1 /* 2 * Block device elevator/IO-scheduler. 3 * 4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * 6 * 30042000 Jens Axboe <axboe@kernel.dk> : 7 * 8 * Split the elevator a bit so that it is possible to choose a different 9 * one or even write a new "plug in". There are three pieces: 10 * - elevator_fn, inserts a new request in the queue list 11 * - elevator_merge_fn, decides whether a new buffer can be merged with 12 * an existing request 13 * - elevator_dequeue_fn, called when a request is taken off the active list 14 * 15 * 20082000 Dave Jones <davej@suse.de> : 16 * Removed tests for max-bomb-segments, which was breaking elvtune 17 * when run without -bN 18 * 19 * Jens: 20 * - Rework again to work with bio instead of buffer_heads 21 * - loose bi_dev comparisons, partition handling is right now 22 * - completely modularize elevator setup and teardown 23 * 24 */ 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/blkdev.h> 28 #include <linux/elevator.h> 29 #include <linux/bio.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/compiler.h> 34 #include <linux/delay.h> 35 #include <linux/blktrace_api.h> 36 #include <linux/hash.h> 37 38 #include <asm/uaccess.h> 39 40 static DEFINE_SPINLOCK(elv_list_lock); 41 static LIST_HEAD(elv_list); 42 43 /* 44 * Merge hash stuff. 45 */ 46 static const int elv_hash_shift = 6; 47 #define ELV_HASH_BLOCK(sec) ((sec) >> 3) 48 #define ELV_HASH_FN(sec) (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift)) 49 #define ELV_HASH_ENTRIES (1 << elv_hash_shift) 50 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) 51 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash)) 52 53 /* 54 * Query io scheduler to see if the current process issuing bio may be 55 * merged with rq. 56 */ 57 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio) 58 { 59 request_queue_t *q = rq->q; 60 elevator_t *e = q->elevator; 61 62 if (e->ops->elevator_allow_merge_fn) 63 return e->ops->elevator_allow_merge_fn(q, rq, bio); 64 65 return 1; 66 } 67 68 /* 69 * can we safely merge with this request? 70 */ 71 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio) 72 { 73 if (!rq_mergeable(rq)) 74 return 0; 75 76 /* 77 * different data direction or already started, don't merge 78 */ 79 if (bio_data_dir(bio) != rq_data_dir(rq)) 80 return 0; 81 82 /* 83 * must be same device and not a special request 84 */ 85 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special) 86 return 0; 87 88 if (!elv_iosched_allow_merge(rq, bio)) 89 return 0; 90 91 return 1; 92 } 93 EXPORT_SYMBOL(elv_rq_merge_ok); 94 95 static inline int elv_try_merge(struct request *__rq, struct bio *bio) 96 { 97 int ret = ELEVATOR_NO_MERGE; 98 99 /* 100 * we can merge and sequence is ok, check if it's possible 101 */ 102 if (elv_rq_merge_ok(__rq, bio)) { 103 if (__rq->sector + __rq->nr_sectors == bio->bi_sector) 104 ret = ELEVATOR_BACK_MERGE; 105 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector) 106 ret = ELEVATOR_FRONT_MERGE; 107 } 108 109 return ret; 110 } 111 112 static struct elevator_type *elevator_find(const char *name) 113 { 114 struct elevator_type *e; 115 116 list_for_each_entry(e, &elv_list, list) { 117 if (!strcmp(e->elevator_name, name)) 118 return e; 119 } 120 121 return NULL; 122 } 123 124 static void elevator_put(struct elevator_type *e) 125 { 126 module_put(e->elevator_owner); 127 } 128 129 static struct elevator_type *elevator_get(const char *name) 130 { 131 struct elevator_type *e; 132 133 spin_lock(&elv_list_lock); 134 135 e = elevator_find(name); 136 if (e && !try_module_get(e->elevator_owner)) 137 e = NULL; 138 139 spin_unlock(&elv_list_lock); 140 141 return e; 142 } 143 144 static void *elevator_init_queue(request_queue_t *q, struct elevator_queue *eq) 145 { 146 return eq->ops->elevator_init_fn(q); 147 } 148 149 static void elevator_attach(request_queue_t *q, struct elevator_queue *eq, 150 void *data) 151 { 152 q->elevator = eq; 153 eq->elevator_data = data; 154 } 155 156 static char chosen_elevator[16]; 157 158 static int __init elevator_setup(char *str) 159 { 160 /* 161 * Be backwards-compatible with previous kernels, so users 162 * won't get the wrong elevator. 163 */ 164 if (!strcmp(str, "as")) 165 strcpy(chosen_elevator, "anticipatory"); 166 else 167 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 168 return 1; 169 } 170 171 __setup("elevator=", elevator_setup); 172 173 static struct kobj_type elv_ktype; 174 175 static elevator_t *elevator_alloc(request_queue_t *q, struct elevator_type *e) 176 { 177 elevator_t *eq; 178 int i; 179 180 eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node); 181 if (unlikely(!eq)) 182 goto err; 183 184 eq->ops = &e->ops; 185 eq->elevator_type = e; 186 kobject_init(&eq->kobj); 187 snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched"); 188 eq->kobj.ktype = &elv_ktype; 189 mutex_init(&eq->sysfs_lock); 190 191 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, 192 GFP_KERNEL, q->node); 193 if (!eq->hash) 194 goto err; 195 196 for (i = 0; i < ELV_HASH_ENTRIES; i++) 197 INIT_HLIST_HEAD(&eq->hash[i]); 198 199 return eq; 200 err: 201 kfree(eq); 202 elevator_put(e); 203 return NULL; 204 } 205 206 static void elevator_release(struct kobject *kobj) 207 { 208 elevator_t *e = container_of(kobj, elevator_t, kobj); 209 210 elevator_put(e->elevator_type); 211 kfree(e->hash); 212 kfree(e); 213 } 214 215 int elevator_init(request_queue_t *q, char *name) 216 { 217 struct elevator_type *e = NULL; 218 struct elevator_queue *eq; 219 int ret = 0; 220 void *data; 221 222 INIT_LIST_HEAD(&q->queue_head); 223 q->last_merge = NULL; 224 q->end_sector = 0; 225 q->boundary_rq = NULL; 226 227 if (name && !(e = elevator_get(name))) 228 return -EINVAL; 229 230 if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator))) 231 printk("I/O scheduler %s not found\n", chosen_elevator); 232 233 if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) { 234 printk("Default I/O scheduler not found, using no-op\n"); 235 e = elevator_get("noop"); 236 } 237 238 eq = elevator_alloc(q, e); 239 if (!eq) 240 return -ENOMEM; 241 242 data = elevator_init_queue(q, eq); 243 if (!data) { 244 kobject_put(&eq->kobj); 245 return -ENOMEM; 246 } 247 248 elevator_attach(q, eq, data); 249 return ret; 250 } 251 252 EXPORT_SYMBOL(elevator_init); 253 254 void elevator_exit(elevator_t *e) 255 { 256 mutex_lock(&e->sysfs_lock); 257 if (e->ops->elevator_exit_fn) 258 e->ops->elevator_exit_fn(e); 259 e->ops = NULL; 260 mutex_unlock(&e->sysfs_lock); 261 262 kobject_put(&e->kobj); 263 } 264 265 EXPORT_SYMBOL(elevator_exit); 266 267 static void elv_activate_rq(request_queue_t *q, struct request *rq) 268 { 269 elevator_t *e = q->elevator; 270 271 if (e->ops->elevator_activate_req_fn) 272 e->ops->elevator_activate_req_fn(q, rq); 273 } 274 275 static void elv_deactivate_rq(request_queue_t *q, struct request *rq) 276 { 277 elevator_t *e = q->elevator; 278 279 if (e->ops->elevator_deactivate_req_fn) 280 e->ops->elevator_deactivate_req_fn(q, rq); 281 } 282 283 static inline void __elv_rqhash_del(struct request *rq) 284 { 285 hlist_del_init(&rq->hash); 286 } 287 288 static void elv_rqhash_del(request_queue_t *q, struct request *rq) 289 { 290 if (ELV_ON_HASH(rq)) 291 __elv_rqhash_del(rq); 292 } 293 294 static void elv_rqhash_add(request_queue_t *q, struct request *rq) 295 { 296 elevator_t *e = q->elevator; 297 298 BUG_ON(ELV_ON_HASH(rq)); 299 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]); 300 } 301 302 static void elv_rqhash_reposition(request_queue_t *q, struct request *rq) 303 { 304 __elv_rqhash_del(rq); 305 elv_rqhash_add(q, rq); 306 } 307 308 static struct request *elv_rqhash_find(request_queue_t *q, sector_t offset) 309 { 310 elevator_t *e = q->elevator; 311 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)]; 312 struct hlist_node *entry, *next; 313 struct request *rq; 314 315 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) { 316 BUG_ON(!ELV_ON_HASH(rq)); 317 318 if (unlikely(!rq_mergeable(rq))) { 319 __elv_rqhash_del(rq); 320 continue; 321 } 322 323 if (rq_hash_key(rq) == offset) 324 return rq; 325 } 326 327 return NULL; 328 } 329 330 /* 331 * RB-tree support functions for inserting/lookup/removal of requests 332 * in a sorted RB tree. 333 */ 334 struct request *elv_rb_add(struct rb_root *root, struct request *rq) 335 { 336 struct rb_node **p = &root->rb_node; 337 struct rb_node *parent = NULL; 338 struct request *__rq; 339 340 while (*p) { 341 parent = *p; 342 __rq = rb_entry(parent, struct request, rb_node); 343 344 if (rq->sector < __rq->sector) 345 p = &(*p)->rb_left; 346 else if (rq->sector > __rq->sector) 347 p = &(*p)->rb_right; 348 else 349 return __rq; 350 } 351 352 rb_link_node(&rq->rb_node, parent, p); 353 rb_insert_color(&rq->rb_node, root); 354 return NULL; 355 } 356 357 EXPORT_SYMBOL(elv_rb_add); 358 359 void elv_rb_del(struct rb_root *root, struct request *rq) 360 { 361 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 362 rb_erase(&rq->rb_node, root); 363 RB_CLEAR_NODE(&rq->rb_node); 364 } 365 366 EXPORT_SYMBOL(elv_rb_del); 367 368 struct request *elv_rb_find(struct rb_root *root, sector_t sector) 369 { 370 struct rb_node *n = root->rb_node; 371 struct request *rq; 372 373 while (n) { 374 rq = rb_entry(n, struct request, rb_node); 375 376 if (sector < rq->sector) 377 n = n->rb_left; 378 else if (sector > rq->sector) 379 n = n->rb_right; 380 else 381 return rq; 382 } 383 384 return NULL; 385 } 386 387 EXPORT_SYMBOL(elv_rb_find); 388 389 /* 390 * Insert rq into dispatch queue of q. Queue lock must be held on 391 * entry. rq is sort insted into the dispatch queue. To be used by 392 * specific elevators. 393 */ 394 void elv_dispatch_sort(request_queue_t *q, struct request *rq) 395 { 396 sector_t boundary; 397 struct list_head *entry; 398 399 if (q->last_merge == rq) 400 q->last_merge = NULL; 401 402 elv_rqhash_del(q, rq); 403 404 q->nr_sorted--; 405 406 boundary = q->end_sector; 407 408 list_for_each_prev(entry, &q->queue_head) { 409 struct request *pos = list_entry_rq(entry); 410 411 if (rq_data_dir(rq) != rq_data_dir(pos)) 412 break; 413 if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED)) 414 break; 415 if (rq->sector >= boundary) { 416 if (pos->sector < boundary) 417 continue; 418 } else { 419 if (pos->sector >= boundary) 420 break; 421 } 422 if (rq->sector >= pos->sector) 423 break; 424 } 425 426 list_add(&rq->queuelist, entry); 427 } 428 429 EXPORT_SYMBOL(elv_dispatch_sort); 430 431 /* 432 * Insert rq into dispatch queue of q. Queue lock must be held on 433 * entry. rq is added to the back of the dispatch queue. To be used by 434 * specific elevators. 435 */ 436 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq) 437 { 438 if (q->last_merge == rq) 439 q->last_merge = NULL; 440 441 elv_rqhash_del(q, rq); 442 443 q->nr_sorted--; 444 445 q->end_sector = rq_end_sector(rq); 446 q->boundary_rq = rq; 447 list_add_tail(&rq->queuelist, &q->queue_head); 448 } 449 450 EXPORT_SYMBOL(elv_dispatch_add_tail); 451 452 int elv_merge(request_queue_t *q, struct request **req, struct bio *bio) 453 { 454 elevator_t *e = q->elevator; 455 struct request *__rq; 456 int ret; 457 458 /* 459 * First try one-hit cache. 460 */ 461 if (q->last_merge) { 462 ret = elv_try_merge(q->last_merge, bio); 463 if (ret != ELEVATOR_NO_MERGE) { 464 *req = q->last_merge; 465 return ret; 466 } 467 } 468 469 /* 470 * See if our hash lookup can find a potential backmerge. 471 */ 472 __rq = elv_rqhash_find(q, bio->bi_sector); 473 if (__rq && elv_rq_merge_ok(__rq, bio)) { 474 *req = __rq; 475 return ELEVATOR_BACK_MERGE; 476 } 477 478 if (e->ops->elevator_merge_fn) 479 return e->ops->elevator_merge_fn(q, req, bio); 480 481 return ELEVATOR_NO_MERGE; 482 } 483 484 void elv_merged_request(request_queue_t *q, struct request *rq, int type) 485 { 486 elevator_t *e = q->elevator; 487 488 if (e->ops->elevator_merged_fn) 489 e->ops->elevator_merged_fn(q, rq, type); 490 491 if (type == ELEVATOR_BACK_MERGE) 492 elv_rqhash_reposition(q, rq); 493 494 q->last_merge = rq; 495 } 496 497 void elv_merge_requests(request_queue_t *q, struct request *rq, 498 struct request *next) 499 { 500 elevator_t *e = q->elevator; 501 502 if (e->ops->elevator_merge_req_fn) 503 e->ops->elevator_merge_req_fn(q, rq, next); 504 505 elv_rqhash_reposition(q, rq); 506 elv_rqhash_del(q, next); 507 508 q->nr_sorted--; 509 q->last_merge = rq; 510 } 511 512 void elv_requeue_request(request_queue_t *q, struct request *rq) 513 { 514 /* 515 * it already went through dequeue, we need to decrement the 516 * in_flight count again 517 */ 518 if (blk_account_rq(rq)) { 519 q->in_flight--; 520 if (blk_sorted_rq(rq)) 521 elv_deactivate_rq(q, rq); 522 } 523 524 rq->cmd_flags &= ~REQ_STARTED; 525 526 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE); 527 } 528 529 static void elv_drain_elevator(request_queue_t *q) 530 { 531 static int printed; 532 while (q->elevator->ops->elevator_dispatch_fn(q, 1)) 533 ; 534 if (q->nr_sorted == 0) 535 return; 536 if (printed++ < 10) { 537 printk(KERN_ERR "%s: forced dispatching is broken " 538 "(nr_sorted=%u), please report this\n", 539 q->elevator->elevator_type->elevator_name, q->nr_sorted); 540 } 541 } 542 543 void elv_insert(request_queue_t *q, struct request *rq, int where) 544 { 545 struct list_head *pos; 546 unsigned ordseq; 547 int unplug_it = 1; 548 549 blk_add_trace_rq(q, rq, BLK_TA_INSERT); 550 551 rq->q = q; 552 553 switch (where) { 554 case ELEVATOR_INSERT_FRONT: 555 rq->cmd_flags |= REQ_SOFTBARRIER; 556 557 list_add(&rq->queuelist, &q->queue_head); 558 break; 559 560 case ELEVATOR_INSERT_BACK: 561 rq->cmd_flags |= REQ_SOFTBARRIER; 562 elv_drain_elevator(q); 563 list_add_tail(&rq->queuelist, &q->queue_head); 564 /* 565 * We kick the queue here for the following reasons. 566 * - The elevator might have returned NULL previously 567 * to delay requests and returned them now. As the 568 * queue wasn't empty before this request, ll_rw_blk 569 * won't run the queue on return, resulting in hang. 570 * - Usually, back inserted requests won't be merged 571 * with anything. There's no point in delaying queue 572 * processing. 573 */ 574 blk_remove_plug(q); 575 q->request_fn(q); 576 break; 577 578 case ELEVATOR_INSERT_SORT: 579 BUG_ON(!blk_fs_request(rq)); 580 rq->cmd_flags |= REQ_SORTED; 581 q->nr_sorted++; 582 if (rq_mergeable(rq)) { 583 elv_rqhash_add(q, rq); 584 if (!q->last_merge) 585 q->last_merge = rq; 586 } 587 588 /* 589 * Some ioscheds (cfq) run q->request_fn directly, so 590 * rq cannot be accessed after calling 591 * elevator_add_req_fn. 592 */ 593 q->elevator->ops->elevator_add_req_fn(q, rq); 594 break; 595 596 case ELEVATOR_INSERT_REQUEUE: 597 /* 598 * If ordered flush isn't in progress, we do front 599 * insertion; otherwise, requests should be requeued 600 * in ordseq order. 601 */ 602 rq->cmd_flags |= REQ_SOFTBARRIER; 603 604 /* 605 * Most requeues happen because of a busy condition, 606 * don't force unplug of the queue for that case. 607 */ 608 unplug_it = 0; 609 610 if (q->ordseq == 0) { 611 list_add(&rq->queuelist, &q->queue_head); 612 break; 613 } 614 615 ordseq = blk_ordered_req_seq(rq); 616 617 list_for_each(pos, &q->queue_head) { 618 struct request *pos_rq = list_entry_rq(pos); 619 if (ordseq <= blk_ordered_req_seq(pos_rq)) 620 break; 621 } 622 623 list_add_tail(&rq->queuelist, pos); 624 break; 625 626 default: 627 printk(KERN_ERR "%s: bad insertion point %d\n", 628 __FUNCTION__, where); 629 BUG(); 630 } 631 632 if (unplug_it && blk_queue_plugged(q)) { 633 int nrq = q->rq.count[READ] + q->rq.count[WRITE] 634 - q->in_flight; 635 636 if (nrq >= q->unplug_thresh) 637 __generic_unplug_device(q); 638 } 639 } 640 641 void __elv_add_request(request_queue_t *q, struct request *rq, int where, 642 int plug) 643 { 644 if (q->ordcolor) 645 rq->cmd_flags |= REQ_ORDERED_COLOR; 646 647 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) { 648 /* 649 * toggle ordered color 650 */ 651 if (blk_barrier_rq(rq)) 652 q->ordcolor ^= 1; 653 654 /* 655 * barriers implicitly indicate back insertion 656 */ 657 if (where == ELEVATOR_INSERT_SORT) 658 where = ELEVATOR_INSERT_BACK; 659 660 /* 661 * this request is scheduling boundary, update 662 * end_sector 663 */ 664 if (blk_fs_request(rq)) { 665 q->end_sector = rq_end_sector(rq); 666 q->boundary_rq = rq; 667 } 668 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT) 669 where = ELEVATOR_INSERT_BACK; 670 671 if (plug) 672 blk_plug_device(q); 673 674 elv_insert(q, rq, where); 675 } 676 677 EXPORT_SYMBOL(__elv_add_request); 678 679 void elv_add_request(request_queue_t *q, struct request *rq, int where, 680 int plug) 681 { 682 unsigned long flags; 683 684 spin_lock_irqsave(q->queue_lock, flags); 685 __elv_add_request(q, rq, where, plug); 686 spin_unlock_irqrestore(q->queue_lock, flags); 687 } 688 689 EXPORT_SYMBOL(elv_add_request); 690 691 static inline struct request *__elv_next_request(request_queue_t *q) 692 { 693 struct request *rq; 694 695 while (1) { 696 while (!list_empty(&q->queue_head)) { 697 rq = list_entry_rq(q->queue_head.next); 698 if (blk_do_ordered(q, &rq)) 699 return rq; 700 } 701 702 if (!q->elevator->ops->elevator_dispatch_fn(q, 0)) 703 return NULL; 704 } 705 } 706 707 struct request *elv_next_request(request_queue_t *q) 708 { 709 struct request *rq; 710 int ret; 711 712 while ((rq = __elv_next_request(q)) != NULL) { 713 if (!(rq->cmd_flags & REQ_STARTED)) { 714 /* 715 * This is the first time the device driver 716 * sees this request (possibly after 717 * requeueing). Notify IO scheduler. 718 */ 719 if (blk_sorted_rq(rq)) 720 elv_activate_rq(q, rq); 721 722 /* 723 * just mark as started even if we don't start 724 * it, a request that has been delayed should 725 * not be passed by new incoming requests 726 */ 727 rq->cmd_flags |= REQ_STARTED; 728 blk_add_trace_rq(q, rq, BLK_TA_ISSUE); 729 } 730 731 if (!q->boundary_rq || q->boundary_rq == rq) { 732 q->end_sector = rq_end_sector(rq); 733 q->boundary_rq = NULL; 734 } 735 736 if ((rq->cmd_flags & REQ_DONTPREP) || !q->prep_rq_fn) 737 break; 738 739 ret = q->prep_rq_fn(q, rq); 740 if (ret == BLKPREP_OK) { 741 break; 742 } else if (ret == BLKPREP_DEFER) { 743 /* 744 * the request may have been (partially) prepped. 745 * we need to keep this request in the front to 746 * avoid resource deadlock. REQ_STARTED will 747 * prevent other fs requests from passing this one. 748 */ 749 rq = NULL; 750 break; 751 } else if (ret == BLKPREP_KILL) { 752 int nr_bytes = rq->hard_nr_sectors << 9; 753 754 if (!nr_bytes) 755 nr_bytes = rq->data_len; 756 757 blkdev_dequeue_request(rq); 758 rq->cmd_flags |= REQ_QUIET; 759 end_that_request_chunk(rq, 0, nr_bytes); 760 end_that_request_last(rq, 0); 761 } else { 762 printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__, 763 ret); 764 break; 765 } 766 } 767 768 return rq; 769 } 770 771 EXPORT_SYMBOL(elv_next_request); 772 773 void elv_dequeue_request(request_queue_t *q, struct request *rq) 774 { 775 BUG_ON(list_empty(&rq->queuelist)); 776 BUG_ON(ELV_ON_HASH(rq)); 777 778 list_del_init(&rq->queuelist); 779 780 /* 781 * the time frame between a request being removed from the lists 782 * and to it is freed is accounted as io that is in progress at 783 * the driver side. 784 */ 785 if (blk_account_rq(rq)) 786 q->in_flight++; 787 } 788 789 EXPORT_SYMBOL(elv_dequeue_request); 790 791 int elv_queue_empty(request_queue_t *q) 792 { 793 elevator_t *e = q->elevator; 794 795 if (!list_empty(&q->queue_head)) 796 return 0; 797 798 if (e->ops->elevator_queue_empty_fn) 799 return e->ops->elevator_queue_empty_fn(q); 800 801 return 1; 802 } 803 804 EXPORT_SYMBOL(elv_queue_empty); 805 806 struct request *elv_latter_request(request_queue_t *q, struct request *rq) 807 { 808 elevator_t *e = q->elevator; 809 810 if (e->ops->elevator_latter_req_fn) 811 return e->ops->elevator_latter_req_fn(q, rq); 812 return NULL; 813 } 814 815 struct request *elv_former_request(request_queue_t *q, struct request *rq) 816 { 817 elevator_t *e = q->elevator; 818 819 if (e->ops->elevator_former_req_fn) 820 return e->ops->elevator_former_req_fn(q, rq); 821 return NULL; 822 } 823 824 int elv_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask) 825 { 826 elevator_t *e = q->elevator; 827 828 if (e->ops->elevator_set_req_fn) 829 return e->ops->elevator_set_req_fn(q, rq, gfp_mask); 830 831 rq->elevator_private = NULL; 832 return 0; 833 } 834 835 void elv_put_request(request_queue_t *q, struct request *rq) 836 { 837 elevator_t *e = q->elevator; 838 839 if (e->ops->elevator_put_req_fn) 840 e->ops->elevator_put_req_fn(rq); 841 } 842 843 int elv_may_queue(request_queue_t *q, int rw) 844 { 845 elevator_t *e = q->elevator; 846 847 if (e->ops->elevator_may_queue_fn) 848 return e->ops->elevator_may_queue_fn(q, rw); 849 850 return ELV_MQUEUE_MAY; 851 } 852 853 void elv_completed_request(request_queue_t *q, struct request *rq) 854 { 855 elevator_t *e = q->elevator; 856 857 /* 858 * request is released from the driver, io must be done 859 */ 860 if (blk_account_rq(rq)) { 861 q->in_flight--; 862 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn) 863 e->ops->elevator_completed_req_fn(q, rq); 864 } 865 866 /* 867 * Check if the queue is waiting for fs requests to be 868 * drained for flush sequence. 869 */ 870 if (unlikely(q->ordseq)) { 871 struct request *first_rq = list_entry_rq(q->queue_head.next); 872 if (q->in_flight == 0 && 873 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN && 874 blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) { 875 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0); 876 q->request_fn(q); 877 } 878 } 879 } 880 881 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) 882 883 static ssize_t 884 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 885 { 886 elevator_t *e = container_of(kobj, elevator_t, kobj); 887 struct elv_fs_entry *entry = to_elv(attr); 888 ssize_t error; 889 890 if (!entry->show) 891 return -EIO; 892 893 mutex_lock(&e->sysfs_lock); 894 error = e->ops ? entry->show(e, page) : -ENOENT; 895 mutex_unlock(&e->sysfs_lock); 896 return error; 897 } 898 899 static ssize_t 900 elv_attr_store(struct kobject *kobj, struct attribute *attr, 901 const char *page, size_t length) 902 { 903 elevator_t *e = container_of(kobj, elevator_t, kobj); 904 struct elv_fs_entry *entry = to_elv(attr); 905 ssize_t error; 906 907 if (!entry->store) 908 return -EIO; 909 910 mutex_lock(&e->sysfs_lock); 911 error = e->ops ? entry->store(e, page, length) : -ENOENT; 912 mutex_unlock(&e->sysfs_lock); 913 return error; 914 } 915 916 static struct sysfs_ops elv_sysfs_ops = { 917 .show = elv_attr_show, 918 .store = elv_attr_store, 919 }; 920 921 static struct kobj_type elv_ktype = { 922 .sysfs_ops = &elv_sysfs_ops, 923 .release = elevator_release, 924 }; 925 926 int elv_register_queue(struct request_queue *q) 927 { 928 elevator_t *e = q->elevator; 929 int error; 930 931 e->kobj.parent = &q->kobj; 932 933 error = kobject_add(&e->kobj); 934 if (!error) { 935 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs; 936 if (attr) { 937 while (attr->attr.name) { 938 if (sysfs_create_file(&e->kobj, &attr->attr)) 939 break; 940 attr++; 941 } 942 } 943 kobject_uevent(&e->kobj, KOBJ_ADD); 944 } 945 return error; 946 } 947 948 static void __elv_unregister_queue(elevator_t *e) 949 { 950 kobject_uevent(&e->kobj, KOBJ_REMOVE); 951 kobject_del(&e->kobj); 952 } 953 954 void elv_unregister_queue(struct request_queue *q) 955 { 956 if (q) 957 __elv_unregister_queue(q->elevator); 958 } 959 960 int elv_register(struct elevator_type *e) 961 { 962 char *def = ""; 963 964 spin_lock(&elv_list_lock); 965 BUG_ON(elevator_find(e->elevator_name)); 966 list_add_tail(&e->list, &elv_list); 967 spin_unlock(&elv_list_lock); 968 969 if (!strcmp(e->elevator_name, chosen_elevator) || 970 (!*chosen_elevator && 971 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED))) 972 def = " (default)"; 973 974 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, def); 975 return 0; 976 } 977 EXPORT_SYMBOL_GPL(elv_register); 978 979 void elv_unregister(struct elevator_type *e) 980 { 981 struct task_struct *g, *p; 982 983 /* 984 * Iterate every thread in the process to remove the io contexts. 985 */ 986 if (e->ops.trim) { 987 read_lock(&tasklist_lock); 988 do_each_thread(g, p) { 989 task_lock(p); 990 if (p->io_context) 991 e->ops.trim(p->io_context); 992 task_unlock(p); 993 } while_each_thread(g, p); 994 read_unlock(&tasklist_lock); 995 } 996 997 spin_lock(&elv_list_lock); 998 list_del_init(&e->list); 999 spin_unlock(&elv_list_lock); 1000 } 1001 EXPORT_SYMBOL_GPL(elv_unregister); 1002 1003 /* 1004 * switch to new_e io scheduler. be careful not to introduce deadlocks - 1005 * we don't free the old io scheduler, before we have allocated what we 1006 * need for the new one. this way we have a chance of going back to the old 1007 * one, if the new one fails init for some reason. 1008 */ 1009 static int elevator_switch(request_queue_t *q, struct elevator_type *new_e) 1010 { 1011 elevator_t *old_elevator, *e; 1012 void *data; 1013 1014 /* 1015 * Allocate new elevator 1016 */ 1017 e = elevator_alloc(q, new_e); 1018 if (!e) 1019 return 0; 1020 1021 data = elevator_init_queue(q, e); 1022 if (!data) { 1023 kobject_put(&e->kobj); 1024 return 0; 1025 } 1026 1027 /* 1028 * Turn on BYPASS and drain all requests w/ elevator private data 1029 */ 1030 spin_lock_irq(q->queue_lock); 1031 1032 set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 1033 1034 elv_drain_elevator(q); 1035 1036 while (q->rq.elvpriv) { 1037 blk_remove_plug(q); 1038 q->request_fn(q); 1039 spin_unlock_irq(q->queue_lock); 1040 msleep(10); 1041 spin_lock_irq(q->queue_lock); 1042 elv_drain_elevator(q); 1043 } 1044 1045 /* 1046 * Remember old elevator. 1047 */ 1048 old_elevator = q->elevator; 1049 1050 /* 1051 * attach and start new elevator 1052 */ 1053 elevator_attach(q, e, data); 1054 1055 spin_unlock_irq(q->queue_lock); 1056 1057 __elv_unregister_queue(old_elevator); 1058 1059 if (elv_register_queue(q)) 1060 goto fail_register; 1061 1062 /* 1063 * finally exit old elevator and turn off BYPASS. 1064 */ 1065 elevator_exit(old_elevator); 1066 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 1067 return 1; 1068 1069 fail_register: 1070 /* 1071 * switch failed, exit the new io scheduler and reattach the old 1072 * one again (along with re-adding the sysfs dir) 1073 */ 1074 elevator_exit(e); 1075 q->elevator = old_elevator; 1076 elv_register_queue(q); 1077 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 1078 return 0; 1079 } 1080 1081 ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count) 1082 { 1083 char elevator_name[ELV_NAME_MAX]; 1084 size_t len; 1085 struct elevator_type *e; 1086 1087 elevator_name[sizeof(elevator_name) - 1] = '\0'; 1088 strncpy(elevator_name, name, sizeof(elevator_name) - 1); 1089 len = strlen(elevator_name); 1090 1091 if (len && elevator_name[len - 1] == '\n') 1092 elevator_name[len - 1] = '\0'; 1093 1094 e = elevator_get(elevator_name); 1095 if (!e) { 1096 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 1097 return -EINVAL; 1098 } 1099 1100 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) { 1101 elevator_put(e); 1102 return count; 1103 } 1104 1105 if (!elevator_switch(q, e)) 1106 printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name); 1107 return count; 1108 } 1109 1110 ssize_t elv_iosched_show(request_queue_t *q, char *name) 1111 { 1112 elevator_t *e = q->elevator; 1113 struct elevator_type *elv = e->elevator_type; 1114 struct elevator_type *__e; 1115 int len = 0; 1116 1117 spin_lock(&elv_list_lock); 1118 list_for_each_entry(__e, &elv_list, list) { 1119 if (!strcmp(elv->elevator_name, __e->elevator_name)) 1120 len += sprintf(name+len, "[%s] ", elv->elevator_name); 1121 else 1122 len += sprintf(name+len, "%s ", __e->elevator_name); 1123 } 1124 spin_unlock(&elv_list_lock); 1125 1126 len += sprintf(len+name, "\n"); 1127 return len; 1128 } 1129 1130 struct request *elv_rb_former_request(request_queue_t *q, struct request *rq) 1131 { 1132 struct rb_node *rbprev = rb_prev(&rq->rb_node); 1133 1134 if (rbprev) 1135 return rb_entry_rq(rbprev); 1136 1137 return NULL; 1138 } 1139 1140 EXPORT_SYMBOL(elv_rb_former_request); 1141 1142 struct request *elv_rb_latter_request(request_queue_t *q, struct request *rq) 1143 { 1144 struct rb_node *rbnext = rb_next(&rq->rb_node); 1145 1146 if (rbnext) 1147 return rb_entry_rq(rbnext); 1148 1149 return NULL; 1150 } 1151 1152 EXPORT_SYMBOL(elv_rb_latter_request); 1153