1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block device elevator/IO-scheduler. 4 * 5 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * 7 * 30042000 Jens Axboe <axboe@kernel.dk> : 8 * 9 * Split the elevator a bit so that it is possible to choose a different 10 * one or even write a new "plug in". There are three pieces: 11 * - elevator_fn, inserts a new request in the queue list 12 * - elevator_merge_fn, decides whether a new buffer can be merged with 13 * an existing request 14 * - elevator_dequeue_fn, called when a request is taken off the active list 15 * 16 * 20082000 Dave Jones <davej@suse.de> : 17 * Removed tests for max-bomb-segments, which was breaking elvtune 18 * when run without -bN 19 * 20 * Jens: 21 * - Rework again to work with bio instead of buffer_heads 22 * - loose bi_dev comparisons, partition handling is right now 23 * - completely modularize elevator setup and teardown 24 * 25 */ 26 #include <linux/kernel.h> 27 #include <linux/fs.h> 28 #include <linux/blkdev.h> 29 #include <linux/bio.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/compiler.h> 34 #include <linux/blktrace_api.h> 35 #include <linux/hash.h> 36 #include <linux/uaccess.h> 37 #include <linux/pm_runtime.h> 38 39 #include <trace/events/block.h> 40 41 #include "elevator.h" 42 #include "blk.h" 43 #include "blk-mq-sched.h" 44 #include "blk-pm.h" 45 #include "blk-wbt.h" 46 #include "blk-cgroup.h" 47 48 static DEFINE_SPINLOCK(elv_list_lock); 49 static LIST_HEAD(elv_list); 50 51 /* 52 * Merge hash stuff. 53 */ 54 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq)) 55 56 /* 57 * Query io scheduler to see if the current process issuing bio may be 58 * merged with rq. 59 */ 60 static bool elv_iosched_allow_bio_merge(struct request *rq, struct bio *bio) 61 { 62 struct request_queue *q = rq->q; 63 struct elevator_queue *e = q->elevator; 64 65 if (e->type->ops.allow_merge) 66 return e->type->ops.allow_merge(q, rq, bio); 67 68 return true; 69 } 70 71 /* 72 * can we safely merge with this request? 73 */ 74 bool elv_bio_merge_ok(struct request *rq, struct bio *bio) 75 { 76 if (!blk_rq_merge_ok(rq, bio)) 77 return false; 78 79 if (!elv_iosched_allow_bio_merge(rq, bio)) 80 return false; 81 82 return true; 83 } 84 EXPORT_SYMBOL(elv_bio_merge_ok); 85 86 /** 87 * elevator_match - Check whether @e's name or alias matches @name 88 * @e: Scheduler to test 89 * @name: Elevator name to test 90 * 91 * Return true if the elevator @e's name or alias matches @name. 92 */ 93 static bool elevator_match(const struct elevator_type *e, const char *name) 94 { 95 return !strcmp(e->elevator_name, name) || 96 (e->elevator_alias && !strcmp(e->elevator_alias, name)); 97 } 98 99 static struct elevator_type *__elevator_find(const char *name) 100 { 101 struct elevator_type *e; 102 103 list_for_each_entry(e, &elv_list, list) 104 if (elevator_match(e, name)) 105 return e; 106 return NULL; 107 } 108 109 static struct elevator_type *elevator_find_get(const char *name) 110 { 111 struct elevator_type *e; 112 113 spin_lock(&elv_list_lock); 114 e = __elevator_find(name); 115 if (e && (!elevator_tryget(e))) 116 e = NULL; 117 spin_unlock(&elv_list_lock); 118 return e; 119 } 120 121 static const struct kobj_type elv_ktype; 122 123 struct elevator_queue *elevator_alloc(struct request_queue *q, 124 struct elevator_type *e, struct elevator_resources *res) 125 { 126 struct elevator_queue *eq; 127 128 eq = kzalloc_node(sizeof(*eq), GFP_KERNEL, q->node); 129 if (unlikely(!eq)) 130 return NULL; 131 132 __elevator_get(e); 133 eq->type = e; 134 kobject_init(&eq->kobj, &elv_ktype); 135 mutex_init(&eq->sysfs_lock); 136 hash_init(eq->hash); 137 eq->et = res->et; 138 eq->elevator_data = res->data; 139 140 return eq; 141 } 142 143 static void elevator_release(struct kobject *kobj) 144 { 145 struct elevator_queue *e; 146 147 e = container_of(kobj, struct elevator_queue, kobj); 148 elevator_put(e->type); 149 kfree(e); 150 } 151 152 static void elevator_exit(struct request_queue *q) 153 { 154 struct elevator_queue *e = q->elevator; 155 156 lockdep_assert_held(&q->elevator_lock); 157 158 ioc_clear_queue(q); 159 160 mutex_lock(&e->sysfs_lock); 161 blk_mq_exit_sched(q, e); 162 mutex_unlock(&e->sysfs_lock); 163 } 164 165 static inline void __elv_rqhash_del(struct request *rq) 166 { 167 hash_del(&rq->hash); 168 rq->rq_flags &= ~RQF_HASHED; 169 } 170 171 void elv_rqhash_del(struct request_queue *q, struct request *rq) 172 { 173 if (ELV_ON_HASH(rq)) 174 __elv_rqhash_del(rq); 175 } 176 EXPORT_SYMBOL_GPL(elv_rqhash_del); 177 178 void elv_rqhash_add(struct request_queue *q, struct request *rq) 179 { 180 struct elevator_queue *e = q->elevator; 181 182 BUG_ON(ELV_ON_HASH(rq)); 183 hash_add(e->hash, &rq->hash, rq_hash_key(rq)); 184 rq->rq_flags |= RQF_HASHED; 185 } 186 EXPORT_SYMBOL_GPL(elv_rqhash_add); 187 188 void elv_rqhash_reposition(struct request_queue *q, struct request *rq) 189 { 190 __elv_rqhash_del(rq); 191 elv_rqhash_add(q, rq); 192 } 193 194 struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) 195 { 196 struct elevator_queue *e = q->elevator; 197 struct hlist_node *next; 198 struct request *rq; 199 200 hash_for_each_possible_safe(e->hash, rq, next, hash, offset) { 201 BUG_ON(!ELV_ON_HASH(rq)); 202 203 if (unlikely(!rq_mergeable(rq))) { 204 __elv_rqhash_del(rq); 205 continue; 206 } 207 208 if (rq_hash_key(rq) == offset) 209 return rq; 210 } 211 212 return NULL; 213 } 214 215 /* 216 * RB-tree support functions for inserting/lookup/removal of requests 217 * in a sorted RB tree. 218 */ 219 void elv_rb_add(struct rb_root *root, struct request *rq) 220 { 221 struct rb_node **p = &root->rb_node; 222 struct rb_node *parent = NULL; 223 struct request *__rq; 224 225 while (*p) { 226 parent = *p; 227 __rq = rb_entry(parent, struct request, rb_node); 228 229 if (blk_rq_pos(rq) < blk_rq_pos(__rq)) 230 p = &(*p)->rb_left; 231 else if (blk_rq_pos(rq) >= blk_rq_pos(__rq)) 232 p = &(*p)->rb_right; 233 } 234 235 rb_link_node(&rq->rb_node, parent, p); 236 rb_insert_color(&rq->rb_node, root); 237 } 238 EXPORT_SYMBOL(elv_rb_add); 239 240 void elv_rb_del(struct rb_root *root, struct request *rq) 241 { 242 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 243 rb_erase(&rq->rb_node, root); 244 RB_CLEAR_NODE(&rq->rb_node); 245 } 246 EXPORT_SYMBOL(elv_rb_del); 247 248 struct request *elv_rb_find(struct rb_root *root, sector_t sector) 249 { 250 struct rb_node *n = root->rb_node; 251 struct request *rq; 252 253 while (n) { 254 rq = rb_entry(n, struct request, rb_node); 255 256 if (sector < blk_rq_pos(rq)) 257 n = n->rb_left; 258 else if (sector > blk_rq_pos(rq)) 259 n = n->rb_right; 260 else 261 return rq; 262 } 263 264 return NULL; 265 } 266 EXPORT_SYMBOL(elv_rb_find); 267 268 enum elv_merge elv_merge(struct request_queue *q, struct request **req, 269 struct bio *bio) 270 { 271 struct elevator_queue *e = q->elevator; 272 struct request *__rq; 273 274 /* 275 * Levels of merges: 276 * nomerges: No merges at all attempted 277 * noxmerges: Only simple one-hit cache try 278 * merges: All merge tries attempted 279 */ 280 if (blk_queue_nomerges(q) || !bio_mergeable(bio)) 281 return ELEVATOR_NO_MERGE; 282 283 /* 284 * First try one-hit cache. 285 */ 286 if (q->last_merge && elv_bio_merge_ok(q->last_merge, bio)) { 287 enum elv_merge ret = blk_try_merge(q->last_merge, bio); 288 289 if (ret != ELEVATOR_NO_MERGE) { 290 *req = q->last_merge; 291 return ret; 292 } 293 } 294 295 if (blk_queue_noxmerges(q)) 296 return ELEVATOR_NO_MERGE; 297 298 /* 299 * See if our hash lookup can find a potential backmerge. 300 */ 301 __rq = elv_rqhash_find(q, bio->bi_iter.bi_sector); 302 if (__rq && elv_bio_merge_ok(__rq, bio)) { 303 *req = __rq; 304 305 if (blk_discard_mergable(__rq)) 306 return ELEVATOR_DISCARD_MERGE; 307 return ELEVATOR_BACK_MERGE; 308 } 309 310 if (e->type->ops.request_merge) 311 return e->type->ops.request_merge(q, req, bio); 312 313 return ELEVATOR_NO_MERGE; 314 } 315 316 /* 317 * Attempt to do an insertion back merge. Only check for the case where 318 * we can append 'rq' to an existing request, so we can throw 'rq' away 319 * afterwards. 320 * 321 * Returns true if we merged, false otherwise. 'free' will contain all 322 * requests that need to be freed. 323 */ 324 bool elv_attempt_insert_merge(struct request_queue *q, struct request *rq, 325 struct list_head *free) 326 { 327 struct request *__rq; 328 bool ret; 329 330 if (blk_queue_nomerges(q)) 331 return false; 332 333 /* 334 * First try one-hit cache. 335 */ 336 if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq)) { 337 list_add(&rq->queuelist, free); 338 return true; 339 } 340 341 if (blk_queue_noxmerges(q)) 342 return false; 343 344 ret = false; 345 /* 346 * See if our hash lookup can find a potential backmerge. 347 */ 348 while (1) { 349 __rq = elv_rqhash_find(q, blk_rq_pos(rq)); 350 if (!__rq || !blk_attempt_req_merge(q, __rq, rq)) 351 break; 352 353 list_add(&rq->queuelist, free); 354 /* The merged request could be merged with others, try again */ 355 ret = true; 356 rq = __rq; 357 } 358 359 return ret; 360 } 361 362 void elv_merged_request(struct request_queue *q, struct request *rq, 363 enum elv_merge type) 364 { 365 struct elevator_queue *e = q->elevator; 366 367 if (e->type->ops.request_merged) 368 e->type->ops.request_merged(q, rq, type); 369 370 if (type == ELEVATOR_BACK_MERGE) 371 elv_rqhash_reposition(q, rq); 372 373 q->last_merge = rq; 374 } 375 376 void elv_merge_requests(struct request_queue *q, struct request *rq, 377 struct request *next) 378 { 379 struct elevator_queue *e = q->elevator; 380 381 if (e->type->ops.requests_merged) 382 e->type->ops.requests_merged(q, rq, next); 383 384 elv_rqhash_reposition(q, rq); 385 q->last_merge = rq; 386 } 387 388 struct request *elv_latter_request(struct request_queue *q, struct request *rq) 389 { 390 struct elevator_queue *e = q->elevator; 391 392 if (e->type->ops.next_request) 393 return e->type->ops.next_request(q, rq); 394 395 return NULL; 396 } 397 398 struct request *elv_former_request(struct request_queue *q, struct request *rq) 399 { 400 struct elevator_queue *e = q->elevator; 401 402 if (e->type->ops.former_request) 403 return e->type->ops.former_request(q, rq); 404 405 return NULL; 406 } 407 408 #define to_elv(atr) container_of_const((atr), struct elv_fs_entry, attr) 409 410 static ssize_t 411 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 412 { 413 const struct elv_fs_entry *entry = to_elv(attr); 414 struct elevator_queue *e; 415 ssize_t error = -ENODEV; 416 417 if (!entry->show) 418 return -EIO; 419 420 e = container_of(kobj, struct elevator_queue, kobj); 421 mutex_lock(&e->sysfs_lock); 422 if (!test_bit(ELEVATOR_FLAG_DYING, &e->flags)) 423 error = entry->show(e, page); 424 mutex_unlock(&e->sysfs_lock); 425 return error; 426 } 427 428 static ssize_t 429 elv_attr_store(struct kobject *kobj, struct attribute *attr, 430 const char *page, size_t length) 431 { 432 const struct elv_fs_entry *entry = to_elv(attr); 433 struct elevator_queue *e; 434 ssize_t error = -ENODEV; 435 436 if (!entry->store) 437 return -EIO; 438 439 e = container_of(kobj, struct elevator_queue, kobj); 440 mutex_lock(&e->sysfs_lock); 441 if (!test_bit(ELEVATOR_FLAG_DYING, &e->flags)) 442 error = entry->store(e, page, length); 443 mutex_unlock(&e->sysfs_lock); 444 return error; 445 } 446 447 static const struct sysfs_ops elv_sysfs_ops = { 448 .show = elv_attr_show, 449 .store = elv_attr_store, 450 }; 451 452 static const struct kobj_type elv_ktype = { 453 .sysfs_ops = &elv_sysfs_ops, 454 .release = elevator_release, 455 }; 456 457 static int elv_register_queue(struct request_queue *q, 458 struct elevator_queue *e, 459 bool uevent) 460 { 461 int error; 462 463 error = kobject_add(&e->kobj, &q->disk->queue_kobj, "iosched"); 464 if (!error) { 465 const struct elv_fs_entry *attr = e->type->elevator_attrs; 466 if (attr) { 467 while (attr->attr.name) { 468 if (sysfs_create_file(&e->kobj, &attr->attr)) 469 break; 470 attr++; 471 } 472 } 473 if (uevent) 474 kobject_uevent(&e->kobj, KOBJ_ADD); 475 476 /* 477 * Sched is initialized, it is ready to export it via 478 * debugfs 479 */ 480 blk_mq_sched_reg_debugfs(q); 481 set_bit(ELEVATOR_FLAG_REGISTERED, &e->flags); 482 } 483 return error; 484 } 485 486 static void elv_unregister_queue(struct request_queue *q, 487 struct elevator_queue *e) 488 { 489 if (e && test_and_clear_bit(ELEVATOR_FLAG_REGISTERED, &e->flags)) { 490 kobject_uevent(&e->kobj, KOBJ_REMOVE); 491 kobject_del(&e->kobj); 492 493 /* unexport via debugfs before exiting sched */ 494 blk_mq_sched_unreg_debugfs(q); 495 } 496 } 497 498 int elv_register(struct elevator_type *e) 499 { 500 /* finish request is mandatory */ 501 if (WARN_ON_ONCE(!e->ops.finish_request)) 502 return -EINVAL; 503 /* insert_requests and dispatch_request are mandatory */ 504 if (WARN_ON_ONCE(!e->ops.insert_requests || !e->ops.dispatch_request)) 505 return -EINVAL; 506 507 /* create icq_cache if requested */ 508 if (e->icq_size) { 509 if (WARN_ON(e->icq_size < sizeof(struct io_cq)) || 510 WARN_ON(e->icq_align < __alignof__(struct io_cq))) 511 return -EINVAL; 512 513 snprintf(e->icq_cache_name, sizeof(e->icq_cache_name), 514 "%s_io_cq", e->elevator_name); 515 e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size, 516 e->icq_align, 0, NULL); 517 if (!e->icq_cache) 518 return -ENOMEM; 519 } 520 521 /* register, don't allow duplicate names */ 522 spin_lock(&elv_list_lock); 523 if (__elevator_find(e->elevator_name)) { 524 spin_unlock(&elv_list_lock); 525 kmem_cache_destroy(e->icq_cache); 526 return -EBUSY; 527 } 528 list_add_tail(&e->list, &elv_list); 529 spin_unlock(&elv_list_lock); 530 531 printk(KERN_INFO "io scheduler %s registered\n", e->elevator_name); 532 533 return 0; 534 } 535 EXPORT_SYMBOL_GPL(elv_register); 536 537 void elv_unregister(struct elevator_type *e) 538 { 539 /* unregister */ 540 spin_lock(&elv_list_lock); 541 list_del_init(&e->list); 542 spin_unlock(&elv_list_lock); 543 544 /* 545 * Destroy icq_cache if it exists. icq's are RCU managed. Make 546 * sure all RCU operations are complete before proceeding. 547 */ 548 if (e->icq_cache) { 549 rcu_barrier(); 550 kmem_cache_destroy(e->icq_cache); 551 e->icq_cache = NULL; 552 } 553 } 554 EXPORT_SYMBOL_GPL(elv_unregister); 555 556 /* 557 * Switch to new_e io scheduler. 558 * 559 * If switching fails, we are most likely running out of memory and not able 560 * to restore the old io scheduler, so leaving the io scheduler being none. 561 */ 562 static int elevator_switch(struct request_queue *q, struct elv_change_ctx *ctx) 563 { 564 struct elevator_type *new_e = NULL; 565 int ret = 0; 566 567 WARN_ON_ONCE(q->mq_freeze_depth == 0); 568 lockdep_assert_held(&q->elevator_lock); 569 570 if (strncmp(ctx->name, "none", 4)) { 571 new_e = elevator_find_get(ctx->name); 572 if (!new_e) 573 return -EINVAL; 574 } 575 576 blk_mq_quiesce_queue(q); 577 578 if (q->elevator) { 579 ctx->old = q->elevator; 580 elevator_exit(q); 581 } 582 583 if (new_e) { 584 ret = blk_mq_init_sched(q, new_e, &ctx->res); 585 if (ret) 586 goto out_unfreeze; 587 ctx->new = q->elevator; 588 } else { 589 blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q); 590 q->elevator = NULL; 591 q->nr_requests = q->tag_set->queue_depth; 592 } 593 blk_add_trace_msg(q, "elv switch: %s", ctx->name); 594 595 out_unfreeze: 596 blk_mq_unquiesce_queue(q); 597 598 if (ret) { 599 pr_warn("elv: switch to \"%s\" failed, falling back to \"none\"\n", 600 new_e->elevator_name); 601 } 602 603 if (new_e) 604 elevator_put(new_e); 605 return ret; 606 } 607 608 static void elv_exit_and_release(struct elv_change_ctx *ctx, 609 struct request_queue *q) 610 { 611 struct elevator_queue *e; 612 unsigned memflags; 613 614 memflags = blk_mq_freeze_queue(q); 615 mutex_lock(&q->elevator_lock); 616 e = q->elevator; 617 elevator_exit(q); 618 mutex_unlock(&q->elevator_lock); 619 blk_mq_unfreeze_queue(q, memflags); 620 if (e) { 621 blk_mq_free_sched_res(&ctx->res, ctx->type, q->tag_set); 622 kobject_put(&e->kobj); 623 } 624 } 625 626 static int elevator_change_done(struct request_queue *q, 627 struct elv_change_ctx *ctx) 628 { 629 int ret = 0; 630 631 if (ctx->old) { 632 struct elevator_resources res = { 633 .et = ctx->old->et, 634 .data = ctx->old->elevator_data 635 }; 636 bool enable_wbt = test_bit(ELEVATOR_FLAG_ENABLE_WBT_ON_EXIT, 637 &ctx->old->flags); 638 639 elv_unregister_queue(q, ctx->old); 640 blk_mq_free_sched_res(&res, ctx->old->type, q->tag_set); 641 kobject_put(&ctx->old->kobj); 642 if (enable_wbt) 643 wbt_enable_default(q->disk); 644 } 645 if (ctx->new) { 646 ret = elv_register_queue(q, ctx->new, !ctx->no_uevent); 647 if (ret) 648 elv_exit_and_release(ctx, q); 649 } 650 return ret; 651 } 652 653 /* 654 * Switch this queue to the given IO scheduler. 655 */ 656 static int elevator_change(struct request_queue *q, struct elv_change_ctx *ctx) 657 { 658 unsigned int memflags; 659 struct blk_mq_tag_set *set = q->tag_set; 660 int ret = 0; 661 662 lockdep_assert_held(&set->update_nr_hwq_lock); 663 664 if (strncmp(ctx->name, "none", 4)) { 665 ret = blk_mq_alloc_sched_res(q, ctx->type, &ctx->res, 666 set->nr_hw_queues); 667 if (ret) 668 return ret; 669 } 670 671 memflags = blk_mq_freeze_queue(q); 672 /* 673 * May be called before adding disk, when there isn't any FS I/O, 674 * so freezing queue plus canceling dispatch work is enough to 675 * drain any dispatch activities originated from passthrough 676 * requests, then no need to quiesce queue which may add long boot 677 * latency, especially when lots of disks are involved. 678 * 679 * Disk isn't added yet, so verifying queue lock only manually. 680 */ 681 blk_mq_cancel_work_sync(q); 682 mutex_lock(&q->elevator_lock); 683 if (!(q->elevator && elevator_match(q->elevator->type, ctx->name))) 684 ret = elevator_switch(q, ctx); 685 mutex_unlock(&q->elevator_lock); 686 blk_mq_unfreeze_queue(q, memflags); 687 if (!ret) 688 ret = elevator_change_done(q, ctx); 689 690 /* 691 * Free sched resource if it's allocated but we couldn't switch elevator. 692 */ 693 if (!ctx->new) 694 blk_mq_free_sched_res(&ctx->res, ctx->type, set); 695 696 return ret; 697 } 698 699 /* 700 * The I/O scheduler depends on the number of hardware queues, this forces a 701 * reattachment when nr_hw_queues changes. 702 */ 703 void elv_update_nr_hw_queues(struct request_queue *q, 704 struct elv_change_ctx *ctx) 705 { 706 struct blk_mq_tag_set *set = q->tag_set; 707 int ret = -ENODEV; 708 709 WARN_ON_ONCE(q->mq_freeze_depth == 0); 710 711 if (ctx->type && !blk_queue_dying(q) && blk_queue_registered(q)) { 712 mutex_lock(&q->elevator_lock); 713 /* force to reattach elevator after nr_hw_queue is updated */ 714 ret = elevator_switch(q, ctx); 715 mutex_unlock(&q->elevator_lock); 716 } 717 blk_mq_unfreeze_queue_nomemrestore(q); 718 if (!ret) 719 WARN_ON_ONCE(elevator_change_done(q, ctx)); 720 721 /* 722 * Free sched resource if it's allocated but we couldn't switch elevator. 723 */ 724 if (!ctx->new) 725 blk_mq_free_sched_res(&ctx->res, ctx->type, set); 726 } 727 728 /* 729 * Use the default elevator settings. If the chosen elevator initialization 730 * fails, fall back to the "none" elevator (no elevator). 731 */ 732 void elevator_set_default(struct request_queue *q) 733 { 734 struct elv_change_ctx ctx = { 735 .name = "mq-deadline", 736 .no_uevent = true, 737 }; 738 int err; 739 740 /* now we allow to switch elevator */ 741 blk_queue_flag_clear(QUEUE_FLAG_NO_ELV_SWITCH, q); 742 743 if (q->tag_set->flags & BLK_MQ_F_NO_SCHED_BY_DEFAULT) 744 return; 745 746 /* 747 * For single queue devices, default to using mq-deadline. If we 748 * have multiple queues or mq-deadline is not available, default 749 * to "none". 750 */ 751 ctx.type = elevator_find_get(ctx.name); 752 if (!ctx.type) 753 return; 754 755 if ((q->nr_hw_queues == 1 || 756 blk_mq_is_shared_tags(q->tag_set->flags))) { 757 err = elevator_change(q, &ctx); 758 if (err < 0) 759 pr_warn("\"%s\" elevator initialization, failed %d, falling back to \"none\"\n", 760 ctx.name, err); 761 } 762 elevator_put(ctx.type); 763 } 764 765 void elevator_set_none(struct request_queue *q) 766 { 767 struct elv_change_ctx ctx = { 768 .name = "none", 769 }; 770 int err; 771 772 err = elevator_change(q, &ctx); 773 if (err < 0) 774 pr_warn("%s: set none elevator failed %d\n", __func__, err); 775 } 776 777 static void elv_iosched_load_module(const char *elevator_name) 778 { 779 struct elevator_type *found; 780 781 spin_lock(&elv_list_lock); 782 found = __elevator_find(elevator_name); 783 spin_unlock(&elv_list_lock); 784 785 if (!found) 786 request_module("%s-iosched", elevator_name); 787 } 788 789 ssize_t elv_iosched_store(struct gendisk *disk, const char *buf, 790 size_t count) 791 { 792 char elevator_name[ELV_NAME_MAX]; 793 struct elv_change_ctx ctx = {}; 794 int ret; 795 struct request_queue *q = disk->queue; 796 struct blk_mq_tag_set *set = q->tag_set; 797 798 /* Make sure queue is not in the middle of being removed */ 799 if (!blk_queue_registered(q)) 800 return -ENOENT; 801 802 /* 803 * If the attribute needs to load a module, do it before freezing the 804 * queue to ensure that the module file can be read when the request 805 * queue is the one for the device storing the module file. 806 */ 807 strscpy(elevator_name, buf, sizeof(elevator_name)); 808 ctx.name = strstrip(elevator_name); 809 810 elv_iosched_load_module(ctx.name); 811 ctx.type = elevator_find_get(ctx.name); 812 813 down_read(&set->update_nr_hwq_lock); 814 if (!blk_queue_no_elv_switch(q)) { 815 ret = elevator_change(q, &ctx); 816 if (!ret) 817 ret = count; 818 } else { 819 ret = -ENOENT; 820 } 821 up_read(&set->update_nr_hwq_lock); 822 823 if (ctx.type) 824 elevator_put(ctx.type); 825 return ret; 826 } 827 828 ssize_t elv_iosched_show(struct gendisk *disk, char *name) 829 { 830 struct request_queue *q = disk->queue; 831 struct elevator_type *cur = NULL, *e; 832 int len = 0; 833 834 mutex_lock(&q->elevator_lock); 835 if (!q->elevator) { 836 len += sprintf(name+len, "[none] "); 837 } else { 838 len += sprintf(name+len, "none "); 839 cur = q->elevator->type; 840 } 841 842 spin_lock(&elv_list_lock); 843 list_for_each_entry(e, &elv_list, list) { 844 if (e == cur) 845 len += sprintf(name+len, "[%s] ", e->elevator_name); 846 else 847 len += sprintf(name+len, "%s ", e->elevator_name); 848 } 849 spin_unlock(&elv_list_lock); 850 851 len += sprintf(name+len, "\n"); 852 mutex_unlock(&q->elevator_lock); 853 854 return len; 855 } 856 857 struct request *elv_rb_former_request(struct request_queue *q, 858 struct request *rq) 859 { 860 struct rb_node *rbprev = rb_prev(&rq->rb_node); 861 862 if (rbprev) 863 return rb_entry_rq(rbprev); 864 865 return NULL; 866 } 867 EXPORT_SYMBOL(elv_rb_former_request); 868 869 struct request *elv_rb_latter_request(struct request_queue *q, 870 struct request *rq) 871 { 872 struct rb_node *rbnext = rb_next(&rq->rb_node); 873 874 if (rbnext) 875 return rb_entry_rq(rbnext); 876 877 return NULL; 878 } 879 EXPORT_SYMBOL(elv_rb_latter_request); 880 881 static int __init elevator_setup(char *str) 882 { 883 pr_warn("Kernel parameter elevator= does not have any effect anymore.\n" 884 "Please use sysfs to set IO scheduler for individual devices.\n"); 885 return 1; 886 } 887 888 __setup("elevator=", elevator_setup); 889