1 /* 2 * Block device elevator/IO-scheduler. 3 * 4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * 6 * 30042000 Jens Axboe <axboe@kernel.dk> : 7 * 8 * Split the elevator a bit so that it is possible to choose a different 9 * one or even write a new "plug in". There are three pieces: 10 * - elevator_fn, inserts a new request in the queue list 11 * - elevator_merge_fn, decides whether a new buffer can be merged with 12 * an existing request 13 * - elevator_dequeue_fn, called when a request is taken off the active list 14 * 15 * 20082000 Dave Jones <davej@suse.de> : 16 * Removed tests for max-bomb-segments, which was breaking elvtune 17 * when run without -bN 18 * 19 * Jens: 20 * - Rework again to work with bio instead of buffer_heads 21 * - loose bi_dev comparisons, partition handling is right now 22 * - completely modularize elevator setup and teardown 23 * 24 */ 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/blkdev.h> 28 #include <linux/elevator.h> 29 #include <linux/bio.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/compiler.h> 34 #include <linux/delay.h> 35 #include <linux/blktrace_api.h> 36 #include <linux/hash.h> 37 #include <linux/uaccess.h> 38 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 43 static DEFINE_SPINLOCK(elv_list_lock); 44 static LIST_HEAD(elv_list); 45 46 /* 47 * Merge hash stuff. 48 */ 49 static const int elv_hash_shift = 6; 50 #define ELV_HASH_BLOCK(sec) ((sec) >> 3) 51 #define ELV_HASH_FN(sec) \ 52 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift)) 53 #define ELV_HASH_ENTRIES (1 << elv_hash_shift) 54 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq)) 55 56 /* 57 * Query io scheduler to see if the current process issuing bio may be 58 * merged with rq. 59 */ 60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio) 61 { 62 struct request_queue *q = rq->q; 63 struct elevator_queue *e = q->elevator; 64 65 if (e->ops->elevator_allow_merge_fn) 66 return e->ops->elevator_allow_merge_fn(q, rq, bio); 67 68 return 1; 69 } 70 71 /* 72 * can we safely merge with this request? 73 */ 74 int elv_rq_merge_ok(struct request *rq, struct bio *bio) 75 { 76 if (!rq_mergeable(rq)) 77 return 0; 78 79 /* 80 * Don't merge file system requests and discard requests 81 */ 82 if ((bio->bi_rw & REQ_DISCARD) != (rq->bio->bi_rw & REQ_DISCARD)) 83 return 0; 84 85 /* 86 * Don't merge discard requests and secure discard requests 87 */ 88 if ((bio->bi_rw & REQ_SECURE) != (rq->bio->bi_rw & REQ_SECURE)) 89 return 0; 90 91 /* 92 * different data direction or already started, don't merge 93 */ 94 if (bio_data_dir(bio) != rq_data_dir(rq)) 95 return 0; 96 97 /* 98 * must be same device and not a special request 99 */ 100 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special) 101 return 0; 102 103 /* 104 * only merge integrity protected bio into ditto rq 105 */ 106 if (bio_integrity(bio) != blk_integrity_rq(rq)) 107 return 0; 108 109 if (!elv_iosched_allow_merge(rq, bio)) 110 return 0; 111 112 return 1; 113 } 114 EXPORT_SYMBOL(elv_rq_merge_ok); 115 116 int elv_try_merge(struct request *__rq, struct bio *bio) 117 { 118 int ret = ELEVATOR_NO_MERGE; 119 120 /* 121 * we can merge and sequence is ok, check if it's possible 122 */ 123 if (elv_rq_merge_ok(__rq, bio)) { 124 if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector) 125 ret = ELEVATOR_BACK_MERGE; 126 else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector) 127 ret = ELEVATOR_FRONT_MERGE; 128 } 129 130 return ret; 131 } 132 133 static struct elevator_type *elevator_find(const char *name) 134 { 135 struct elevator_type *e; 136 137 list_for_each_entry(e, &elv_list, list) { 138 if (!strcmp(e->elevator_name, name)) 139 return e; 140 } 141 142 return NULL; 143 } 144 145 static void elevator_put(struct elevator_type *e) 146 { 147 module_put(e->elevator_owner); 148 } 149 150 static struct elevator_type *elevator_get(const char *name) 151 { 152 struct elevator_type *e; 153 154 spin_lock(&elv_list_lock); 155 156 e = elevator_find(name); 157 if (!e) { 158 char elv[ELV_NAME_MAX + strlen("-iosched")]; 159 160 spin_unlock(&elv_list_lock); 161 162 snprintf(elv, sizeof(elv), "%s-iosched", name); 163 164 request_module("%s", elv); 165 spin_lock(&elv_list_lock); 166 e = elevator_find(name); 167 } 168 169 if (e && !try_module_get(e->elevator_owner)) 170 e = NULL; 171 172 spin_unlock(&elv_list_lock); 173 174 return e; 175 } 176 177 static void *elevator_init_queue(struct request_queue *q, 178 struct elevator_queue *eq) 179 { 180 return eq->ops->elevator_init_fn(q); 181 } 182 183 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq, 184 void *data) 185 { 186 q->elevator = eq; 187 eq->elevator_data = data; 188 } 189 190 static char chosen_elevator[16]; 191 192 static int __init elevator_setup(char *str) 193 { 194 /* 195 * Be backwards-compatible with previous kernels, so users 196 * won't get the wrong elevator. 197 */ 198 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 199 return 1; 200 } 201 202 __setup("elevator=", elevator_setup); 203 204 static struct kobj_type elv_ktype; 205 206 static struct elevator_queue *elevator_alloc(struct request_queue *q, 207 struct elevator_type *e) 208 { 209 struct elevator_queue *eq; 210 int i; 211 212 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node); 213 if (unlikely(!eq)) 214 goto err; 215 216 eq->ops = &e->ops; 217 eq->elevator_type = e; 218 kobject_init(&eq->kobj, &elv_ktype); 219 mutex_init(&eq->sysfs_lock); 220 221 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, 222 GFP_KERNEL, q->node); 223 if (!eq->hash) 224 goto err; 225 226 for (i = 0; i < ELV_HASH_ENTRIES; i++) 227 INIT_HLIST_HEAD(&eq->hash[i]); 228 229 return eq; 230 err: 231 kfree(eq); 232 elevator_put(e); 233 return NULL; 234 } 235 236 static void elevator_release(struct kobject *kobj) 237 { 238 struct elevator_queue *e; 239 240 e = container_of(kobj, struct elevator_queue, kobj); 241 elevator_put(e->elevator_type); 242 kfree(e->hash); 243 kfree(e); 244 } 245 246 int elevator_init(struct request_queue *q, char *name) 247 { 248 struct elevator_type *e = NULL; 249 struct elevator_queue *eq; 250 void *data; 251 252 if (unlikely(q->elevator)) 253 return 0; 254 255 INIT_LIST_HEAD(&q->queue_head); 256 q->last_merge = NULL; 257 q->end_sector = 0; 258 q->boundary_rq = NULL; 259 260 if (name) { 261 e = elevator_get(name); 262 if (!e) 263 return -EINVAL; 264 } 265 266 if (!e && *chosen_elevator) { 267 e = elevator_get(chosen_elevator); 268 if (!e) 269 printk(KERN_ERR "I/O scheduler %s not found\n", 270 chosen_elevator); 271 } 272 273 if (!e) { 274 e = elevator_get(CONFIG_DEFAULT_IOSCHED); 275 if (!e) { 276 printk(KERN_ERR 277 "Default I/O scheduler not found. " \ 278 "Using noop.\n"); 279 e = elevator_get("noop"); 280 } 281 } 282 283 eq = elevator_alloc(q, e); 284 if (!eq) 285 return -ENOMEM; 286 287 data = elevator_init_queue(q, eq); 288 if (!data) { 289 kobject_put(&eq->kobj); 290 return -ENOMEM; 291 } 292 293 elevator_attach(q, eq, data); 294 return 0; 295 } 296 EXPORT_SYMBOL(elevator_init); 297 298 void elevator_exit(struct elevator_queue *e) 299 { 300 mutex_lock(&e->sysfs_lock); 301 if (e->ops->elevator_exit_fn) 302 e->ops->elevator_exit_fn(e); 303 e->ops = NULL; 304 mutex_unlock(&e->sysfs_lock); 305 306 kobject_put(&e->kobj); 307 } 308 EXPORT_SYMBOL(elevator_exit); 309 310 static inline void __elv_rqhash_del(struct request *rq) 311 { 312 hlist_del_init(&rq->hash); 313 } 314 315 static void elv_rqhash_del(struct request_queue *q, struct request *rq) 316 { 317 if (ELV_ON_HASH(rq)) 318 __elv_rqhash_del(rq); 319 } 320 321 static void elv_rqhash_add(struct request_queue *q, struct request *rq) 322 { 323 struct elevator_queue *e = q->elevator; 324 325 BUG_ON(ELV_ON_HASH(rq)); 326 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]); 327 } 328 329 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq) 330 { 331 __elv_rqhash_del(rq); 332 elv_rqhash_add(q, rq); 333 } 334 335 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) 336 { 337 struct elevator_queue *e = q->elevator; 338 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)]; 339 struct hlist_node *entry, *next; 340 struct request *rq; 341 342 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) { 343 BUG_ON(!ELV_ON_HASH(rq)); 344 345 if (unlikely(!rq_mergeable(rq))) { 346 __elv_rqhash_del(rq); 347 continue; 348 } 349 350 if (rq_hash_key(rq) == offset) 351 return rq; 352 } 353 354 return NULL; 355 } 356 357 /* 358 * RB-tree support functions for inserting/lookup/removal of requests 359 * in a sorted RB tree. 360 */ 361 struct request *elv_rb_add(struct rb_root *root, struct request *rq) 362 { 363 struct rb_node **p = &root->rb_node; 364 struct rb_node *parent = NULL; 365 struct request *__rq; 366 367 while (*p) { 368 parent = *p; 369 __rq = rb_entry(parent, struct request, rb_node); 370 371 if (blk_rq_pos(rq) < blk_rq_pos(__rq)) 372 p = &(*p)->rb_left; 373 else if (blk_rq_pos(rq) > blk_rq_pos(__rq)) 374 p = &(*p)->rb_right; 375 else 376 return __rq; 377 } 378 379 rb_link_node(&rq->rb_node, parent, p); 380 rb_insert_color(&rq->rb_node, root); 381 return NULL; 382 } 383 EXPORT_SYMBOL(elv_rb_add); 384 385 void elv_rb_del(struct rb_root *root, struct request *rq) 386 { 387 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 388 rb_erase(&rq->rb_node, root); 389 RB_CLEAR_NODE(&rq->rb_node); 390 } 391 EXPORT_SYMBOL(elv_rb_del); 392 393 struct request *elv_rb_find(struct rb_root *root, sector_t sector) 394 { 395 struct rb_node *n = root->rb_node; 396 struct request *rq; 397 398 while (n) { 399 rq = rb_entry(n, struct request, rb_node); 400 401 if (sector < blk_rq_pos(rq)) 402 n = n->rb_left; 403 else if (sector > blk_rq_pos(rq)) 404 n = n->rb_right; 405 else 406 return rq; 407 } 408 409 return NULL; 410 } 411 EXPORT_SYMBOL(elv_rb_find); 412 413 /* 414 * Insert rq into dispatch queue of q. Queue lock must be held on 415 * entry. rq is sort instead into the dispatch queue. To be used by 416 * specific elevators. 417 */ 418 void elv_dispatch_sort(struct request_queue *q, struct request *rq) 419 { 420 sector_t boundary; 421 struct list_head *entry; 422 int stop_flags; 423 424 BUG_ON(rq->cmd_flags & REQ_ON_PLUG); 425 426 if (q->last_merge == rq) 427 q->last_merge = NULL; 428 429 elv_rqhash_del(q, rq); 430 431 q->nr_sorted--; 432 433 boundary = q->end_sector; 434 stop_flags = REQ_SOFTBARRIER | REQ_STARTED; 435 list_for_each_prev(entry, &q->queue_head) { 436 struct request *pos = list_entry_rq(entry); 437 438 if ((rq->cmd_flags & REQ_DISCARD) != 439 (pos->cmd_flags & REQ_DISCARD)) 440 break; 441 if (rq_data_dir(rq) != rq_data_dir(pos)) 442 break; 443 if (pos->cmd_flags & stop_flags) 444 break; 445 if (blk_rq_pos(rq) >= boundary) { 446 if (blk_rq_pos(pos) < boundary) 447 continue; 448 } else { 449 if (blk_rq_pos(pos) >= boundary) 450 break; 451 } 452 if (blk_rq_pos(rq) >= blk_rq_pos(pos)) 453 break; 454 } 455 456 list_add(&rq->queuelist, entry); 457 } 458 EXPORT_SYMBOL(elv_dispatch_sort); 459 460 /* 461 * Insert rq into dispatch queue of q. Queue lock must be held on 462 * entry. rq is added to the back of the dispatch queue. To be used by 463 * specific elevators. 464 */ 465 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq) 466 { 467 if (q->last_merge == rq) 468 q->last_merge = NULL; 469 470 elv_rqhash_del(q, rq); 471 472 q->nr_sorted--; 473 474 q->end_sector = rq_end_sector(rq); 475 q->boundary_rq = rq; 476 list_add_tail(&rq->queuelist, &q->queue_head); 477 } 478 EXPORT_SYMBOL(elv_dispatch_add_tail); 479 480 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio) 481 { 482 struct elevator_queue *e = q->elevator; 483 struct request *__rq; 484 int ret; 485 486 /* 487 * Levels of merges: 488 * nomerges: No merges at all attempted 489 * noxmerges: Only simple one-hit cache try 490 * merges: All merge tries attempted 491 */ 492 if (blk_queue_nomerges(q)) 493 return ELEVATOR_NO_MERGE; 494 495 /* 496 * First try one-hit cache. 497 */ 498 if (q->last_merge) { 499 ret = elv_try_merge(q->last_merge, bio); 500 if (ret != ELEVATOR_NO_MERGE) { 501 *req = q->last_merge; 502 return ret; 503 } 504 } 505 506 if (blk_queue_noxmerges(q)) 507 return ELEVATOR_NO_MERGE; 508 509 /* 510 * See if our hash lookup can find a potential backmerge. 511 */ 512 __rq = elv_rqhash_find(q, bio->bi_sector); 513 if (__rq && elv_rq_merge_ok(__rq, bio)) { 514 *req = __rq; 515 return ELEVATOR_BACK_MERGE; 516 } 517 518 if (e->ops->elevator_merge_fn) 519 return e->ops->elevator_merge_fn(q, req, bio); 520 521 return ELEVATOR_NO_MERGE; 522 } 523 524 /* 525 * Attempt to do an insertion back merge. Only check for the case where 526 * we can append 'rq' to an existing request, so we can throw 'rq' away 527 * afterwards. 528 * 529 * Returns true if we merged, false otherwise 530 */ 531 static bool elv_attempt_insert_merge(struct request_queue *q, 532 struct request *rq) 533 { 534 struct request *__rq; 535 536 if (blk_queue_nomerges(q)) 537 return false; 538 539 /* 540 * First try one-hit cache. 541 */ 542 if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq)) 543 return true; 544 545 if (blk_queue_noxmerges(q)) 546 return false; 547 548 /* 549 * See if our hash lookup can find a potential backmerge. 550 */ 551 __rq = elv_rqhash_find(q, blk_rq_pos(rq)); 552 if (__rq && blk_attempt_req_merge(q, __rq, rq)) 553 return true; 554 555 return false; 556 } 557 558 void elv_merged_request(struct request_queue *q, struct request *rq, int type) 559 { 560 struct elevator_queue *e = q->elevator; 561 562 if (e->ops->elevator_merged_fn) 563 e->ops->elevator_merged_fn(q, rq, type); 564 565 if (type == ELEVATOR_BACK_MERGE) 566 elv_rqhash_reposition(q, rq); 567 568 q->last_merge = rq; 569 } 570 571 void elv_merge_requests(struct request_queue *q, struct request *rq, 572 struct request *next) 573 { 574 struct elevator_queue *e = q->elevator; 575 const int next_sorted = next->cmd_flags & REQ_SORTED; 576 577 if (next_sorted && e->ops->elevator_merge_req_fn) 578 e->ops->elevator_merge_req_fn(q, rq, next); 579 580 elv_rqhash_reposition(q, rq); 581 582 if (next_sorted) { 583 elv_rqhash_del(q, next); 584 q->nr_sorted--; 585 } 586 587 q->last_merge = rq; 588 } 589 590 void elv_bio_merged(struct request_queue *q, struct request *rq, 591 struct bio *bio) 592 { 593 struct elevator_queue *e = q->elevator; 594 595 if (e->ops->elevator_bio_merged_fn) 596 e->ops->elevator_bio_merged_fn(q, rq, bio); 597 } 598 599 void elv_requeue_request(struct request_queue *q, struct request *rq) 600 { 601 /* 602 * it already went through dequeue, we need to decrement the 603 * in_flight count again 604 */ 605 if (blk_account_rq(rq)) { 606 q->in_flight[rq_is_sync(rq)]--; 607 if (rq->cmd_flags & REQ_SORTED) 608 elv_deactivate_rq(q, rq); 609 } 610 611 rq->cmd_flags &= ~REQ_STARTED; 612 613 __elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE); 614 } 615 616 void elv_drain_elevator(struct request_queue *q) 617 { 618 static int printed; 619 while (q->elevator->ops->elevator_dispatch_fn(q, 1)) 620 ; 621 if (q->nr_sorted == 0) 622 return; 623 if (printed++ < 10) { 624 printk(KERN_ERR "%s: forced dispatching is broken " 625 "(nr_sorted=%u), please report this\n", 626 q->elevator->elevator_type->elevator_name, q->nr_sorted); 627 } 628 } 629 630 /* 631 * Call with queue lock held, interrupts disabled 632 */ 633 void elv_quiesce_start(struct request_queue *q) 634 { 635 if (!q->elevator) 636 return; 637 638 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q); 639 640 /* 641 * make sure we don't have any requests in flight 642 */ 643 elv_drain_elevator(q); 644 while (q->rq.elvpriv) { 645 __blk_run_queue(q); 646 spin_unlock_irq(q->queue_lock); 647 msleep(10); 648 spin_lock_irq(q->queue_lock); 649 elv_drain_elevator(q); 650 } 651 } 652 653 void elv_quiesce_end(struct request_queue *q) 654 { 655 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 656 } 657 658 void __elv_add_request(struct request_queue *q, struct request *rq, int where) 659 { 660 trace_block_rq_insert(q, rq); 661 662 rq->q = q; 663 664 BUG_ON(rq->cmd_flags & REQ_ON_PLUG); 665 666 if (rq->cmd_flags & REQ_SOFTBARRIER) { 667 /* barriers are scheduling boundary, update end_sector */ 668 if (rq->cmd_type == REQ_TYPE_FS || 669 (rq->cmd_flags & REQ_DISCARD)) { 670 q->end_sector = rq_end_sector(rq); 671 q->boundary_rq = rq; 672 } 673 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && 674 (where == ELEVATOR_INSERT_SORT || 675 where == ELEVATOR_INSERT_SORT_MERGE)) 676 where = ELEVATOR_INSERT_BACK; 677 678 switch (where) { 679 case ELEVATOR_INSERT_REQUEUE: 680 case ELEVATOR_INSERT_FRONT: 681 rq->cmd_flags |= REQ_SOFTBARRIER; 682 list_add(&rq->queuelist, &q->queue_head); 683 break; 684 685 case ELEVATOR_INSERT_BACK: 686 rq->cmd_flags |= REQ_SOFTBARRIER; 687 elv_drain_elevator(q); 688 list_add_tail(&rq->queuelist, &q->queue_head); 689 /* 690 * We kick the queue here for the following reasons. 691 * - The elevator might have returned NULL previously 692 * to delay requests and returned them now. As the 693 * queue wasn't empty before this request, ll_rw_blk 694 * won't run the queue on return, resulting in hang. 695 * - Usually, back inserted requests won't be merged 696 * with anything. There's no point in delaying queue 697 * processing. 698 */ 699 __blk_run_queue(q); 700 break; 701 702 case ELEVATOR_INSERT_SORT_MERGE: 703 /* 704 * If we succeed in merging this request with one in the 705 * queue already, we are done - rq has now been freed, 706 * so no need to do anything further. 707 */ 708 if (elv_attempt_insert_merge(q, rq)) 709 break; 710 case ELEVATOR_INSERT_SORT: 711 BUG_ON(rq->cmd_type != REQ_TYPE_FS && 712 !(rq->cmd_flags & REQ_DISCARD)); 713 rq->cmd_flags |= REQ_SORTED; 714 q->nr_sorted++; 715 if (rq_mergeable(rq)) { 716 elv_rqhash_add(q, rq); 717 if (!q->last_merge) 718 q->last_merge = rq; 719 } 720 721 /* 722 * Some ioscheds (cfq) run q->request_fn directly, so 723 * rq cannot be accessed after calling 724 * elevator_add_req_fn. 725 */ 726 q->elevator->ops->elevator_add_req_fn(q, rq); 727 break; 728 729 case ELEVATOR_INSERT_FLUSH: 730 rq->cmd_flags |= REQ_SOFTBARRIER; 731 blk_insert_flush(rq); 732 break; 733 default: 734 printk(KERN_ERR "%s: bad insertion point %d\n", 735 __func__, where); 736 BUG(); 737 } 738 } 739 EXPORT_SYMBOL(__elv_add_request); 740 741 void elv_add_request(struct request_queue *q, struct request *rq, int where) 742 { 743 unsigned long flags; 744 745 spin_lock_irqsave(q->queue_lock, flags); 746 __elv_add_request(q, rq, where); 747 spin_unlock_irqrestore(q->queue_lock, flags); 748 } 749 EXPORT_SYMBOL(elv_add_request); 750 751 struct request *elv_latter_request(struct request_queue *q, struct request *rq) 752 { 753 struct elevator_queue *e = q->elevator; 754 755 if (e->ops->elevator_latter_req_fn) 756 return e->ops->elevator_latter_req_fn(q, rq); 757 return NULL; 758 } 759 760 struct request *elv_former_request(struct request_queue *q, struct request *rq) 761 { 762 struct elevator_queue *e = q->elevator; 763 764 if (e->ops->elevator_former_req_fn) 765 return e->ops->elevator_former_req_fn(q, rq); 766 return NULL; 767 } 768 769 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask) 770 { 771 struct elevator_queue *e = q->elevator; 772 773 if (e->ops->elevator_set_req_fn) 774 return e->ops->elevator_set_req_fn(q, rq, gfp_mask); 775 776 rq->elevator_private[0] = NULL; 777 return 0; 778 } 779 780 void elv_put_request(struct request_queue *q, struct request *rq) 781 { 782 struct elevator_queue *e = q->elevator; 783 784 if (e->ops->elevator_put_req_fn) 785 e->ops->elevator_put_req_fn(rq); 786 } 787 788 int elv_may_queue(struct request_queue *q, int rw) 789 { 790 struct elevator_queue *e = q->elevator; 791 792 if (e->ops->elevator_may_queue_fn) 793 return e->ops->elevator_may_queue_fn(q, rw); 794 795 return ELV_MQUEUE_MAY; 796 } 797 798 void elv_abort_queue(struct request_queue *q) 799 { 800 struct request *rq; 801 802 blk_abort_flushes(q); 803 804 while (!list_empty(&q->queue_head)) { 805 rq = list_entry_rq(q->queue_head.next); 806 rq->cmd_flags |= REQ_QUIET; 807 trace_block_rq_abort(q, rq); 808 /* 809 * Mark this request as started so we don't trigger 810 * any debug logic in the end I/O path. 811 */ 812 blk_start_request(rq); 813 __blk_end_request_all(rq, -EIO); 814 } 815 } 816 EXPORT_SYMBOL(elv_abort_queue); 817 818 void elv_completed_request(struct request_queue *q, struct request *rq) 819 { 820 struct elevator_queue *e = q->elevator; 821 822 /* 823 * request is released from the driver, io must be done 824 */ 825 if (blk_account_rq(rq)) { 826 q->in_flight[rq_is_sync(rq)]--; 827 if ((rq->cmd_flags & REQ_SORTED) && 828 e->ops->elevator_completed_req_fn) 829 e->ops->elevator_completed_req_fn(q, rq); 830 } 831 } 832 833 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) 834 835 static ssize_t 836 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 837 { 838 struct elv_fs_entry *entry = to_elv(attr); 839 struct elevator_queue *e; 840 ssize_t error; 841 842 if (!entry->show) 843 return -EIO; 844 845 e = container_of(kobj, struct elevator_queue, kobj); 846 mutex_lock(&e->sysfs_lock); 847 error = e->ops ? entry->show(e, page) : -ENOENT; 848 mutex_unlock(&e->sysfs_lock); 849 return error; 850 } 851 852 static ssize_t 853 elv_attr_store(struct kobject *kobj, struct attribute *attr, 854 const char *page, size_t length) 855 { 856 struct elv_fs_entry *entry = to_elv(attr); 857 struct elevator_queue *e; 858 ssize_t error; 859 860 if (!entry->store) 861 return -EIO; 862 863 e = container_of(kobj, struct elevator_queue, kobj); 864 mutex_lock(&e->sysfs_lock); 865 error = e->ops ? entry->store(e, page, length) : -ENOENT; 866 mutex_unlock(&e->sysfs_lock); 867 return error; 868 } 869 870 static const struct sysfs_ops elv_sysfs_ops = { 871 .show = elv_attr_show, 872 .store = elv_attr_store, 873 }; 874 875 static struct kobj_type elv_ktype = { 876 .sysfs_ops = &elv_sysfs_ops, 877 .release = elevator_release, 878 }; 879 880 int elv_register_queue(struct request_queue *q) 881 { 882 struct elevator_queue *e = q->elevator; 883 int error; 884 885 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched"); 886 if (!error) { 887 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs; 888 if (attr) { 889 while (attr->attr.name) { 890 if (sysfs_create_file(&e->kobj, &attr->attr)) 891 break; 892 attr++; 893 } 894 } 895 kobject_uevent(&e->kobj, KOBJ_ADD); 896 e->registered = 1; 897 } 898 return error; 899 } 900 EXPORT_SYMBOL(elv_register_queue); 901 902 static void __elv_unregister_queue(struct elevator_queue *e) 903 { 904 kobject_uevent(&e->kobj, KOBJ_REMOVE); 905 kobject_del(&e->kobj); 906 e->registered = 0; 907 } 908 909 void elv_unregister_queue(struct request_queue *q) 910 { 911 if (q) 912 __elv_unregister_queue(q->elevator); 913 } 914 EXPORT_SYMBOL(elv_unregister_queue); 915 916 void elv_register(struct elevator_type *e) 917 { 918 char *def = ""; 919 920 spin_lock(&elv_list_lock); 921 BUG_ON(elevator_find(e->elevator_name)); 922 list_add_tail(&e->list, &elv_list); 923 spin_unlock(&elv_list_lock); 924 925 if (!strcmp(e->elevator_name, chosen_elevator) || 926 (!*chosen_elevator && 927 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED))) 928 def = " (default)"; 929 930 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, 931 def); 932 } 933 EXPORT_SYMBOL_GPL(elv_register); 934 935 void elv_unregister(struct elevator_type *e) 936 { 937 struct task_struct *g, *p; 938 939 /* 940 * Iterate every thread in the process to remove the io contexts. 941 */ 942 if (e->ops.trim) { 943 read_lock(&tasklist_lock); 944 do_each_thread(g, p) { 945 task_lock(p); 946 if (p->io_context) 947 e->ops.trim(p->io_context); 948 task_unlock(p); 949 } while_each_thread(g, p); 950 read_unlock(&tasklist_lock); 951 } 952 953 spin_lock(&elv_list_lock); 954 list_del_init(&e->list); 955 spin_unlock(&elv_list_lock); 956 } 957 EXPORT_SYMBOL_GPL(elv_unregister); 958 959 /* 960 * switch to new_e io scheduler. be careful not to introduce deadlocks - 961 * we don't free the old io scheduler, before we have allocated what we 962 * need for the new one. this way we have a chance of going back to the old 963 * one, if the new one fails init for some reason. 964 */ 965 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e) 966 { 967 struct elevator_queue *old_elevator, *e; 968 void *data; 969 int err; 970 971 /* 972 * Allocate new elevator 973 */ 974 e = elevator_alloc(q, new_e); 975 if (!e) 976 return -ENOMEM; 977 978 data = elevator_init_queue(q, e); 979 if (!data) { 980 kobject_put(&e->kobj); 981 return -ENOMEM; 982 } 983 984 /* 985 * Turn on BYPASS and drain all requests w/ elevator private data 986 */ 987 spin_lock_irq(q->queue_lock); 988 elv_quiesce_start(q); 989 990 /* 991 * Remember old elevator. 992 */ 993 old_elevator = q->elevator; 994 995 /* 996 * attach and start new elevator 997 */ 998 elevator_attach(q, e, data); 999 1000 spin_unlock_irq(q->queue_lock); 1001 1002 if (old_elevator->registered) { 1003 __elv_unregister_queue(old_elevator); 1004 1005 err = elv_register_queue(q); 1006 if (err) 1007 goto fail_register; 1008 } 1009 1010 /* 1011 * finally exit old elevator and turn off BYPASS. 1012 */ 1013 elevator_exit(old_elevator); 1014 spin_lock_irq(q->queue_lock); 1015 elv_quiesce_end(q); 1016 spin_unlock_irq(q->queue_lock); 1017 1018 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name); 1019 1020 return 0; 1021 1022 fail_register: 1023 /* 1024 * switch failed, exit the new io scheduler and reattach the old 1025 * one again (along with re-adding the sysfs dir) 1026 */ 1027 elevator_exit(e); 1028 q->elevator = old_elevator; 1029 elv_register_queue(q); 1030 1031 spin_lock_irq(q->queue_lock); 1032 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 1033 spin_unlock_irq(q->queue_lock); 1034 1035 return err; 1036 } 1037 1038 /* 1039 * Switch this queue to the given IO scheduler. 1040 */ 1041 int elevator_change(struct request_queue *q, const char *name) 1042 { 1043 char elevator_name[ELV_NAME_MAX]; 1044 struct elevator_type *e; 1045 1046 if (!q->elevator) 1047 return -ENXIO; 1048 1049 strlcpy(elevator_name, name, sizeof(elevator_name)); 1050 e = elevator_get(strstrip(elevator_name)); 1051 if (!e) { 1052 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 1053 return -EINVAL; 1054 } 1055 1056 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) { 1057 elevator_put(e); 1058 return 0; 1059 } 1060 1061 return elevator_switch(q, e); 1062 } 1063 EXPORT_SYMBOL(elevator_change); 1064 1065 ssize_t elv_iosched_store(struct request_queue *q, const char *name, 1066 size_t count) 1067 { 1068 int ret; 1069 1070 if (!q->elevator) 1071 return count; 1072 1073 ret = elevator_change(q, name); 1074 if (!ret) 1075 return count; 1076 1077 printk(KERN_ERR "elevator: switch to %s failed\n", name); 1078 return ret; 1079 } 1080 1081 ssize_t elv_iosched_show(struct request_queue *q, char *name) 1082 { 1083 struct elevator_queue *e = q->elevator; 1084 struct elevator_type *elv; 1085 struct elevator_type *__e; 1086 int len = 0; 1087 1088 if (!q->elevator || !blk_queue_stackable(q)) 1089 return sprintf(name, "none\n"); 1090 1091 elv = e->elevator_type; 1092 1093 spin_lock(&elv_list_lock); 1094 list_for_each_entry(__e, &elv_list, list) { 1095 if (!strcmp(elv->elevator_name, __e->elevator_name)) 1096 len += sprintf(name+len, "[%s] ", elv->elevator_name); 1097 else 1098 len += sprintf(name+len, "%s ", __e->elevator_name); 1099 } 1100 spin_unlock(&elv_list_lock); 1101 1102 len += sprintf(len+name, "\n"); 1103 return len; 1104 } 1105 1106 struct request *elv_rb_former_request(struct request_queue *q, 1107 struct request *rq) 1108 { 1109 struct rb_node *rbprev = rb_prev(&rq->rb_node); 1110 1111 if (rbprev) 1112 return rb_entry_rq(rbprev); 1113 1114 return NULL; 1115 } 1116 EXPORT_SYMBOL(elv_rb_former_request); 1117 1118 struct request *elv_rb_latter_request(struct request_queue *q, 1119 struct request *rq) 1120 { 1121 struct rb_node *rbnext = rb_next(&rq->rb_node); 1122 1123 if (rbnext) 1124 return rb_entry_rq(rbnext); 1125 1126 return NULL; 1127 } 1128 EXPORT_SYMBOL(elv_rb_latter_request); 1129