1 /* 2 * Block device elevator/IO-scheduler. 3 * 4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * 6 * 30042000 Jens Axboe <axboe@kernel.dk> : 7 * 8 * Split the elevator a bit so that it is possible to choose a different 9 * one or even write a new "plug in". There are three pieces: 10 * - elevator_fn, inserts a new request in the queue list 11 * - elevator_merge_fn, decides whether a new buffer can be merged with 12 * an existing request 13 * - elevator_dequeue_fn, called when a request is taken off the active list 14 * 15 * 20082000 Dave Jones <davej@suse.de> : 16 * Removed tests for max-bomb-segments, which was breaking elvtune 17 * when run without -bN 18 * 19 * Jens: 20 * - Rework again to work with bio instead of buffer_heads 21 * - loose bi_dev comparisons, partition handling is right now 22 * - completely modularize elevator setup and teardown 23 * 24 */ 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/blkdev.h> 28 #include <linux/elevator.h> 29 #include <linux/bio.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/compiler.h> 34 #include <linux/blktrace_api.h> 35 #include <linux/hash.h> 36 #include <linux/uaccess.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/blk-cgroup.h> 39 40 #include <trace/events/block.h> 41 42 #include "blk.h" 43 44 static DEFINE_SPINLOCK(elv_list_lock); 45 static LIST_HEAD(elv_list); 46 47 /* 48 * Merge hash stuff. 49 */ 50 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq)) 51 52 /* 53 * Query io scheduler to see if the current process issuing bio may be 54 * merged with rq. 55 */ 56 static int elv_iosched_allow_bio_merge(struct request *rq, struct bio *bio) 57 { 58 struct request_queue *q = rq->q; 59 struct elevator_queue *e = q->elevator; 60 61 if (e->type->ops.elevator_allow_bio_merge_fn) 62 return e->type->ops.elevator_allow_bio_merge_fn(q, rq, bio); 63 64 return 1; 65 } 66 67 /* 68 * can we safely merge with this request? 69 */ 70 bool elv_bio_merge_ok(struct request *rq, struct bio *bio) 71 { 72 if (!blk_rq_merge_ok(rq, bio)) 73 return false; 74 75 if (!elv_iosched_allow_bio_merge(rq, bio)) 76 return false; 77 78 return true; 79 } 80 EXPORT_SYMBOL(elv_bio_merge_ok); 81 82 static struct elevator_type *elevator_find(const char *name) 83 { 84 struct elevator_type *e; 85 86 list_for_each_entry(e, &elv_list, list) { 87 if (!strcmp(e->elevator_name, name)) 88 return e; 89 } 90 91 return NULL; 92 } 93 94 static void elevator_put(struct elevator_type *e) 95 { 96 module_put(e->elevator_owner); 97 } 98 99 static struct elevator_type *elevator_get(const char *name, bool try_loading) 100 { 101 struct elevator_type *e; 102 103 spin_lock(&elv_list_lock); 104 105 e = elevator_find(name); 106 if (!e && try_loading) { 107 spin_unlock(&elv_list_lock); 108 request_module("%s-iosched", name); 109 spin_lock(&elv_list_lock); 110 e = elevator_find(name); 111 } 112 113 if (e && !try_module_get(e->elevator_owner)) 114 e = NULL; 115 116 spin_unlock(&elv_list_lock); 117 118 return e; 119 } 120 121 static char chosen_elevator[ELV_NAME_MAX]; 122 123 static int __init elevator_setup(char *str) 124 { 125 /* 126 * Be backwards-compatible with previous kernels, so users 127 * won't get the wrong elevator. 128 */ 129 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 130 return 1; 131 } 132 133 __setup("elevator=", elevator_setup); 134 135 /* called during boot to load the elevator chosen by the elevator param */ 136 void __init load_default_elevator_module(void) 137 { 138 struct elevator_type *e; 139 140 if (!chosen_elevator[0]) 141 return; 142 143 spin_lock(&elv_list_lock); 144 e = elevator_find(chosen_elevator); 145 spin_unlock(&elv_list_lock); 146 147 if (!e) 148 request_module("%s-iosched", chosen_elevator); 149 } 150 151 static struct kobj_type elv_ktype; 152 153 struct elevator_queue *elevator_alloc(struct request_queue *q, 154 struct elevator_type *e) 155 { 156 struct elevator_queue *eq; 157 158 eq = kzalloc_node(sizeof(*eq), GFP_KERNEL, q->node); 159 if (unlikely(!eq)) 160 return NULL; 161 162 eq->type = e; 163 kobject_init(&eq->kobj, &elv_ktype); 164 mutex_init(&eq->sysfs_lock); 165 hash_init(eq->hash); 166 167 return eq; 168 } 169 EXPORT_SYMBOL(elevator_alloc); 170 171 static void elevator_release(struct kobject *kobj) 172 { 173 struct elevator_queue *e; 174 175 e = container_of(kobj, struct elevator_queue, kobj); 176 elevator_put(e->type); 177 kfree(e); 178 } 179 180 int elevator_init(struct request_queue *q, char *name) 181 { 182 struct elevator_type *e = NULL; 183 int err; 184 185 /* 186 * q->sysfs_lock must be held to provide mutual exclusion between 187 * elevator_switch() and here. 188 */ 189 lockdep_assert_held(&q->sysfs_lock); 190 191 if (unlikely(q->elevator)) 192 return 0; 193 194 INIT_LIST_HEAD(&q->queue_head); 195 q->last_merge = NULL; 196 q->end_sector = 0; 197 q->boundary_rq = NULL; 198 199 if (name) { 200 e = elevator_get(name, true); 201 if (!e) 202 return -EINVAL; 203 } 204 205 /* 206 * Use the default elevator specified by config boot param or 207 * config option. Don't try to load modules as we could be running 208 * off async and request_module() isn't allowed from async. 209 */ 210 if (!e && *chosen_elevator) { 211 e = elevator_get(chosen_elevator, false); 212 if (!e) 213 printk(KERN_ERR "I/O scheduler %s not found\n", 214 chosen_elevator); 215 } 216 217 if (!e) { 218 e = elevator_get(CONFIG_DEFAULT_IOSCHED, false); 219 if (!e) { 220 printk(KERN_ERR 221 "Default I/O scheduler not found. " \ 222 "Using noop.\n"); 223 e = elevator_get("noop", false); 224 } 225 } 226 227 err = e->ops.elevator_init_fn(q, e); 228 if (err) 229 elevator_put(e); 230 return err; 231 } 232 EXPORT_SYMBOL(elevator_init); 233 234 void elevator_exit(struct elevator_queue *e) 235 { 236 mutex_lock(&e->sysfs_lock); 237 if (e->type->ops.elevator_exit_fn) 238 e->type->ops.elevator_exit_fn(e); 239 mutex_unlock(&e->sysfs_lock); 240 241 kobject_put(&e->kobj); 242 } 243 EXPORT_SYMBOL(elevator_exit); 244 245 static inline void __elv_rqhash_del(struct request *rq) 246 { 247 hash_del(&rq->hash); 248 rq->rq_flags &= ~RQF_HASHED; 249 } 250 251 void elv_rqhash_del(struct request_queue *q, struct request *rq) 252 { 253 if (ELV_ON_HASH(rq)) 254 __elv_rqhash_del(rq); 255 } 256 257 void elv_rqhash_add(struct request_queue *q, struct request *rq) 258 { 259 struct elevator_queue *e = q->elevator; 260 261 BUG_ON(ELV_ON_HASH(rq)); 262 hash_add(e->hash, &rq->hash, rq_hash_key(rq)); 263 rq->rq_flags |= RQF_HASHED; 264 } 265 266 void elv_rqhash_reposition(struct request_queue *q, struct request *rq) 267 { 268 __elv_rqhash_del(rq); 269 elv_rqhash_add(q, rq); 270 } 271 272 struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) 273 { 274 struct elevator_queue *e = q->elevator; 275 struct hlist_node *next; 276 struct request *rq; 277 278 hash_for_each_possible_safe(e->hash, rq, next, hash, offset) { 279 BUG_ON(!ELV_ON_HASH(rq)); 280 281 if (unlikely(!rq_mergeable(rq))) { 282 __elv_rqhash_del(rq); 283 continue; 284 } 285 286 if (rq_hash_key(rq) == offset) 287 return rq; 288 } 289 290 return NULL; 291 } 292 293 /* 294 * RB-tree support functions for inserting/lookup/removal of requests 295 * in a sorted RB tree. 296 */ 297 void elv_rb_add(struct rb_root *root, struct request *rq) 298 { 299 struct rb_node **p = &root->rb_node; 300 struct rb_node *parent = NULL; 301 struct request *__rq; 302 303 while (*p) { 304 parent = *p; 305 __rq = rb_entry(parent, struct request, rb_node); 306 307 if (blk_rq_pos(rq) < blk_rq_pos(__rq)) 308 p = &(*p)->rb_left; 309 else if (blk_rq_pos(rq) >= blk_rq_pos(__rq)) 310 p = &(*p)->rb_right; 311 } 312 313 rb_link_node(&rq->rb_node, parent, p); 314 rb_insert_color(&rq->rb_node, root); 315 } 316 EXPORT_SYMBOL(elv_rb_add); 317 318 void elv_rb_del(struct rb_root *root, struct request *rq) 319 { 320 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 321 rb_erase(&rq->rb_node, root); 322 RB_CLEAR_NODE(&rq->rb_node); 323 } 324 EXPORT_SYMBOL(elv_rb_del); 325 326 struct request *elv_rb_find(struct rb_root *root, sector_t sector) 327 { 328 struct rb_node *n = root->rb_node; 329 struct request *rq; 330 331 while (n) { 332 rq = rb_entry(n, struct request, rb_node); 333 334 if (sector < blk_rq_pos(rq)) 335 n = n->rb_left; 336 else if (sector > blk_rq_pos(rq)) 337 n = n->rb_right; 338 else 339 return rq; 340 } 341 342 return NULL; 343 } 344 EXPORT_SYMBOL(elv_rb_find); 345 346 /* 347 * Insert rq into dispatch queue of q. Queue lock must be held on 348 * entry. rq is sort instead into the dispatch queue. To be used by 349 * specific elevators. 350 */ 351 void elv_dispatch_sort(struct request_queue *q, struct request *rq) 352 { 353 sector_t boundary; 354 struct list_head *entry; 355 356 if (q->last_merge == rq) 357 q->last_merge = NULL; 358 359 elv_rqhash_del(q, rq); 360 361 q->nr_sorted--; 362 363 boundary = q->end_sector; 364 list_for_each_prev(entry, &q->queue_head) { 365 struct request *pos = list_entry_rq(entry); 366 367 if (req_op(rq) != req_op(pos)) 368 break; 369 if (rq_data_dir(rq) != rq_data_dir(pos)) 370 break; 371 if (pos->rq_flags & (RQF_STARTED | RQF_SOFTBARRIER)) 372 break; 373 if (blk_rq_pos(rq) >= boundary) { 374 if (blk_rq_pos(pos) < boundary) 375 continue; 376 } else { 377 if (blk_rq_pos(pos) >= boundary) 378 break; 379 } 380 if (blk_rq_pos(rq) >= blk_rq_pos(pos)) 381 break; 382 } 383 384 list_add(&rq->queuelist, entry); 385 } 386 EXPORT_SYMBOL(elv_dispatch_sort); 387 388 /* 389 * Insert rq into dispatch queue of q. Queue lock must be held on 390 * entry. rq is added to the back of the dispatch queue. To be used by 391 * specific elevators. 392 */ 393 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq) 394 { 395 if (q->last_merge == rq) 396 q->last_merge = NULL; 397 398 elv_rqhash_del(q, rq); 399 400 q->nr_sorted--; 401 402 q->end_sector = rq_end_sector(rq); 403 q->boundary_rq = rq; 404 list_add_tail(&rq->queuelist, &q->queue_head); 405 } 406 EXPORT_SYMBOL(elv_dispatch_add_tail); 407 408 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio) 409 { 410 struct elevator_queue *e = q->elevator; 411 struct request *__rq; 412 int ret; 413 414 /* 415 * Levels of merges: 416 * nomerges: No merges at all attempted 417 * noxmerges: Only simple one-hit cache try 418 * merges: All merge tries attempted 419 */ 420 if (blk_queue_nomerges(q) || !bio_mergeable(bio)) 421 return ELEVATOR_NO_MERGE; 422 423 /* 424 * First try one-hit cache. 425 */ 426 if (q->last_merge && elv_bio_merge_ok(q->last_merge, bio)) { 427 ret = blk_try_merge(q->last_merge, bio); 428 if (ret != ELEVATOR_NO_MERGE) { 429 *req = q->last_merge; 430 return ret; 431 } 432 } 433 434 if (blk_queue_noxmerges(q)) 435 return ELEVATOR_NO_MERGE; 436 437 /* 438 * See if our hash lookup can find a potential backmerge. 439 */ 440 __rq = elv_rqhash_find(q, bio->bi_iter.bi_sector); 441 if (__rq && elv_bio_merge_ok(__rq, bio)) { 442 *req = __rq; 443 return ELEVATOR_BACK_MERGE; 444 } 445 446 if (e->type->ops.elevator_merge_fn) 447 return e->type->ops.elevator_merge_fn(q, req, bio); 448 449 return ELEVATOR_NO_MERGE; 450 } 451 452 /* 453 * Attempt to do an insertion back merge. Only check for the case where 454 * we can append 'rq' to an existing request, so we can throw 'rq' away 455 * afterwards. 456 * 457 * Returns true if we merged, false otherwise 458 */ 459 static bool elv_attempt_insert_merge(struct request_queue *q, 460 struct request *rq) 461 { 462 struct request *__rq; 463 bool ret; 464 465 if (blk_queue_nomerges(q)) 466 return false; 467 468 /* 469 * First try one-hit cache. 470 */ 471 if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq)) 472 return true; 473 474 if (blk_queue_noxmerges(q)) 475 return false; 476 477 ret = false; 478 /* 479 * See if our hash lookup can find a potential backmerge. 480 */ 481 while (1) { 482 __rq = elv_rqhash_find(q, blk_rq_pos(rq)); 483 if (!__rq || !blk_attempt_req_merge(q, __rq, rq)) 484 break; 485 486 /* The merged request could be merged with others, try again */ 487 ret = true; 488 rq = __rq; 489 } 490 491 return ret; 492 } 493 494 void elv_merged_request(struct request_queue *q, struct request *rq, int type) 495 { 496 struct elevator_queue *e = q->elevator; 497 498 if (e->type->ops.elevator_merged_fn) 499 e->type->ops.elevator_merged_fn(q, rq, type); 500 501 if (type == ELEVATOR_BACK_MERGE) 502 elv_rqhash_reposition(q, rq); 503 504 q->last_merge = rq; 505 } 506 507 void elv_merge_requests(struct request_queue *q, struct request *rq, 508 struct request *next) 509 { 510 struct elevator_queue *e = q->elevator; 511 const int next_sorted = next->rq_flags & RQF_SORTED; 512 513 if (next_sorted && e->type->ops.elevator_merge_req_fn) 514 e->type->ops.elevator_merge_req_fn(q, rq, next); 515 516 elv_rqhash_reposition(q, rq); 517 518 if (next_sorted) { 519 elv_rqhash_del(q, next); 520 q->nr_sorted--; 521 } 522 523 q->last_merge = rq; 524 } 525 526 void elv_bio_merged(struct request_queue *q, struct request *rq, 527 struct bio *bio) 528 { 529 struct elevator_queue *e = q->elevator; 530 531 if (e->type->ops.elevator_bio_merged_fn) 532 e->type->ops.elevator_bio_merged_fn(q, rq, bio); 533 } 534 535 #ifdef CONFIG_PM 536 static void blk_pm_requeue_request(struct request *rq) 537 { 538 if (rq->q->dev && !(rq->rq_flags & RQF_PM)) 539 rq->q->nr_pending--; 540 } 541 542 static void blk_pm_add_request(struct request_queue *q, struct request *rq) 543 { 544 if (q->dev && !(rq->rq_flags & RQF_PM) && q->nr_pending++ == 0 && 545 (q->rpm_status == RPM_SUSPENDED || q->rpm_status == RPM_SUSPENDING)) 546 pm_request_resume(q->dev); 547 } 548 #else 549 static inline void blk_pm_requeue_request(struct request *rq) {} 550 static inline void blk_pm_add_request(struct request_queue *q, 551 struct request *rq) 552 { 553 } 554 #endif 555 556 void elv_requeue_request(struct request_queue *q, struct request *rq) 557 { 558 /* 559 * it already went through dequeue, we need to decrement the 560 * in_flight count again 561 */ 562 if (blk_account_rq(rq)) { 563 q->in_flight[rq_is_sync(rq)]--; 564 if (rq->rq_flags & RQF_SORTED) 565 elv_deactivate_rq(q, rq); 566 } 567 568 rq->rq_flags &= ~RQF_STARTED; 569 570 blk_pm_requeue_request(rq); 571 572 __elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE); 573 } 574 575 void elv_drain_elevator(struct request_queue *q) 576 { 577 static int printed; 578 579 lockdep_assert_held(q->queue_lock); 580 581 while (q->elevator->type->ops.elevator_dispatch_fn(q, 1)) 582 ; 583 if (q->nr_sorted && printed++ < 10) { 584 printk(KERN_ERR "%s: forced dispatching is broken " 585 "(nr_sorted=%u), please report this\n", 586 q->elevator->type->elevator_name, q->nr_sorted); 587 } 588 } 589 590 void __elv_add_request(struct request_queue *q, struct request *rq, int where) 591 { 592 trace_block_rq_insert(q, rq); 593 594 blk_pm_add_request(q, rq); 595 596 rq->q = q; 597 598 if (rq->rq_flags & RQF_SOFTBARRIER) { 599 /* barriers are scheduling boundary, update end_sector */ 600 if (rq->cmd_type == REQ_TYPE_FS) { 601 q->end_sector = rq_end_sector(rq); 602 q->boundary_rq = rq; 603 } 604 } else if (!(rq->rq_flags & RQF_ELVPRIV) && 605 (where == ELEVATOR_INSERT_SORT || 606 where == ELEVATOR_INSERT_SORT_MERGE)) 607 where = ELEVATOR_INSERT_BACK; 608 609 switch (where) { 610 case ELEVATOR_INSERT_REQUEUE: 611 case ELEVATOR_INSERT_FRONT: 612 rq->rq_flags |= RQF_SOFTBARRIER; 613 list_add(&rq->queuelist, &q->queue_head); 614 break; 615 616 case ELEVATOR_INSERT_BACK: 617 rq->rq_flags |= RQF_SOFTBARRIER; 618 elv_drain_elevator(q); 619 list_add_tail(&rq->queuelist, &q->queue_head); 620 /* 621 * We kick the queue here for the following reasons. 622 * - The elevator might have returned NULL previously 623 * to delay requests and returned them now. As the 624 * queue wasn't empty before this request, ll_rw_blk 625 * won't run the queue on return, resulting in hang. 626 * - Usually, back inserted requests won't be merged 627 * with anything. There's no point in delaying queue 628 * processing. 629 */ 630 __blk_run_queue(q); 631 break; 632 633 case ELEVATOR_INSERT_SORT_MERGE: 634 /* 635 * If we succeed in merging this request with one in the 636 * queue already, we are done - rq has now been freed, 637 * so no need to do anything further. 638 */ 639 if (elv_attempt_insert_merge(q, rq)) 640 break; 641 case ELEVATOR_INSERT_SORT: 642 BUG_ON(rq->cmd_type != REQ_TYPE_FS); 643 rq->rq_flags |= RQF_SORTED; 644 q->nr_sorted++; 645 if (rq_mergeable(rq)) { 646 elv_rqhash_add(q, rq); 647 if (!q->last_merge) 648 q->last_merge = rq; 649 } 650 651 /* 652 * Some ioscheds (cfq) run q->request_fn directly, so 653 * rq cannot be accessed after calling 654 * elevator_add_req_fn. 655 */ 656 q->elevator->type->ops.elevator_add_req_fn(q, rq); 657 break; 658 659 case ELEVATOR_INSERT_FLUSH: 660 rq->rq_flags |= RQF_SOFTBARRIER; 661 blk_insert_flush(rq); 662 break; 663 default: 664 printk(KERN_ERR "%s: bad insertion point %d\n", 665 __func__, where); 666 BUG(); 667 } 668 } 669 EXPORT_SYMBOL(__elv_add_request); 670 671 void elv_add_request(struct request_queue *q, struct request *rq, int where) 672 { 673 unsigned long flags; 674 675 spin_lock_irqsave(q->queue_lock, flags); 676 __elv_add_request(q, rq, where); 677 spin_unlock_irqrestore(q->queue_lock, flags); 678 } 679 EXPORT_SYMBOL(elv_add_request); 680 681 struct request *elv_latter_request(struct request_queue *q, struct request *rq) 682 { 683 struct elevator_queue *e = q->elevator; 684 685 if (e->type->ops.elevator_latter_req_fn) 686 return e->type->ops.elevator_latter_req_fn(q, rq); 687 return NULL; 688 } 689 690 struct request *elv_former_request(struct request_queue *q, struct request *rq) 691 { 692 struct elevator_queue *e = q->elevator; 693 694 if (e->type->ops.elevator_former_req_fn) 695 return e->type->ops.elevator_former_req_fn(q, rq); 696 return NULL; 697 } 698 699 int elv_set_request(struct request_queue *q, struct request *rq, 700 struct bio *bio, gfp_t gfp_mask) 701 { 702 struct elevator_queue *e = q->elevator; 703 704 if (e->type->ops.elevator_set_req_fn) 705 return e->type->ops.elevator_set_req_fn(q, rq, bio, gfp_mask); 706 return 0; 707 } 708 709 void elv_put_request(struct request_queue *q, struct request *rq) 710 { 711 struct elevator_queue *e = q->elevator; 712 713 if (e->type->ops.elevator_put_req_fn) 714 e->type->ops.elevator_put_req_fn(rq); 715 } 716 717 int elv_may_queue(struct request_queue *q, unsigned int op) 718 { 719 struct elevator_queue *e = q->elevator; 720 721 if (e->type->ops.elevator_may_queue_fn) 722 return e->type->ops.elevator_may_queue_fn(q, op); 723 724 return ELV_MQUEUE_MAY; 725 } 726 727 void elv_completed_request(struct request_queue *q, struct request *rq) 728 { 729 struct elevator_queue *e = q->elevator; 730 731 /* 732 * request is released from the driver, io must be done 733 */ 734 if (blk_account_rq(rq)) { 735 q->in_flight[rq_is_sync(rq)]--; 736 if ((rq->rq_flags & RQF_SORTED) && 737 e->type->ops.elevator_completed_req_fn) 738 e->type->ops.elevator_completed_req_fn(q, rq); 739 } 740 } 741 742 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) 743 744 static ssize_t 745 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 746 { 747 struct elv_fs_entry *entry = to_elv(attr); 748 struct elevator_queue *e; 749 ssize_t error; 750 751 if (!entry->show) 752 return -EIO; 753 754 e = container_of(kobj, struct elevator_queue, kobj); 755 mutex_lock(&e->sysfs_lock); 756 error = e->type ? entry->show(e, page) : -ENOENT; 757 mutex_unlock(&e->sysfs_lock); 758 return error; 759 } 760 761 static ssize_t 762 elv_attr_store(struct kobject *kobj, struct attribute *attr, 763 const char *page, size_t length) 764 { 765 struct elv_fs_entry *entry = to_elv(attr); 766 struct elevator_queue *e; 767 ssize_t error; 768 769 if (!entry->store) 770 return -EIO; 771 772 e = container_of(kobj, struct elevator_queue, kobj); 773 mutex_lock(&e->sysfs_lock); 774 error = e->type ? entry->store(e, page, length) : -ENOENT; 775 mutex_unlock(&e->sysfs_lock); 776 return error; 777 } 778 779 static const struct sysfs_ops elv_sysfs_ops = { 780 .show = elv_attr_show, 781 .store = elv_attr_store, 782 }; 783 784 static struct kobj_type elv_ktype = { 785 .sysfs_ops = &elv_sysfs_ops, 786 .release = elevator_release, 787 }; 788 789 int elv_register_queue(struct request_queue *q) 790 { 791 struct elevator_queue *e = q->elevator; 792 int error; 793 794 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched"); 795 if (!error) { 796 struct elv_fs_entry *attr = e->type->elevator_attrs; 797 if (attr) { 798 while (attr->attr.name) { 799 if (sysfs_create_file(&e->kobj, &attr->attr)) 800 break; 801 attr++; 802 } 803 } 804 kobject_uevent(&e->kobj, KOBJ_ADD); 805 e->registered = 1; 806 if (e->type->ops.elevator_registered_fn) 807 e->type->ops.elevator_registered_fn(q); 808 } 809 return error; 810 } 811 EXPORT_SYMBOL(elv_register_queue); 812 813 void elv_unregister_queue(struct request_queue *q) 814 { 815 if (q) { 816 struct elevator_queue *e = q->elevator; 817 818 kobject_uevent(&e->kobj, KOBJ_REMOVE); 819 kobject_del(&e->kobj); 820 e->registered = 0; 821 } 822 } 823 EXPORT_SYMBOL(elv_unregister_queue); 824 825 int elv_register(struct elevator_type *e) 826 { 827 char *def = ""; 828 829 /* create icq_cache if requested */ 830 if (e->icq_size) { 831 if (WARN_ON(e->icq_size < sizeof(struct io_cq)) || 832 WARN_ON(e->icq_align < __alignof__(struct io_cq))) 833 return -EINVAL; 834 835 snprintf(e->icq_cache_name, sizeof(e->icq_cache_name), 836 "%s_io_cq", e->elevator_name); 837 e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size, 838 e->icq_align, 0, NULL); 839 if (!e->icq_cache) 840 return -ENOMEM; 841 } 842 843 /* register, don't allow duplicate names */ 844 spin_lock(&elv_list_lock); 845 if (elevator_find(e->elevator_name)) { 846 spin_unlock(&elv_list_lock); 847 if (e->icq_cache) 848 kmem_cache_destroy(e->icq_cache); 849 return -EBUSY; 850 } 851 list_add_tail(&e->list, &elv_list); 852 spin_unlock(&elv_list_lock); 853 854 /* print pretty message */ 855 if (!strcmp(e->elevator_name, chosen_elevator) || 856 (!*chosen_elevator && 857 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED))) 858 def = " (default)"; 859 860 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, 861 def); 862 return 0; 863 } 864 EXPORT_SYMBOL_GPL(elv_register); 865 866 void elv_unregister(struct elevator_type *e) 867 { 868 /* unregister */ 869 spin_lock(&elv_list_lock); 870 list_del_init(&e->list); 871 spin_unlock(&elv_list_lock); 872 873 /* 874 * Destroy icq_cache if it exists. icq's are RCU managed. Make 875 * sure all RCU operations are complete before proceeding. 876 */ 877 if (e->icq_cache) { 878 rcu_barrier(); 879 kmem_cache_destroy(e->icq_cache); 880 e->icq_cache = NULL; 881 } 882 } 883 EXPORT_SYMBOL_GPL(elv_unregister); 884 885 /* 886 * switch to new_e io scheduler. be careful not to introduce deadlocks - 887 * we don't free the old io scheduler, before we have allocated what we 888 * need for the new one. this way we have a chance of going back to the old 889 * one, if the new one fails init for some reason. 890 */ 891 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e) 892 { 893 struct elevator_queue *old = q->elevator; 894 bool registered = old->registered; 895 int err; 896 897 /* 898 * Turn on BYPASS and drain all requests w/ elevator private data. 899 * Block layer doesn't call into a quiesced elevator - all requests 900 * are directly put on the dispatch list without elevator data 901 * using INSERT_BACK. All requests have SOFTBARRIER set and no 902 * merge happens either. 903 */ 904 blk_queue_bypass_start(q); 905 906 /* unregister and clear all auxiliary data of the old elevator */ 907 if (registered) 908 elv_unregister_queue(q); 909 910 spin_lock_irq(q->queue_lock); 911 ioc_clear_queue(q); 912 spin_unlock_irq(q->queue_lock); 913 914 /* allocate, init and register new elevator */ 915 err = new_e->ops.elevator_init_fn(q, new_e); 916 if (err) 917 goto fail_init; 918 919 if (registered) { 920 err = elv_register_queue(q); 921 if (err) 922 goto fail_register; 923 } 924 925 /* done, kill the old one and finish */ 926 elevator_exit(old); 927 blk_queue_bypass_end(q); 928 929 blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name); 930 931 return 0; 932 933 fail_register: 934 elevator_exit(q->elevator); 935 fail_init: 936 /* switch failed, restore and re-register old elevator */ 937 q->elevator = old; 938 elv_register_queue(q); 939 blk_queue_bypass_end(q); 940 941 return err; 942 } 943 944 /* 945 * Switch this queue to the given IO scheduler. 946 */ 947 static int __elevator_change(struct request_queue *q, const char *name) 948 { 949 char elevator_name[ELV_NAME_MAX]; 950 struct elevator_type *e; 951 952 if (!q->elevator) 953 return -ENXIO; 954 955 strlcpy(elevator_name, name, sizeof(elevator_name)); 956 e = elevator_get(strstrip(elevator_name), true); 957 if (!e) { 958 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 959 return -EINVAL; 960 } 961 962 if (!strcmp(elevator_name, q->elevator->type->elevator_name)) { 963 elevator_put(e); 964 return 0; 965 } 966 967 return elevator_switch(q, e); 968 } 969 970 int elevator_change(struct request_queue *q, const char *name) 971 { 972 int ret; 973 974 /* Protect q->elevator from elevator_init() */ 975 mutex_lock(&q->sysfs_lock); 976 ret = __elevator_change(q, name); 977 mutex_unlock(&q->sysfs_lock); 978 979 return ret; 980 } 981 EXPORT_SYMBOL(elevator_change); 982 983 ssize_t elv_iosched_store(struct request_queue *q, const char *name, 984 size_t count) 985 { 986 int ret; 987 988 if (!q->elevator) 989 return count; 990 991 ret = __elevator_change(q, name); 992 if (!ret) 993 return count; 994 995 printk(KERN_ERR "elevator: switch to %s failed\n", name); 996 return ret; 997 } 998 999 ssize_t elv_iosched_show(struct request_queue *q, char *name) 1000 { 1001 struct elevator_queue *e = q->elevator; 1002 struct elevator_type *elv; 1003 struct elevator_type *__e; 1004 int len = 0; 1005 1006 if (!q->elevator || !blk_queue_stackable(q)) 1007 return sprintf(name, "none\n"); 1008 1009 elv = e->type; 1010 1011 spin_lock(&elv_list_lock); 1012 list_for_each_entry(__e, &elv_list, list) { 1013 if (!strcmp(elv->elevator_name, __e->elevator_name)) 1014 len += sprintf(name+len, "[%s] ", elv->elevator_name); 1015 else 1016 len += sprintf(name+len, "%s ", __e->elevator_name); 1017 } 1018 spin_unlock(&elv_list_lock); 1019 1020 len += sprintf(len+name, "\n"); 1021 return len; 1022 } 1023 1024 struct request *elv_rb_former_request(struct request_queue *q, 1025 struct request *rq) 1026 { 1027 struct rb_node *rbprev = rb_prev(&rq->rb_node); 1028 1029 if (rbprev) 1030 return rb_entry_rq(rbprev); 1031 1032 return NULL; 1033 } 1034 EXPORT_SYMBOL(elv_rb_former_request); 1035 1036 struct request *elv_rb_latter_request(struct request_queue *q, 1037 struct request *rq) 1038 { 1039 struct rb_node *rbnext = rb_next(&rq->rb_node); 1040 1041 if (rbnext) 1042 return rb_entry_rq(rbnext); 1043 1044 return NULL; 1045 } 1046 EXPORT_SYMBOL(elv_rb_latter_request); 1047