &q->queue_head) { 658 struct request *pos_rq = list_entry_rq(pos); 659 if (ordseq <= blk_ordered_req_seq(pos_rq)) 660 break; 661 } 662 663 list_add_tail(&rq->queuelist, pos); 664 break; 665 666 default: 667 printk(KERN_ERR "%s: bad insertion point %d\n", 668 __func__, where); 669 BUG(); 670 } 671 672 if (unplug_it && blk_queue_plugged(q)) { 673 int nrq = q->rq.count[READ] + q->rq.count[WRITE] 674 - q->in_flight; 675 676 if (nrq >= q->unplug_thresh) 677 __generic_unplug_device(q); 678 } 679 } 680 681 void __elv_add_request(struct request_queue *q, struct request *rq, int where, 682 int plug) 683 { 684 if (q->ordcolor) 685 rq->cmd_flags |= REQ_ORDERED_COLOR; 686 687 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) { 688 /* 689 * toggle ordered color 690 */ 691 if (blk_barrier_rq(rq)) 692 q->ordcolor ^= 1; 693 694 /* 695 * barriers implicitly indicate back insertion 696 */ 697 if (where == ELEVATOR_INSERT_SORT) 698 where = ELEVATOR_INSERT_BACK; 699 700 /* 701 * this request is scheduling boundary, update 702 * end_sector 703 */ 704 if (blk_fs_request(rq) || blk_discard_rq(rq)) { 705 q->end_sector = rq_end_sector(rq); 706 q->boundary_rq = rq; 707 } 708 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && 709 where == ELEVATOR_INSERT_SORT) 710 where = ELEVATOR_INSERT_BACK; 711 712 if (plug) 713 blk_plug_device(q); 714 715 elv_insert(q, rq, where); 716 } 717 EXPORT_SYMBOL(__elv_add_request); 718 719 void elv_add_request(struct request_queue *q, struct request *rq, int where, 720 int plug) 721 { 722 unsigned long flags; 723 724 spin_lock_irqsave(q->queue_lock, flags); 725 __elv_add_request(q, rq, where, plug); 726 spin_unlock_irqrestore(q->queue_lock, flags); 727 } 728 EXPORT_SYMBOL(elv_add_request); 729 730 static inline struct request *__elv_next_request(struct request_queue *q) 731 { 732 struct request *rq; 733 734 while (1) { 735 while (!list_empty(&q->queue_head)) { 736 rq = list_entry_rq(q->queue_head.next); 737 if (blk_do_ordered(q, &rq)) 738 return rq; 739 } 740 741 if (!q->elevator->ops->elevator_dispatch_fn(q, 0)) 742 return NULL; 743 } 744 } 745 746 struct request *elv_next_request(struct request_queue *q) 747 { 748 struct request *rq; 749 int ret; 750 751 while ((rq = __elv_next_request(q)) != NULL) { 752 /* 753 * Kill the empty barrier place holder, the driver must 754 * not ever see it. 755 */ 756 if (blk_empty_barrier(rq)) { 757 __blk_end_request(rq, 0, blk_rq_bytes(rq)); 758 continue; 759 } 760 if (!(rq->cmd_flags & REQ_STARTED)) { 761 /* 762 * This is the first time the device driver 763 * sees this request (possibly after 764 * requeueing). Notify IO scheduler. 765 */ 766 if (blk_sorted_rq(rq)) 767 elv_activate_rq(q, rq); 768 769 /* 770 * just mark as started even if we don't start 771 * it, a request that has been delayed should 772 * not be passed by new incoming requests 773 */ 774 rq->cmd_flags |= REQ_STARTED; 775 blk_add_trace_rq(q, rq, BLK_TA_ISSUE); 776 } 777 778 if (!q->boundary_rq || q->boundary_rq == rq) { 779 q->end_sector = rq_end_sector(rq); 780 q->boundary_rq = NULL; 781 } 782 783 if (rq->cmd_flags & REQ_DONTPREP) 784 break; 785 786 if (q->dma_drain_size && rq->data_len) { 787 /* 788 * make sure space for the drain appears we 789 * know we can do this because max_hw_segments 790 * has been adjusted to be one fewer than the 791 * device can handle 792 */ 793 rq->nr_phys_segments++; 794 } 795 796 if (!q->prep_rq_fn) 797 break; 798 799 ret = q->prep_rq_fn(q, rq); 800 if (ret == BLKPREP_OK) { 801 break; 802 } else if (ret == BLKPREP_DEFER) { 803 /* 804 * the request may have been (partially) prepped. 805 * we need to keep this request in the front to 806 * avoid resource deadlock. REQ_STARTED will 807 * prevent other fs requests from passing this one. 808 */ 809 if (q->dma_drain_size && rq->data_len && 810 !(rq->cmd_flags & REQ_DONTPREP)) { 811 /* 812 * remove the space for the drain we added 813 * so that we don't add it again 814 */ 815 --rq->nr_phys_segments; 816 } 817 818 rq = NULL; 819 break; 820 } else if (ret == BLKPREP_KILL) { 821 rq->cmd_flags |= REQ_QUIET; 822 __blk_end_request(rq, -EIO, blk_rq_bytes(rq)); 823 } else { 824 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 825 break; 826 } 827 } 828 829 return rq; 830 } 831 EXPORT_SYMBOL(elv_next_request); 832 833 void elv_dequeue_request(struct request_queue *q, struct request *rq) 834 { 835 BUG_ON(list_empty(&rq->queuelist)); 836 BUG_ON(ELV_ON_HASH(rq)); 837 838 list_del_init(&rq->queuelist); 839 840 /* 841 * the time frame between a request being removed from the lists 842 * and to it is freed is accounted as io that is in progress at 843 * the driver side. 844 */ 845 if (blk_account_rq(rq)) 846 q->in_flight++; 847 } 848 849 int elv_queue_empty(struct request_queue *q) 850 { 851 elevator_t *e = q->elevator; 852 853 if (!list_empty(&q->queue_head)) 854 return 0; 855 856 if (e->ops->elevator_queue_empty_fn) 857 return e->ops->elevator_queue_empty_fn(q); 858 859 return 1; 860 } 861 EXPORT_SYMBOL(elv_queue_empty); 862 863 struct request *elv_latter_request(struct request_queue *q, struct request *rq) 864 { 865 elevator_t *e = q->elevator; 866 867 if (e->ops->elevator_latter_req_fn) 868 return e->ops->elevator_latter_req_fn(q, rq); 869 return NULL; 870 } 871 872 struct request *elv_former_request(struct request_queue *q, struct request *rq) 873 { 874 elevator_t *e = q->elevator; 875 876 if (e->ops->elevator_former_req_fn) 877 return e->ops->elevator_former_req_fn(q, rq); 878 return NULL; 879 } 880 881 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask) 882 { 883 elevator_t *e = q->elevator; 884 885 if (e->ops->elevator_set_req_fn) 886 return e->ops->elevator_set_req_fn(q, rq, gfp_mask); 887 888 rq->elevator_private = NULL; 889 return 0; 890 } 891 892 void elv_put_request(struct request_queue *q, struct request *rq) 893 { 894 elevator_t *e = q->elevator; 895 896 if (e->ops->elevator_put_req_fn) 897 e->ops->elevator_put_req_fn(rq); 898 } 899 900 int elv_may_queue(struct request_queue *q, int rw) 901 { 902 elevator_t *e = q->elevator; 903 904 if (e->ops->elevator_may_queue_fn) 905 return e->ops->elevator_may_queue_fn(q, rw); 906 907 return ELV_MQUEUE_MAY; 908 } 909 910 void elv_abort_queue(struct request_queue *q) 911 { 912 struct request *rq; 913 914 while (!list_empty(&q->queue_head)) { 915 rq = list_entry_rq(q->queue_head.next); 916 rq->cmd_flags |= REQ_QUIET; 917 blk_add_trace_rq(q, rq, BLK_TA_ABORT); 918 __blk_end_request(rq, -EIO, blk_rq_bytes(rq)); 919 } 920 } 921 EXPORT_SYMBOL(elv_abort_queue); 922 923 void elv_completed_request(struct request_queue *q, struct request *rq) 924 { 925 elevator_t *e = q->elevator; 926 927 /* 928 * request is released from the driver, io must be done 929 */ 930 if (blk_account_rq(rq)) { 931 q->in_flight--; 932 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn) 933 e->ops->elevator_completed_req_fn(q, rq); 934 } 935 936 /* 937 * Check if the queue is waiting for fs requests to be 938 * drained for flush sequence. 939 */ 940 if (unlikely(q->ordseq)) { 941 struct request *first_rq = list_entry_rq(q->queue_head.next); 942 if (q->in_flight == 0 && 943 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN && 944 blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) { 945 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0); 946 blk_start_queueing(q); 947 } 948 } 949 } 950 951 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) 952 953 static ssize_t 954 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 955 { 956 elevator_t *e = container_of(kobj, elevator_t, kobj); 957 struct elv_fs_entry *entry = to_elv(attr); 958 ssize_t error; 959 960 if (!entry->show) 961 return -EIO; 962 963 mutex_lock(&e->sysfs_lock); 964 error = e->ops ? entry->show(e, page) : -ENOENT; 965 mutex_unlock(&e->sysfs_lock); 966 return error; 967 } 968 969 static ssize_t 970 elv_attr_store(struct kobject *kobj, struct attribute *attr, 971 const char *page, size_t length) 972 { 973 elevator_t *e = container_of(kobj, elevator_t, kobj); 974 struct elv_fs_entry *entry = to_elv(attr); 975 ssize_t error; 976 977 if (!entry->store) 978 return -EIO; 979 980 mutex_lock(&e->sysfs_lock); 981 error = e->ops ? entry->store(e, page, length) : -ENOENT; 982 mutex_unlock(&e->sysfs_lock); 983 return error; 984 } 985 986 static struct sysfs_ops elv_sysfs_ops = { 987 .show = elv_attr_show, 988 .store = elv_attr_store, 989 }; 990 991 static struct kobj_type elv_ktype = { 992 .sysfs_ops = &elv_sysfs_ops, 993 .release = elevator_release, 994 }; 995 996 int elv_register_queue(struct request_queue *q) 997 { 998 elevator_t *e = q->elevator; 999 int error; 1000 1001 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched"); 1002 if (!error) { 1003 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs; 1004 if (attr) { 1005 while (attr->attr.name) { 1006 if (sysfs_create_file(&e->kobj, &attr->attr)) 1007 break; 1008 attr++; 1009 } 1010 } 1011 kobject_uevent(&e->kobj, KOBJ_ADD); 1012 } 1013 return error; 1014 } 1015 1016 static void __elv_unregister_queue(elevator_t *e) 1017 { 1018 kobject_uevent(&e->kobj, KOBJ_REMOVE); 1019 kobject_del(&e->kobj); 1020 } 1021 1022 void elv_unregister_queue(struct request_queue *q) 1023 { 1024 if (q) 1025 __elv_unregister_queue(q->elevator); 1026 } 1027 1028 void elv_register(struct elevator_type *e) 1029 { 1030 char *def = ""; 1031 1032 spin_lock(&elv_list_lock); 1033 BUG_ON(elevator_find(e->elevator_name)); 1034 list_add_tail(&e->list, &elv_list); 1035 spin_unlock(&elv_list_lock); 1036 1037 if (!strcmp(e->elevator_name, chosen_elevator) || 1038 (!*chosen_elevator && 1039 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED))) 1040 def = " (default)"; 1041 1042 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, 1043 def); 1044 } 1045 EXPORT_SYMBOL_GPL(elv_register); 1046 1047 void elv_unregister(struct elevator_type *e) 1048 { 1049 struct task_struct *g, *p; 1050 1051 /* 1052 * Iterate every thread in the process to remove the io contexts. 1053 */ 1054 if (e->ops.trim) { 1055 read_lock(&tasklist_lock); 1056 do_each_thread(g, p) { 1057 task_lock(p); 1058 if (p->io_context) 1059 e->ops.trim(p->io_context); 1060 task_unlock(p); 1061 } while_each_thread(g, p); 1062 read_unlock(&tasklist_lock); 1063 } 1064 1065 spin_lock(&elv_list_lock); 1066 list_del_init(&e->list); 1067 spin_unlock(&elv_list_lock); 1068 } 1069 EXPORT_SYMBOL_GPL(elv_unregister); 1070 1071 /* 1072 * switch to new_e io scheduler. be careful not to introduce deadlocks - 1073 * we don't free the old io scheduler, before we have allocated what we 1074 * need for the new one. this way we have a chance of going back to the old 1075 * one, if the new one fails init for some reason. 1076 */ 1077 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e) 1078 { 1079 elevator_t *old_elevator, *e; 1080 void *data; 1081 1082 /* 1083 * Allocate new elevator 1084 */ 1085 e = elevator_alloc(q, new_e); 1086 if (!e) 1087 return 0; 1088 1089 data = elevator_init_queue(q, e); 1090 if (!data) { 1091 kobject_put(&e->kobj); 1092 return 0; 1093 } 1094 1095 /* 1096 * Turn on BYPASS and drain all requests w/ elevator private data 1097 */ 1098 spin_lock_irq(q->queue_lock); 1099 1100 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q); 1101 1102 elv_drain_elevator(q); 1103 1104 while (q->rq.elvpriv) { 1105 blk_start_queueing(q); 1106 spin_unlock_irq(q->queue_lock); 1107 msleep(10); 1108 spin_lock_irq(q->queue_lock); 1109 elv_drain_elevator(q); 1110 } 1111 1112 /* 1113 * Remember old elevator. 1114 */ 1115 old_elevator = q->elevator; 1116 1117 /* 1118 * attach and start new elevator 1119 */ 1120 elevator_attach(q, e, data); 1121 1122 spin_unlock_irq(q->queue_lock); 1123 1124 __elv_unregister_queue(old_elevator); 1125 1126 if (elv_register_queue(q)) 1127 goto fail_register; 1128 1129 /* 1130 * finally exit old elevator and turn off BYPASS. 1131 */ 1132 elevator_exit(old_elevator); 1133 spin_lock_irq(q->queue_lock); 1134 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 1135 spin_unlock_irq(q->queue_lock); 1136 1137 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name); 1138 1139 return 1; 1140 1141 fail_register: 1142 /* 1143 * switch failed, exit the new io scheduler and reattach the old 1144 * one again (along with re-adding the sysfs dir) 1145 */ 1146 elevator_exit(e); 1147 q->elevator = old_elevator; 1148 elv_register_queue(q); 1149 1150 spin_lock_irq(q->queue_lock); 1151 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 1152 spin_unlock_irq(q->queue_lock); 1153 1154 return 0; 1155 } 1156 1157 ssize_t elv_iosched_store(struct request_queue *q, const char *name, 1158 size_t count) 1159 { 1160 char elevator_name[ELV_NAME_MAX]; 1161 struct elevator_type *e; 1162 1163 strlcpy(elevator_name, name, sizeof(elevator_name)); 1164 strstrip(elevator_name); 1165 1166 e = elevator_get(elevator_name); 1167 if (!e) { 1168 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 1169 return -EINVAL; 1170 } 1171 1172 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) { 1173 elevator_put(e); 1174 return count; 1175 } 1176 1177 if (!elevator_switch(q, e)) 1178 printk(KERN_ERR "elevator: switch to %s failed\n", 1179 elevator_name); 1180 return count; 1181 } 1182 1183 ssize_t elv_iosched_show(struct request_queue *q, char *name) 1184 { 1185 elevator_t *e = q->elevator; 1186 struct elevator_type *elv = e->elevator_type; 1187 struct elevator_type *__e; 1188 int len = 0; 1189 1190 spin_lock(&elv_list_lock); 1191 list_for_each_entry(__e, &elv_list, list) { 1192 if (!strcmp(elv->elevator_name, __e->elevator_name)) 1193 len += sprintf(name+len, "[%s] ", elv->elevator_name); 1194 else 1195 len += sprintf(name+len, "%s ", __e->elevator_name); 1196 } 1197 spin_unlock(&elv_list_lock); 1198 1199 len += sprintf(len+name, "\n"); 1200 return len; 1201 } 1202 1203 struct request *elv_rb_former_request(struct request_queue *q, 1204 struct request *rq) 1205 { 1206 struct rb_node *rbprev = rb_prev(&rq->rb_node); 1207 1208 if (rbprev) 1209 return rb_entry_rq(rbprev); 1210 1211 return NULL; 1212 } 1213 EXPORT_SYMBOL(elv_rb_former_request); 1214 1215 struct request *elv_rb_latter_request(struct request_queue *q, 1216 struct request *rq) 1217 { 1218 struct rb_node *rbnext = rb_next(&rq->rb_node); 1219 1220 if (rbnext) 1221 return rb_entry_rq(rbnext); 1222 1223 return NULL; 1224 } 1225 EXPORT_SYMBOL(elv_rb_latter_request); 1226