xref: /linux/block/elevator.c (revision 7f3edee81fbd49114c28057512906f169caa0bed)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 
38 #include <asm/uaccess.h>
39 
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
42 
43 /*
44  * Merge hash stuff.
45  */
46 static const int elv_hash_shift = 6;
47 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
48 #define ELV_HASH_FN(sec)	(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
49 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
50 #define rq_hash_key(rq)		((rq)->sector + (rq)->nr_sectors)
51 #define ELV_ON_HASH(rq)		(!hlist_unhashed(&(rq)->hash))
52 
53 /*
54  * Query io scheduler to see if the current process issuing bio may be
55  * merged with rq.
56  */
57 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
58 {
59 	struct request_queue *q = rq->q;
60 	elevator_t *e = q->elevator;
61 
62 	if (e->ops->elevator_allow_merge_fn)
63 		return e->ops->elevator_allow_merge_fn(q, rq, bio);
64 
65 	return 1;
66 }
67 
68 /*
69  * can we safely merge with this request?
70  */
71 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
72 {
73 	if (!rq_mergeable(rq))
74 		return 0;
75 
76 	/*
77 	 * different data direction or already started, don't merge
78 	 */
79 	if (bio_data_dir(bio) != rq_data_dir(rq))
80 		return 0;
81 
82 	/*
83 	 * must be same device and not a special request
84 	 */
85 	if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
86 		return 0;
87 
88 	if (!elv_iosched_allow_merge(rq, bio))
89 		return 0;
90 
91 	return 1;
92 }
93 EXPORT_SYMBOL(elv_rq_merge_ok);
94 
95 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
96 {
97 	int ret = ELEVATOR_NO_MERGE;
98 
99 	/*
100 	 * we can merge and sequence is ok, check if it's possible
101 	 */
102 	if (elv_rq_merge_ok(__rq, bio)) {
103 		if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
104 			ret = ELEVATOR_BACK_MERGE;
105 		else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
106 			ret = ELEVATOR_FRONT_MERGE;
107 	}
108 
109 	return ret;
110 }
111 
112 static struct elevator_type *elevator_find(const char *name)
113 {
114 	struct elevator_type *e;
115 
116 	list_for_each_entry(e, &elv_list, list) {
117 		if (!strcmp(e->elevator_name, name))
118 			return e;
119 	}
120 
121 	return NULL;
122 }
123 
124 static void elevator_put(struct elevator_type *e)
125 {
126 	module_put(e->elevator_owner);
127 }
128 
129 static struct elevator_type *elevator_get(const char *name)
130 {
131 	struct elevator_type *e;
132 
133 	spin_lock(&elv_list_lock);
134 
135 	e = elevator_find(name);
136 	if (e && !try_module_get(e->elevator_owner))
137 		e = NULL;
138 
139 	spin_unlock(&elv_list_lock);
140 
141 	return e;
142 }
143 
144 static void *elevator_init_queue(struct request_queue *q,
145 				 struct elevator_queue *eq)
146 {
147 	return eq->ops->elevator_init_fn(q);
148 }
149 
150 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
151 			   void *data)
152 {
153 	q->elevator = eq;
154 	eq->elevator_data = data;
155 }
156 
157 static char chosen_elevator[16];
158 
159 static int __init elevator_setup(char *str)
160 {
161 	/*
162 	 * Be backwards-compatible with previous kernels, so users
163 	 * won't get the wrong elevator.
164 	 */
165 	if (!strcmp(str, "as"))
166 		strcpy(chosen_elevator, "anticipatory");
167 	else
168 		strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
169 	return 1;
170 }
171 
172 __setup("elevator=", elevator_setup);
173 
174 static struct kobj_type elv_ktype;
175 
176 static elevator_t *elevator_alloc(struct request_queue *q,
177 				  struct elevator_type *e)
178 {
179 	elevator_t *eq;
180 	int i;
181 
182 	eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node);
183 	if (unlikely(!eq))
184 		goto err;
185 
186 	eq->ops = &e->ops;
187 	eq->elevator_type = e;
188 	kobject_init(&eq->kobj, &elv_ktype);
189 	mutex_init(&eq->sysfs_lock);
190 
191 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
192 					GFP_KERNEL, q->node);
193 	if (!eq->hash)
194 		goto err;
195 
196 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
197 		INIT_HLIST_HEAD(&eq->hash[i]);
198 
199 	return eq;
200 err:
201 	kfree(eq);
202 	elevator_put(e);
203 	return NULL;
204 }
205 
206 static void elevator_release(struct kobject *kobj)
207 {
208 	elevator_t *e = container_of(kobj, elevator_t, kobj);
209 
210 	elevator_put(e->elevator_type);
211 	kfree(e->hash);
212 	kfree(e);
213 }
214 
215 int elevator_init(struct request_queue *q, char *name)
216 {
217 	struct elevator_type *e = NULL;
218 	struct elevator_queue *eq;
219 	int ret = 0;
220 	void *data;
221 
222 	INIT_LIST_HEAD(&q->queue_head);
223 	q->last_merge = NULL;
224 	q->end_sector = 0;
225 	q->boundary_rq = NULL;
226 
227 	if (name && !(e = elevator_get(name)))
228 		return -EINVAL;
229 
230 	if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
231 		printk("I/O scheduler %s not found\n", chosen_elevator);
232 
233 	if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
234 		printk("Default I/O scheduler not found, using no-op\n");
235 		e = elevator_get("noop");
236 	}
237 
238 	eq = elevator_alloc(q, e);
239 	if (!eq)
240 		return -ENOMEM;
241 
242 	data = elevator_init_queue(q, eq);
243 	if (!data) {
244 		kobject_put(&eq->kobj);
245 		return -ENOMEM;
246 	}
247 
248 	elevator_attach(q, eq, data);
249 	return ret;
250 }
251 
252 EXPORT_SYMBOL(elevator_init);
253 
254 void elevator_exit(elevator_t *e)
255 {
256 	mutex_lock(&e->sysfs_lock);
257 	if (e->ops->elevator_exit_fn)
258 		e->ops->elevator_exit_fn(e);
259 	e->ops = NULL;
260 	mutex_unlock(&e->sysfs_lock);
261 
262 	kobject_put(&e->kobj);
263 }
264 
265 EXPORT_SYMBOL(elevator_exit);
266 
267 static void elv_activate_rq(struct request_queue *q, struct request *rq)
268 {
269 	elevator_t *e = q->elevator;
270 
271 	if (e->ops->elevator_activate_req_fn)
272 		e->ops->elevator_activate_req_fn(q, rq);
273 }
274 
275 static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
276 {
277 	elevator_t *e = q->elevator;
278 
279 	if (e->ops->elevator_deactivate_req_fn)
280 		e->ops->elevator_deactivate_req_fn(q, rq);
281 }
282 
283 static inline void __elv_rqhash_del(struct request *rq)
284 {
285 	hlist_del_init(&rq->hash);
286 }
287 
288 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
289 {
290 	if (ELV_ON_HASH(rq))
291 		__elv_rqhash_del(rq);
292 }
293 
294 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
295 {
296 	elevator_t *e = q->elevator;
297 
298 	BUG_ON(ELV_ON_HASH(rq));
299 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
300 }
301 
302 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
303 {
304 	__elv_rqhash_del(rq);
305 	elv_rqhash_add(q, rq);
306 }
307 
308 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
309 {
310 	elevator_t *e = q->elevator;
311 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
312 	struct hlist_node *entry, *next;
313 	struct request *rq;
314 
315 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
316 		BUG_ON(!ELV_ON_HASH(rq));
317 
318 		if (unlikely(!rq_mergeable(rq))) {
319 			__elv_rqhash_del(rq);
320 			continue;
321 		}
322 
323 		if (rq_hash_key(rq) == offset)
324 			return rq;
325 	}
326 
327 	return NULL;
328 }
329 
330 /*
331  * RB-tree support functions for inserting/lookup/removal of requests
332  * in a sorted RB tree.
333  */
334 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
335 {
336 	struct rb_node **p = &root->rb_node;
337 	struct rb_node *parent = NULL;
338 	struct request *__rq;
339 
340 	while (*p) {
341 		parent = *p;
342 		__rq = rb_entry(parent, struct request, rb_node);
343 
344 		if (rq->sector < __rq->sector)
345 			p = &(*p)->rb_left;
346 		else if (rq->sector > __rq->sector)
347 			p = &(*p)->rb_right;
348 		else
349 			return __rq;
350 	}
351 
352 	rb_link_node(&rq->rb_node, parent, p);
353 	rb_insert_color(&rq->rb_node, root);
354 	return NULL;
355 }
356 
357 EXPORT_SYMBOL(elv_rb_add);
358 
359 void elv_rb_del(struct rb_root *root, struct request *rq)
360 {
361 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
362 	rb_erase(&rq->rb_node, root);
363 	RB_CLEAR_NODE(&rq->rb_node);
364 }
365 
366 EXPORT_SYMBOL(elv_rb_del);
367 
368 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
369 {
370 	struct rb_node *n = root->rb_node;
371 	struct request *rq;
372 
373 	while (n) {
374 		rq = rb_entry(n, struct request, rb_node);
375 
376 		if (sector < rq->sector)
377 			n = n->rb_left;
378 		else if (sector > rq->sector)
379 			n = n->rb_right;
380 		else
381 			return rq;
382 	}
383 
384 	return NULL;
385 }
386 
387 EXPORT_SYMBOL(elv_rb_find);
388 
389 /*
390  * Insert rq into dispatch queue of q.  Queue lock must be held on
391  * entry.  rq is sort instead into the dispatch queue. To be used by
392  * specific elevators.
393  */
394 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
395 {
396 	sector_t boundary;
397 	struct list_head *entry;
398 
399 	if (q->last_merge == rq)
400 		q->last_merge = NULL;
401 
402 	elv_rqhash_del(q, rq);
403 
404 	q->nr_sorted--;
405 
406 	boundary = q->end_sector;
407 
408 	list_for_each_prev(entry, &q->queue_head) {
409 		struct request *pos = list_entry_rq(entry);
410 
411 		if (rq_data_dir(rq) != rq_data_dir(pos))
412 			break;
413 		if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
414 			break;
415 		if (rq->sector >= boundary) {
416 			if (pos->sector < boundary)
417 				continue;
418 		} else {
419 			if (pos->sector >= boundary)
420 				break;
421 		}
422 		if (rq->sector >= pos->sector)
423 			break;
424 	}
425 
426 	list_add(&rq->queuelist, entry);
427 }
428 
429 EXPORT_SYMBOL(elv_dispatch_sort);
430 
431 /*
432  * Insert rq into dispatch queue of q.  Queue lock must be held on
433  * entry.  rq is added to the back of the dispatch queue. To be used by
434  * specific elevators.
435  */
436 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
437 {
438 	if (q->last_merge == rq)
439 		q->last_merge = NULL;
440 
441 	elv_rqhash_del(q, rq);
442 
443 	q->nr_sorted--;
444 
445 	q->end_sector = rq_end_sector(rq);
446 	q->boundary_rq = rq;
447 	list_add_tail(&rq->queuelist, &q->queue_head);
448 }
449 
450 EXPORT_SYMBOL(elv_dispatch_add_tail);
451 
452 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
453 {
454 	elevator_t *e = q->elevator;
455 	struct request *__rq;
456 	int ret;
457 
458 	/*
459 	 * First try one-hit cache.
460 	 */
461 	if (q->last_merge) {
462 		ret = elv_try_merge(q->last_merge, bio);
463 		if (ret != ELEVATOR_NO_MERGE) {
464 			*req = q->last_merge;
465 			return ret;
466 		}
467 	}
468 
469 	/*
470 	 * See if our hash lookup can find a potential backmerge.
471 	 */
472 	__rq = elv_rqhash_find(q, bio->bi_sector);
473 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
474 		*req = __rq;
475 		return ELEVATOR_BACK_MERGE;
476 	}
477 
478 	if (e->ops->elevator_merge_fn)
479 		return e->ops->elevator_merge_fn(q, req, bio);
480 
481 	return ELEVATOR_NO_MERGE;
482 }
483 
484 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
485 {
486 	elevator_t *e = q->elevator;
487 
488 	if (e->ops->elevator_merged_fn)
489 		e->ops->elevator_merged_fn(q, rq, type);
490 
491 	if (type == ELEVATOR_BACK_MERGE)
492 		elv_rqhash_reposition(q, rq);
493 
494 	q->last_merge = rq;
495 }
496 
497 void elv_merge_requests(struct request_queue *q, struct request *rq,
498 			     struct request *next)
499 {
500 	elevator_t *e = q->elevator;
501 
502 	if (e->ops->elevator_merge_req_fn)
503 		e->ops->elevator_merge_req_fn(q, rq, next);
504 
505 	elv_rqhash_reposition(q, rq);
506 	elv_rqhash_del(q, next);
507 
508 	q->nr_sorted--;
509 	q->last_merge = rq;
510 }
511 
512 void elv_requeue_request(struct request_queue *q, struct request *rq)
513 {
514 	/*
515 	 * it already went through dequeue, we need to decrement the
516 	 * in_flight count again
517 	 */
518 	if (blk_account_rq(rq)) {
519 		q->in_flight--;
520 		if (blk_sorted_rq(rq))
521 			elv_deactivate_rq(q, rq);
522 	}
523 
524 	rq->cmd_flags &= ~REQ_STARTED;
525 
526 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
527 }
528 
529 static void elv_drain_elevator(struct request_queue *q)
530 {
531 	static int printed;
532 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
533 		;
534 	if (q->nr_sorted == 0)
535 		return;
536 	if (printed++ < 10) {
537 		printk(KERN_ERR "%s: forced dispatching is broken "
538 		       "(nr_sorted=%u), please report this\n",
539 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
540 	}
541 }
542 
543 void elv_insert(struct request_queue *q, struct request *rq, int where)
544 {
545 	struct list_head *pos;
546 	unsigned ordseq;
547 	int unplug_it = 1;
548 
549 	blk_add_trace_rq(q, rq, BLK_TA_INSERT);
550 
551 	rq->q = q;
552 
553 	switch (where) {
554 	case ELEVATOR_INSERT_FRONT:
555 		rq->cmd_flags |= REQ_SOFTBARRIER;
556 
557 		list_add(&rq->queuelist, &q->queue_head);
558 		break;
559 
560 	case ELEVATOR_INSERT_BACK:
561 		rq->cmd_flags |= REQ_SOFTBARRIER;
562 		elv_drain_elevator(q);
563 		list_add_tail(&rq->queuelist, &q->queue_head);
564 		/*
565 		 * We kick the queue here for the following reasons.
566 		 * - The elevator might have returned NULL previously
567 		 *   to delay requests and returned them now.  As the
568 		 *   queue wasn't empty before this request, ll_rw_blk
569 		 *   won't run the queue on return, resulting in hang.
570 		 * - Usually, back inserted requests won't be merged
571 		 *   with anything.  There's no point in delaying queue
572 		 *   processing.
573 		 */
574 		blk_remove_plug(q);
575 		q->request_fn(q);
576 		break;
577 
578 	case ELEVATOR_INSERT_SORT:
579 		BUG_ON(!blk_fs_request(rq));
580 		rq->cmd_flags |= REQ_SORTED;
581 		q->nr_sorted++;
582 		if (rq_mergeable(rq)) {
583 			elv_rqhash_add(q, rq);
584 			if (!q->last_merge)
585 				q->last_merge = rq;
586 		}
587 
588 		/*
589 		 * Some ioscheds (cfq) run q->request_fn directly, so
590 		 * rq cannot be accessed after calling
591 		 * elevator_add_req_fn.
592 		 */
593 		q->elevator->ops->elevator_add_req_fn(q, rq);
594 		break;
595 
596 	case ELEVATOR_INSERT_REQUEUE:
597 		/*
598 		 * If ordered flush isn't in progress, we do front
599 		 * insertion; otherwise, requests should be requeued
600 		 * in ordseq order.
601 		 */
602 		rq->cmd_flags |= REQ_SOFTBARRIER;
603 
604 		/*
605 		 * Most requeues happen because of a busy condition,
606 		 * don't force unplug of the queue for that case.
607 		 */
608 		unplug_it = 0;
609 
610 		if (q->ordseq == 0) {
611 			list_add(&rq->queuelist, &q->queue_head);
612 			break;
613 		}
614 
615 		ordseq = blk_ordered_req_seq(rq);
616 
617 		list_for_each(pos, &q->queue_head) {
618 			struct request *pos_rq = list_entry_rq(pos);
619 			if (ordseq <= blk_ordered_req_seq(pos_rq))
620 				break;
621 		}
622 
623 		list_add_tail(&rq->queuelist, pos);
624 		break;
625 
626 	default:
627 		printk(KERN_ERR "%s: bad insertion point %d\n",
628 		       __FUNCTION__, where);
629 		BUG();
630 	}
631 
632 	if (unplug_it && blk_queue_plugged(q)) {
633 		int nrq = q->rq.count[READ] + q->rq.count[WRITE]
634 			- q->in_flight;
635 
636 		if (nrq >= q->unplug_thresh)
637 			__generic_unplug_device(q);
638 	}
639 }
640 
641 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
642 		       int plug)
643 {
644 	if (q->ordcolor)
645 		rq->cmd_flags |= REQ_ORDERED_COLOR;
646 
647 	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
648 		/*
649 		 * toggle ordered color
650 		 */
651 		if (blk_barrier_rq(rq))
652 			q->ordcolor ^= 1;
653 
654 		/*
655 		 * barriers implicitly indicate back insertion
656 		 */
657 		if (where == ELEVATOR_INSERT_SORT)
658 			where = ELEVATOR_INSERT_BACK;
659 
660 		/*
661 		 * this request is scheduling boundary, update
662 		 * end_sector
663 		 */
664 		if (blk_fs_request(rq)) {
665 			q->end_sector = rq_end_sector(rq);
666 			q->boundary_rq = rq;
667 		}
668 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
669 		where = ELEVATOR_INSERT_BACK;
670 
671 	if (plug)
672 		blk_plug_device(q);
673 
674 	elv_insert(q, rq, where);
675 }
676 
677 EXPORT_SYMBOL(__elv_add_request);
678 
679 void elv_add_request(struct request_queue *q, struct request *rq, int where,
680 		     int plug)
681 {
682 	unsigned long flags;
683 
684 	spin_lock_irqsave(q->queue_lock, flags);
685 	__elv_add_request(q, rq, where, plug);
686 	spin_unlock_irqrestore(q->queue_lock, flags);
687 }
688 
689 EXPORT_SYMBOL(elv_add_request);
690 
691 static inline struct request *__elv_next_request(struct request_queue *q)
692 {
693 	struct request *rq;
694 
695 	while (1) {
696 		while (!list_empty(&q->queue_head)) {
697 			rq = list_entry_rq(q->queue_head.next);
698 			if (blk_do_ordered(q, &rq))
699 				return rq;
700 		}
701 
702 		if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
703 			return NULL;
704 	}
705 }
706 
707 struct request *elv_next_request(struct request_queue *q)
708 {
709 	struct request *rq;
710 	int ret;
711 
712 	while ((rq = __elv_next_request(q)) != NULL) {
713 		/*
714 		 * Kill the empty barrier place holder, the driver must
715 		 * not ever see it.
716 		 */
717 		if (blk_empty_barrier(rq)) {
718 			end_queued_request(rq, 1);
719 			continue;
720 		}
721 		if (!(rq->cmd_flags & REQ_STARTED)) {
722 			/*
723 			 * This is the first time the device driver
724 			 * sees this request (possibly after
725 			 * requeueing).  Notify IO scheduler.
726 			 */
727 			if (blk_sorted_rq(rq))
728 				elv_activate_rq(q, rq);
729 
730 			/*
731 			 * just mark as started even if we don't start
732 			 * it, a request that has been delayed should
733 			 * not be passed by new incoming requests
734 			 */
735 			rq->cmd_flags |= REQ_STARTED;
736 			blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
737 		}
738 
739 		if (!q->boundary_rq || q->boundary_rq == rq) {
740 			q->end_sector = rq_end_sector(rq);
741 			q->boundary_rq = NULL;
742 		}
743 
744 		if ((rq->cmd_flags & REQ_DONTPREP) || !q->prep_rq_fn)
745 			break;
746 
747 		ret = q->prep_rq_fn(q, rq);
748 		if (ret == BLKPREP_OK) {
749 			break;
750 		} else if (ret == BLKPREP_DEFER) {
751 			/*
752 			 * the request may have been (partially) prepped.
753 			 * we need to keep this request in the front to
754 			 * avoid resource deadlock.  REQ_STARTED will
755 			 * prevent other fs requests from passing this one.
756 			 */
757 			rq = NULL;
758 			break;
759 		} else if (ret == BLKPREP_KILL) {
760 			rq->cmd_flags |= REQ_QUIET;
761 			end_queued_request(rq, 0);
762 		} else {
763 			printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
764 								ret);
765 			break;
766 		}
767 	}
768 
769 	return rq;
770 }
771 
772 EXPORT_SYMBOL(elv_next_request);
773 
774 void elv_dequeue_request(struct request_queue *q, struct request *rq)
775 {
776 	BUG_ON(list_empty(&rq->queuelist));
777 	BUG_ON(ELV_ON_HASH(rq));
778 
779 	list_del_init(&rq->queuelist);
780 
781 	/*
782 	 * the time frame between a request being removed from the lists
783 	 * and to it is freed is accounted as io that is in progress at
784 	 * the driver side.
785 	 */
786 	if (blk_account_rq(rq))
787 		q->in_flight++;
788 }
789 
790 EXPORT_SYMBOL(elv_dequeue_request);
791 
792 int elv_queue_empty(struct request_queue *q)
793 {
794 	elevator_t *e = q->elevator;
795 
796 	if (!list_empty(&q->queue_head))
797 		return 0;
798 
799 	if (e->ops->elevator_queue_empty_fn)
800 		return e->ops->elevator_queue_empty_fn(q);
801 
802 	return 1;
803 }
804 
805 EXPORT_SYMBOL(elv_queue_empty);
806 
807 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
808 {
809 	elevator_t *e = q->elevator;
810 
811 	if (e->ops->elevator_latter_req_fn)
812 		return e->ops->elevator_latter_req_fn(q, rq);
813 	return NULL;
814 }
815 
816 struct request *elv_former_request(struct request_queue *q, struct request *rq)
817 {
818 	elevator_t *e = q->elevator;
819 
820 	if (e->ops->elevator_former_req_fn)
821 		return e->ops->elevator_former_req_fn(q, rq);
822 	return NULL;
823 }
824 
825 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
826 {
827 	elevator_t *e = q->elevator;
828 
829 	if (e->ops->elevator_set_req_fn)
830 		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
831 
832 	rq->elevator_private = NULL;
833 	return 0;
834 }
835 
836 void elv_put_request(struct request_queue *q, struct request *rq)
837 {
838 	elevator_t *e = q->elevator;
839 
840 	if (e->ops->elevator_put_req_fn)
841 		e->ops->elevator_put_req_fn(rq);
842 }
843 
844 int elv_may_queue(struct request_queue *q, int rw)
845 {
846 	elevator_t *e = q->elevator;
847 
848 	if (e->ops->elevator_may_queue_fn)
849 		return e->ops->elevator_may_queue_fn(q, rw);
850 
851 	return ELV_MQUEUE_MAY;
852 }
853 
854 void elv_completed_request(struct request_queue *q, struct request *rq)
855 {
856 	elevator_t *e = q->elevator;
857 
858 	/*
859 	 * request is released from the driver, io must be done
860 	 */
861 	if (blk_account_rq(rq)) {
862 		q->in_flight--;
863 		if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
864 			e->ops->elevator_completed_req_fn(q, rq);
865 	}
866 
867 	/*
868 	 * Check if the queue is waiting for fs requests to be
869 	 * drained for flush sequence.
870 	 */
871 	if (unlikely(q->ordseq)) {
872 		struct request *first_rq = list_entry_rq(q->queue_head.next);
873 		if (q->in_flight == 0 &&
874 		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
875 		    blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
876 			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
877 			q->request_fn(q);
878 		}
879 	}
880 }
881 
882 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
883 
884 static ssize_t
885 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
886 {
887 	elevator_t *e = container_of(kobj, elevator_t, kobj);
888 	struct elv_fs_entry *entry = to_elv(attr);
889 	ssize_t error;
890 
891 	if (!entry->show)
892 		return -EIO;
893 
894 	mutex_lock(&e->sysfs_lock);
895 	error = e->ops ? entry->show(e, page) : -ENOENT;
896 	mutex_unlock(&e->sysfs_lock);
897 	return error;
898 }
899 
900 static ssize_t
901 elv_attr_store(struct kobject *kobj, struct attribute *attr,
902 	       const char *page, size_t length)
903 {
904 	elevator_t *e = container_of(kobj, elevator_t, kobj);
905 	struct elv_fs_entry *entry = to_elv(attr);
906 	ssize_t error;
907 
908 	if (!entry->store)
909 		return -EIO;
910 
911 	mutex_lock(&e->sysfs_lock);
912 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
913 	mutex_unlock(&e->sysfs_lock);
914 	return error;
915 }
916 
917 static struct sysfs_ops elv_sysfs_ops = {
918 	.show	= elv_attr_show,
919 	.store	= elv_attr_store,
920 };
921 
922 static struct kobj_type elv_ktype = {
923 	.sysfs_ops	= &elv_sysfs_ops,
924 	.release	= elevator_release,
925 };
926 
927 int elv_register_queue(struct request_queue *q)
928 {
929 	elevator_t *e = q->elevator;
930 	int error;
931 
932 	error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
933 	if (!error) {
934 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
935 		if (attr) {
936 			while (attr->attr.name) {
937 				if (sysfs_create_file(&e->kobj, &attr->attr))
938 					break;
939 				attr++;
940 			}
941 		}
942 		kobject_uevent(&e->kobj, KOBJ_ADD);
943 	}
944 	return error;
945 }
946 
947 static void __elv_unregister_queue(elevator_t *e)
948 {
949 	kobject_uevent(&e->kobj, KOBJ_REMOVE);
950 	kobject_del(&e->kobj);
951 }
952 
953 void elv_unregister_queue(struct request_queue *q)
954 {
955 	if (q)
956 		__elv_unregister_queue(q->elevator);
957 }
958 
959 void elv_register(struct elevator_type *e)
960 {
961 	char *def = "";
962 
963 	spin_lock(&elv_list_lock);
964 	BUG_ON(elevator_find(e->elevator_name));
965 	list_add_tail(&e->list, &elv_list);
966 	spin_unlock(&elv_list_lock);
967 
968 	if (!strcmp(e->elevator_name, chosen_elevator) ||
969 			(!*chosen_elevator &&
970 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
971 				def = " (default)";
972 
973 	printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, def);
974 }
975 EXPORT_SYMBOL_GPL(elv_register);
976 
977 void elv_unregister(struct elevator_type *e)
978 {
979 	struct task_struct *g, *p;
980 
981 	/*
982 	 * Iterate every thread in the process to remove the io contexts.
983 	 */
984 	if (e->ops.trim) {
985 		read_lock(&tasklist_lock);
986 		do_each_thread(g, p) {
987 			task_lock(p);
988 			if (p->io_context)
989 				e->ops.trim(p->io_context);
990 			task_unlock(p);
991 		} while_each_thread(g, p);
992 		read_unlock(&tasklist_lock);
993 	}
994 
995 	spin_lock(&elv_list_lock);
996 	list_del_init(&e->list);
997 	spin_unlock(&elv_list_lock);
998 }
999 EXPORT_SYMBOL_GPL(elv_unregister);
1000 
1001 /*
1002  * switch to new_e io scheduler. be careful not to introduce deadlocks -
1003  * we don't free the old io scheduler, before we have allocated what we
1004  * need for the new one. this way we have a chance of going back to the old
1005  * one, if the new one fails init for some reason.
1006  */
1007 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1008 {
1009 	elevator_t *old_elevator, *e;
1010 	void *data;
1011 
1012 	/*
1013 	 * Allocate new elevator
1014 	 */
1015 	e = elevator_alloc(q, new_e);
1016 	if (!e)
1017 		return 0;
1018 
1019 	data = elevator_init_queue(q, e);
1020 	if (!data) {
1021 		kobject_put(&e->kobj);
1022 		return 0;
1023 	}
1024 
1025 	/*
1026 	 * Turn on BYPASS and drain all requests w/ elevator private data
1027 	 */
1028 	spin_lock_irq(q->queue_lock);
1029 
1030 	set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1031 
1032 	elv_drain_elevator(q);
1033 
1034 	while (q->rq.elvpriv) {
1035 		blk_remove_plug(q);
1036 		q->request_fn(q);
1037 		spin_unlock_irq(q->queue_lock);
1038 		msleep(10);
1039 		spin_lock_irq(q->queue_lock);
1040 		elv_drain_elevator(q);
1041 	}
1042 
1043 	/*
1044 	 * Remember old elevator.
1045 	 */
1046 	old_elevator = q->elevator;
1047 
1048 	/*
1049 	 * attach and start new elevator
1050 	 */
1051 	elevator_attach(q, e, data);
1052 
1053 	spin_unlock_irq(q->queue_lock);
1054 
1055 	__elv_unregister_queue(old_elevator);
1056 
1057 	if (elv_register_queue(q))
1058 		goto fail_register;
1059 
1060 	/*
1061 	 * finally exit old elevator and turn off BYPASS.
1062 	 */
1063 	elevator_exit(old_elevator);
1064 	clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1065 	return 1;
1066 
1067 fail_register:
1068 	/*
1069 	 * switch failed, exit the new io scheduler and reattach the old
1070 	 * one again (along with re-adding the sysfs dir)
1071 	 */
1072 	elevator_exit(e);
1073 	q->elevator = old_elevator;
1074 	elv_register_queue(q);
1075 	clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1076 	return 0;
1077 }
1078 
1079 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1080 			  size_t count)
1081 {
1082 	char elevator_name[ELV_NAME_MAX];
1083 	size_t len;
1084 	struct elevator_type *e;
1085 
1086 	elevator_name[sizeof(elevator_name) - 1] = '\0';
1087 	strncpy(elevator_name, name, sizeof(elevator_name) - 1);
1088 	len = strlen(elevator_name);
1089 
1090 	if (len && elevator_name[len - 1] == '\n')
1091 		elevator_name[len - 1] = '\0';
1092 
1093 	e = elevator_get(elevator_name);
1094 	if (!e) {
1095 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1096 		return -EINVAL;
1097 	}
1098 
1099 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1100 		elevator_put(e);
1101 		return count;
1102 	}
1103 
1104 	if (!elevator_switch(q, e))
1105 		printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
1106 	return count;
1107 }
1108 
1109 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1110 {
1111 	elevator_t *e = q->elevator;
1112 	struct elevator_type *elv = e->elevator_type;
1113 	struct elevator_type *__e;
1114 	int len = 0;
1115 
1116 	spin_lock(&elv_list_lock);
1117 	list_for_each_entry(__e, &elv_list, list) {
1118 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1119 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1120 		else
1121 			len += sprintf(name+len, "%s ", __e->elevator_name);
1122 	}
1123 	spin_unlock(&elv_list_lock);
1124 
1125 	len += sprintf(len+name, "\n");
1126 	return len;
1127 }
1128 
1129 struct request *elv_rb_former_request(struct request_queue *q,
1130 				      struct request *rq)
1131 {
1132 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1133 
1134 	if (rbprev)
1135 		return rb_entry_rq(rbprev);
1136 
1137 	return NULL;
1138 }
1139 
1140 EXPORT_SYMBOL(elv_rb_former_request);
1141 
1142 struct request *elv_rb_latter_request(struct request_queue *q,
1143 				      struct request *rq)
1144 {
1145 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1146 
1147 	if (rbnext)
1148 		return rb_entry_rq(rbnext);
1149 
1150 	return NULL;
1151 }
1152 
1153 EXPORT_SYMBOL(elv_rb_latter_request);
1154