xref: /linux/block/elevator.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 
38 #include <asm/uaccess.h>
39 
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
42 
43 /*
44  * Merge hash stuff.
45  */
46 static const int elv_hash_shift = 6;
47 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
48 #define ELV_HASH_FN(sec)	(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
49 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
50 #define rq_hash_key(rq)		((rq)->sector + (rq)->nr_sectors)
51 #define ELV_ON_HASH(rq)		(!hlist_unhashed(&(rq)->hash))
52 
53 /*
54  * can we safely merge with this request?
55  */
56 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
57 {
58 	if (!rq_mergeable(rq))
59 		return 0;
60 
61 	/*
62 	 * different data direction or already started, don't merge
63 	 */
64 	if (bio_data_dir(bio) != rq_data_dir(rq))
65 		return 0;
66 
67 	/*
68 	 * same device and no special stuff set, merge is ok
69 	 */
70 	if (rq->rq_disk == bio->bi_bdev->bd_disk && !rq->special)
71 		return 1;
72 
73 	return 0;
74 }
75 EXPORT_SYMBOL(elv_rq_merge_ok);
76 
77 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
78 {
79 	int ret = ELEVATOR_NO_MERGE;
80 
81 	/*
82 	 * we can merge and sequence is ok, check if it's possible
83 	 */
84 	if (elv_rq_merge_ok(__rq, bio)) {
85 		if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
86 			ret = ELEVATOR_BACK_MERGE;
87 		else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
88 			ret = ELEVATOR_FRONT_MERGE;
89 	}
90 
91 	return ret;
92 }
93 
94 static struct elevator_type *elevator_find(const char *name)
95 {
96 	struct elevator_type *e;
97 	struct list_head *entry;
98 
99 	list_for_each(entry, &elv_list) {
100 
101 		e = list_entry(entry, struct elevator_type, list);
102 
103 		if (!strcmp(e->elevator_name, name))
104 			return e;
105 	}
106 
107 	return NULL;
108 }
109 
110 static void elevator_put(struct elevator_type *e)
111 {
112 	module_put(e->elevator_owner);
113 }
114 
115 static struct elevator_type *elevator_get(const char *name)
116 {
117 	struct elevator_type *e;
118 
119 	spin_lock_irq(&elv_list_lock);
120 
121 	e = elevator_find(name);
122 	if (e && !try_module_get(e->elevator_owner))
123 		e = NULL;
124 
125 	spin_unlock_irq(&elv_list_lock);
126 
127 	return e;
128 }
129 
130 static void *elevator_init_queue(request_queue_t *q, struct elevator_queue *eq)
131 {
132 	return eq->ops->elevator_init_fn(q);
133 }
134 
135 static void elevator_attach(request_queue_t *q, struct elevator_queue *eq,
136 			   void *data)
137 {
138 	q->elevator = eq;
139 	eq->elevator_data = data;
140 }
141 
142 static char chosen_elevator[16];
143 
144 static int __init elevator_setup(char *str)
145 {
146 	/*
147 	 * Be backwards-compatible with previous kernels, so users
148 	 * won't get the wrong elevator.
149 	 */
150 	if (!strcmp(str, "as"))
151 		strcpy(chosen_elevator, "anticipatory");
152 	else
153 		strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
154 	return 1;
155 }
156 
157 __setup("elevator=", elevator_setup);
158 
159 static struct kobj_type elv_ktype;
160 
161 static elevator_t *elevator_alloc(request_queue_t *q, struct elevator_type *e)
162 {
163 	elevator_t *eq;
164 	int i;
165 
166 	eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL, q->node);
167 	if (unlikely(!eq))
168 		goto err;
169 
170 	memset(eq, 0, sizeof(*eq));
171 	eq->ops = &e->ops;
172 	eq->elevator_type = e;
173 	kobject_init(&eq->kobj);
174 	snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
175 	eq->kobj.ktype = &elv_ktype;
176 	mutex_init(&eq->sysfs_lock);
177 
178 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
179 					GFP_KERNEL, q->node);
180 	if (!eq->hash)
181 		goto err;
182 
183 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
184 		INIT_HLIST_HEAD(&eq->hash[i]);
185 
186 	return eq;
187 err:
188 	kfree(eq);
189 	elevator_put(e);
190 	return NULL;
191 }
192 
193 static void elevator_release(struct kobject *kobj)
194 {
195 	elevator_t *e = container_of(kobj, elevator_t, kobj);
196 
197 	elevator_put(e->elevator_type);
198 	kfree(e->hash);
199 	kfree(e);
200 }
201 
202 int elevator_init(request_queue_t *q, char *name)
203 {
204 	struct elevator_type *e = NULL;
205 	struct elevator_queue *eq;
206 	int ret = 0;
207 	void *data;
208 
209 	INIT_LIST_HEAD(&q->queue_head);
210 	q->last_merge = NULL;
211 	q->end_sector = 0;
212 	q->boundary_rq = NULL;
213 
214 	if (name && !(e = elevator_get(name)))
215 		return -EINVAL;
216 
217 	if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
218 		printk("I/O scheduler %s not found\n", chosen_elevator);
219 
220 	if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
221 		printk("Default I/O scheduler not found, using no-op\n");
222 		e = elevator_get("noop");
223 	}
224 
225 	eq = elevator_alloc(q, e);
226 	if (!eq)
227 		return -ENOMEM;
228 
229 	data = elevator_init_queue(q, eq);
230 	if (!data) {
231 		kobject_put(&eq->kobj);
232 		return -ENOMEM;
233 	}
234 
235 	elevator_attach(q, eq, data);
236 	return ret;
237 }
238 
239 EXPORT_SYMBOL(elevator_init);
240 
241 void elevator_exit(elevator_t *e)
242 {
243 	mutex_lock(&e->sysfs_lock);
244 	if (e->ops->elevator_exit_fn)
245 		e->ops->elevator_exit_fn(e);
246 	e->ops = NULL;
247 	mutex_unlock(&e->sysfs_lock);
248 
249 	kobject_put(&e->kobj);
250 }
251 
252 EXPORT_SYMBOL(elevator_exit);
253 
254 static inline void __elv_rqhash_del(struct request *rq)
255 {
256 	hlist_del_init(&rq->hash);
257 }
258 
259 static void elv_rqhash_del(request_queue_t *q, struct request *rq)
260 {
261 	if (ELV_ON_HASH(rq))
262 		__elv_rqhash_del(rq);
263 }
264 
265 static void elv_rqhash_add(request_queue_t *q, struct request *rq)
266 {
267 	elevator_t *e = q->elevator;
268 
269 	BUG_ON(ELV_ON_HASH(rq));
270 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
271 }
272 
273 static void elv_rqhash_reposition(request_queue_t *q, struct request *rq)
274 {
275 	__elv_rqhash_del(rq);
276 	elv_rqhash_add(q, rq);
277 }
278 
279 static struct request *elv_rqhash_find(request_queue_t *q, sector_t offset)
280 {
281 	elevator_t *e = q->elevator;
282 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
283 	struct hlist_node *entry, *next;
284 	struct request *rq;
285 
286 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
287 		BUG_ON(!ELV_ON_HASH(rq));
288 
289 		if (unlikely(!rq_mergeable(rq))) {
290 			__elv_rqhash_del(rq);
291 			continue;
292 		}
293 
294 		if (rq_hash_key(rq) == offset)
295 			return rq;
296 	}
297 
298 	return NULL;
299 }
300 
301 /*
302  * RB-tree support functions for inserting/lookup/removal of requests
303  * in a sorted RB tree.
304  */
305 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
306 {
307 	struct rb_node **p = &root->rb_node;
308 	struct rb_node *parent = NULL;
309 	struct request *__rq;
310 
311 	while (*p) {
312 		parent = *p;
313 		__rq = rb_entry(parent, struct request, rb_node);
314 
315 		if (rq->sector < __rq->sector)
316 			p = &(*p)->rb_left;
317 		else if (rq->sector > __rq->sector)
318 			p = &(*p)->rb_right;
319 		else
320 			return __rq;
321 	}
322 
323 	rb_link_node(&rq->rb_node, parent, p);
324 	rb_insert_color(&rq->rb_node, root);
325 	return NULL;
326 }
327 
328 EXPORT_SYMBOL(elv_rb_add);
329 
330 void elv_rb_del(struct rb_root *root, struct request *rq)
331 {
332 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
333 	rb_erase(&rq->rb_node, root);
334 	RB_CLEAR_NODE(&rq->rb_node);
335 }
336 
337 EXPORT_SYMBOL(elv_rb_del);
338 
339 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
340 {
341 	struct rb_node *n = root->rb_node;
342 	struct request *rq;
343 
344 	while (n) {
345 		rq = rb_entry(n, struct request, rb_node);
346 
347 		if (sector < rq->sector)
348 			n = n->rb_left;
349 		else if (sector > rq->sector)
350 			n = n->rb_right;
351 		else
352 			return rq;
353 	}
354 
355 	return NULL;
356 }
357 
358 EXPORT_SYMBOL(elv_rb_find);
359 
360 /*
361  * Insert rq into dispatch queue of q.  Queue lock must be held on
362  * entry.  rq is sort insted into the dispatch queue. To be used by
363  * specific elevators.
364  */
365 void elv_dispatch_sort(request_queue_t *q, struct request *rq)
366 {
367 	sector_t boundary;
368 	struct list_head *entry;
369 
370 	if (q->last_merge == rq)
371 		q->last_merge = NULL;
372 
373 	elv_rqhash_del(q, rq);
374 
375 	q->nr_sorted--;
376 
377 	boundary = q->end_sector;
378 
379 	list_for_each_prev(entry, &q->queue_head) {
380 		struct request *pos = list_entry_rq(entry);
381 
382 		if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
383 			break;
384 		if (rq->sector >= boundary) {
385 			if (pos->sector < boundary)
386 				continue;
387 		} else {
388 			if (pos->sector >= boundary)
389 				break;
390 		}
391 		if (rq->sector >= pos->sector)
392 			break;
393 	}
394 
395 	list_add(&rq->queuelist, entry);
396 }
397 
398 EXPORT_SYMBOL(elv_dispatch_sort);
399 
400 /*
401  * Insert rq into dispatch queue of q.  Queue lock must be held on
402  * entry.  rq is added to the back of the dispatch queue. To be used by
403  * specific elevators.
404  */
405 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
406 {
407 	if (q->last_merge == rq)
408 		q->last_merge = NULL;
409 
410 	elv_rqhash_del(q, rq);
411 
412 	q->nr_sorted--;
413 
414 	q->end_sector = rq_end_sector(rq);
415 	q->boundary_rq = rq;
416 	list_add_tail(&rq->queuelist, &q->queue_head);
417 }
418 
419 EXPORT_SYMBOL(elv_dispatch_add_tail);
420 
421 int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
422 {
423 	elevator_t *e = q->elevator;
424 	struct request *__rq;
425 	int ret;
426 
427 	/*
428 	 * First try one-hit cache.
429 	 */
430 	if (q->last_merge) {
431 		ret = elv_try_merge(q->last_merge, bio);
432 		if (ret != ELEVATOR_NO_MERGE) {
433 			*req = q->last_merge;
434 			return ret;
435 		}
436 	}
437 
438 	/*
439 	 * See if our hash lookup can find a potential backmerge.
440 	 */
441 	__rq = elv_rqhash_find(q, bio->bi_sector);
442 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
443 		*req = __rq;
444 		return ELEVATOR_BACK_MERGE;
445 	}
446 
447 	if (e->ops->elevator_merge_fn)
448 		return e->ops->elevator_merge_fn(q, req, bio);
449 
450 	return ELEVATOR_NO_MERGE;
451 }
452 
453 void elv_merged_request(request_queue_t *q, struct request *rq, int type)
454 {
455 	elevator_t *e = q->elevator;
456 
457 	if (e->ops->elevator_merged_fn)
458 		e->ops->elevator_merged_fn(q, rq, type);
459 
460 	if (type == ELEVATOR_BACK_MERGE)
461 		elv_rqhash_reposition(q, rq);
462 
463 	q->last_merge = rq;
464 }
465 
466 void elv_merge_requests(request_queue_t *q, struct request *rq,
467 			     struct request *next)
468 {
469 	elevator_t *e = q->elevator;
470 
471 	if (e->ops->elevator_merge_req_fn)
472 		e->ops->elevator_merge_req_fn(q, rq, next);
473 
474 	elv_rqhash_reposition(q, rq);
475 	elv_rqhash_del(q, next);
476 
477 	q->nr_sorted--;
478 	q->last_merge = rq;
479 }
480 
481 void elv_requeue_request(request_queue_t *q, struct request *rq)
482 {
483 	elevator_t *e = q->elevator;
484 
485 	/*
486 	 * it already went through dequeue, we need to decrement the
487 	 * in_flight count again
488 	 */
489 	if (blk_account_rq(rq)) {
490 		q->in_flight--;
491 		if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
492 			e->ops->elevator_deactivate_req_fn(q, rq);
493 	}
494 
495 	rq->cmd_flags &= ~REQ_STARTED;
496 
497 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
498 }
499 
500 static void elv_drain_elevator(request_queue_t *q)
501 {
502 	static int printed;
503 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
504 		;
505 	if (q->nr_sorted == 0)
506 		return;
507 	if (printed++ < 10) {
508 		printk(KERN_ERR "%s: forced dispatching is broken "
509 		       "(nr_sorted=%u), please report this\n",
510 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
511 	}
512 }
513 
514 void elv_insert(request_queue_t *q, struct request *rq, int where)
515 {
516 	struct list_head *pos;
517 	unsigned ordseq;
518 	int unplug_it = 1;
519 
520 	blk_add_trace_rq(q, rq, BLK_TA_INSERT);
521 
522 	rq->q = q;
523 
524 	switch (where) {
525 	case ELEVATOR_INSERT_FRONT:
526 		rq->cmd_flags |= REQ_SOFTBARRIER;
527 
528 		list_add(&rq->queuelist, &q->queue_head);
529 		break;
530 
531 	case ELEVATOR_INSERT_BACK:
532 		rq->cmd_flags |= REQ_SOFTBARRIER;
533 		elv_drain_elevator(q);
534 		list_add_tail(&rq->queuelist, &q->queue_head);
535 		/*
536 		 * We kick the queue here for the following reasons.
537 		 * - The elevator might have returned NULL previously
538 		 *   to delay requests and returned them now.  As the
539 		 *   queue wasn't empty before this request, ll_rw_blk
540 		 *   won't run the queue on return, resulting in hang.
541 		 * - Usually, back inserted requests won't be merged
542 		 *   with anything.  There's no point in delaying queue
543 		 *   processing.
544 		 */
545 		blk_remove_plug(q);
546 		q->request_fn(q);
547 		break;
548 
549 	case ELEVATOR_INSERT_SORT:
550 		BUG_ON(!blk_fs_request(rq));
551 		rq->cmd_flags |= REQ_SORTED;
552 		q->nr_sorted++;
553 		if (rq_mergeable(rq)) {
554 			elv_rqhash_add(q, rq);
555 			if (!q->last_merge)
556 				q->last_merge = rq;
557 		}
558 
559 		/*
560 		 * Some ioscheds (cfq) run q->request_fn directly, so
561 		 * rq cannot be accessed after calling
562 		 * elevator_add_req_fn.
563 		 */
564 		q->elevator->ops->elevator_add_req_fn(q, rq);
565 		break;
566 
567 	case ELEVATOR_INSERT_REQUEUE:
568 		/*
569 		 * If ordered flush isn't in progress, we do front
570 		 * insertion; otherwise, requests should be requeued
571 		 * in ordseq order.
572 		 */
573 		rq->cmd_flags |= REQ_SOFTBARRIER;
574 
575 		if (q->ordseq == 0) {
576 			list_add(&rq->queuelist, &q->queue_head);
577 			break;
578 		}
579 
580 		ordseq = blk_ordered_req_seq(rq);
581 
582 		list_for_each(pos, &q->queue_head) {
583 			struct request *pos_rq = list_entry_rq(pos);
584 			if (ordseq <= blk_ordered_req_seq(pos_rq))
585 				break;
586 		}
587 
588 		list_add_tail(&rq->queuelist, pos);
589 		/*
590 		 * most requeues happen because of a busy condition, don't
591 		 * force unplug of the queue for that case.
592 		 */
593 		unplug_it = 0;
594 		break;
595 
596 	default:
597 		printk(KERN_ERR "%s: bad insertion point %d\n",
598 		       __FUNCTION__, where);
599 		BUG();
600 	}
601 
602 	if (unplug_it && blk_queue_plugged(q)) {
603 		int nrq = q->rq.count[READ] + q->rq.count[WRITE]
604 			- q->in_flight;
605 
606 		if (nrq >= q->unplug_thresh)
607 			__generic_unplug_device(q);
608 	}
609 }
610 
611 void __elv_add_request(request_queue_t *q, struct request *rq, int where,
612 		       int plug)
613 {
614 	if (q->ordcolor)
615 		rq->cmd_flags |= REQ_ORDERED_COLOR;
616 
617 	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
618 		/*
619 		 * toggle ordered color
620 		 */
621 		if (blk_barrier_rq(rq))
622 			q->ordcolor ^= 1;
623 
624 		/*
625 		 * barriers implicitly indicate back insertion
626 		 */
627 		if (where == ELEVATOR_INSERT_SORT)
628 			where = ELEVATOR_INSERT_BACK;
629 
630 		/*
631 		 * this request is scheduling boundary, update
632 		 * end_sector
633 		 */
634 		if (blk_fs_request(rq)) {
635 			q->end_sector = rq_end_sector(rq);
636 			q->boundary_rq = rq;
637 		}
638 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
639 		where = ELEVATOR_INSERT_BACK;
640 
641 	if (plug)
642 		blk_plug_device(q);
643 
644 	elv_insert(q, rq, where);
645 }
646 
647 EXPORT_SYMBOL(__elv_add_request);
648 
649 void elv_add_request(request_queue_t *q, struct request *rq, int where,
650 		     int plug)
651 {
652 	unsigned long flags;
653 
654 	spin_lock_irqsave(q->queue_lock, flags);
655 	__elv_add_request(q, rq, where, plug);
656 	spin_unlock_irqrestore(q->queue_lock, flags);
657 }
658 
659 EXPORT_SYMBOL(elv_add_request);
660 
661 static inline struct request *__elv_next_request(request_queue_t *q)
662 {
663 	struct request *rq;
664 
665 	while (1) {
666 		while (!list_empty(&q->queue_head)) {
667 			rq = list_entry_rq(q->queue_head.next);
668 			if (blk_do_ordered(q, &rq))
669 				return rq;
670 		}
671 
672 		if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
673 			return NULL;
674 	}
675 }
676 
677 struct request *elv_next_request(request_queue_t *q)
678 {
679 	struct request *rq;
680 	int ret;
681 
682 	while ((rq = __elv_next_request(q)) != NULL) {
683 		if (!(rq->cmd_flags & REQ_STARTED)) {
684 			elevator_t *e = q->elevator;
685 
686 			/*
687 			 * This is the first time the device driver
688 			 * sees this request (possibly after
689 			 * requeueing).  Notify IO scheduler.
690 			 */
691 			if (blk_sorted_rq(rq) &&
692 			    e->ops->elevator_activate_req_fn)
693 				e->ops->elevator_activate_req_fn(q, rq);
694 
695 			/*
696 			 * just mark as started even if we don't start
697 			 * it, a request that has been delayed should
698 			 * not be passed by new incoming requests
699 			 */
700 			rq->cmd_flags |= REQ_STARTED;
701 			blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
702 		}
703 
704 		if (!q->boundary_rq || q->boundary_rq == rq) {
705 			q->end_sector = rq_end_sector(rq);
706 			q->boundary_rq = NULL;
707 		}
708 
709 		if ((rq->cmd_flags & REQ_DONTPREP) || !q->prep_rq_fn)
710 			break;
711 
712 		ret = q->prep_rq_fn(q, rq);
713 		if (ret == BLKPREP_OK) {
714 			break;
715 		} else if (ret == BLKPREP_DEFER) {
716 			/*
717 			 * the request may have been (partially) prepped.
718 			 * we need to keep this request in the front to
719 			 * avoid resource deadlock.  REQ_STARTED will
720 			 * prevent other fs requests from passing this one.
721 			 */
722 			rq = NULL;
723 			break;
724 		} else if (ret == BLKPREP_KILL) {
725 			int nr_bytes = rq->hard_nr_sectors << 9;
726 
727 			if (!nr_bytes)
728 				nr_bytes = rq->data_len;
729 
730 			blkdev_dequeue_request(rq);
731 			rq->cmd_flags |= REQ_QUIET;
732 			end_that_request_chunk(rq, 0, nr_bytes);
733 			end_that_request_last(rq, 0);
734 		} else {
735 			printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
736 								ret);
737 			break;
738 		}
739 	}
740 
741 	return rq;
742 }
743 
744 EXPORT_SYMBOL(elv_next_request);
745 
746 void elv_dequeue_request(request_queue_t *q, struct request *rq)
747 {
748 	BUG_ON(list_empty(&rq->queuelist));
749 	BUG_ON(ELV_ON_HASH(rq));
750 
751 	list_del_init(&rq->queuelist);
752 
753 	/*
754 	 * the time frame between a request being removed from the lists
755 	 * and to it is freed is accounted as io that is in progress at
756 	 * the driver side.
757 	 */
758 	if (blk_account_rq(rq))
759 		q->in_flight++;
760 }
761 
762 EXPORT_SYMBOL(elv_dequeue_request);
763 
764 int elv_queue_empty(request_queue_t *q)
765 {
766 	elevator_t *e = q->elevator;
767 
768 	if (!list_empty(&q->queue_head))
769 		return 0;
770 
771 	if (e->ops->elevator_queue_empty_fn)
772 		return e->ops->elevator_queue_empty_fn(q);
773 
774 	return 1;
775 }
776 
777 EXPORT_SYMBOL(elv_queue_empty);
778 
779 struct request *elv_latter_request(request_queue_t *q, struct request *rq)
780 {
781 	elevator_t *e = q->elevator;
782 
783 	if (e->ops->elevator_latter_req_fn)
784 		return e->ops->elevator_latter_req_fn(q, rq);
785 	return NULL;
786 }
787 
788 struct request *elv_former_request(request_queue_t *q, struct request *rq)
789 {
790 	elevator_t *e = q->elevator;
791 
792 	if (e->ops->elevator_former_req_fn)
793 		return e->ops->elevator_former_req_fn(q, rq);
794 	return NULL;
795 }
796 
797 int elv_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
798 {
799 	elevator_t *e = q->elevator;
800 
801 	if (e->ops->elevator_set_req_fn)
802 		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
803 
804 	rq->elevator_private = NULL;
805 	return 0;
806 }
807 
808 void elv_put_request(request_queue_t *q, struct request *rq)
809 {
810 	elevator_t *e = q->elevator;
811 
812 	if (e->ops->elevator_put_req_fn)
813 		e->ops->elevator_put_req_fn(rq);
814 }
815 
816 int elv_may_queue(request_queue_t *q, int rw)
817 {
818 	elevator_t *e = q->elevator;
819 
820 	if (e->ops->elevator_may_queue_fn)
821 		return e->ops->elevator_may_queue_fn(q, rw);
822 
823 	return ELV_MQUEUE_MAY;
824 }
825 
826 void elv_completed_request(request_queue_t *q, struct request *rq)
827 {
828 	elevator_t *e = q->elevator;
829 
830 	/*
831 	 * request is released from the driver, io must be done
832 	 */
833 	if (blk_account_rq(rq)) {
834 		q->in_flight--;
835 		if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
836 			e->ops->elevator_completed_req_fn(q, rq);
837 	}
838 
839 	/*
840 	 * Check if the queue is waiting for fs requests to be
841 	 * drained for flush sequence.
842 	 */
843 	if (unlikely(q->ordseq)) {
844 		struct request *first_rq = list_entry_rq(q->queue_head.next);
845 		if (q->in_flight == 0 &&
846 		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
847 		    blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
848 			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
849 			q->request_fn(q);
850 		}
851 	}
852 }
853 
854 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
855 
856 static ssize_t
857 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
858 {
859 	elevator_t *e = container_of(kobj, elevator_t, kobj);
860 	struct elv_fs_entry *entry = to_elv(attr);
861 	ssize_t error;
862 
863 	if (!entry->show)
864 		return -EIO;
865 
866 	mutex_lock(&e->sysfs_lock);
867 	error = e->ops ? entry->show(e, page) : -ENOENT;
868 	mutex_unlock(&e->sysfs_lock);
869 	return error;
870 }
871 
872 static ssize_t
873 elv_attr_store(struct kobject *kobj, struct attribute *attr,
874 	       const char *page, size_t length)
875 {
876 	elevator_t *e = container_of(kobj, elevator_t, kobj);
877 	struct elv_fs_entry *entry = to_elv(attr);
878 	ssize_t error;
879 
880 	if (!entry->store)
881 		return -EIO;
882 
883 	mutex_lock(&e->sysfs_lock);
884 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
885 	mutex_unlock(&e->sysfs_lock);
886 	return error;
887 }
888 
889 static struct sysfs_ops elv_sysfs_ops = {
890 	.show	= elv_attr_show,
891 	.store	= elv_attr_store,
892 };
893 
894 static struct kobj_type elv_ktype = {
895 	.sysfs_ops	= &elv_sysfs_ops,
896 	.release	= elevator_release,
897 };
898 
899 int elv_register_queue(struct request_queue *q)
900 {
901 	elevator_t *e = q->elevator;
902 	int error;
903 
904 	e->kobj.parent = &q->kobj;
905 
906 	error = kobject_add(&e->kobj);
907 	if (!error) {
908 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
909 		if (attr) {
910 			while (attr->attr.name) {
911 				if (sysfs_create_file(&e->kobj, &attr->attr))
912 					break;
913 				attr++;
914 			}
915 		}
916 		kobject_uevent(&e->kobj, KOBJ_ADD);
917 	}
918 	return error;
919 }
920 
921 static void __elv_unregister_queue(elevator_t *e)
922 {
923 	kobject_uevent(&e->kobj, KOBJ_REMOVE);
924 	kobject_del(&e->kobj);
925 }
926 
927 void elv_unregister_queue(struct request_queue *q)
928 {
929 	if (q)
930 		__elv_unregister_queue(q->elevator);
931 }
932 
933 int elv_register(struct elevator_type *e)
934 {
935 	spin_lock_irq(&elv_list_lock);
936 	BUG_ON(elevator_find(e->elevator_name));
937 	list_add_tail(&e->list, &elv_list);
938 	spin_unlock_irq(&elv_list_lock);
939 
940 	printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
941 	if (!strcmp(e->elevator_name, chosen_elevator) ||
942 			(!*chosen_elevator &&
943 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
944 				printk(" (default)");
945 	printk("\n");
946 	return 0;
947 }
948 EXPORT_SYMBOL_GPL(elv_register);
949 
950 void elv_unregister(struct elevator_type *e)
951 {
952 	struct task_struct *g, *p;
953 
954 	/*
955 	 * Iterate every thread in the process to remove the io contexts.
956 	 */
957 	if (e->ops.trim) {
958 		read_lock(&tasklist_lock);
959 		do_each_thread(g, p) {
960 			task_lock(p);
961 			if (p->io_context)
962 				e->ops.trim(p->io_context);
963 			task_unlock(p);
964 		} while_each_thread(g, p);
965 		read_unlock(&tasklist_lock);
966 	}
967 
968 	spin_lock_irq(&elv_list_lock);
969 	list_del_init(&e->list);
970 	spin_unlock_irq(&elv_list_lock);
971 }
972 EXPORT_SYMBOL_GPL(elv_unregister);
973 
974 /*
975  * switch to new_e io scheduler. be careful not to introduce deadlocks -
976  * we don't free the old io scheduler, before we have allocated what we
977  * need for the new one. this way we have a chance of going back to the old
978  * one, if the new one fails init for some reason.
979  */
980 static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
981 {
982 	elevator_t *old_elevator, *e;
983 	void *data;
984 
985 	/*
986 	 * Allocate new elevator
987 	 */
988 	e = elevator_alloc(q, new_e);
989 	if (!e)
990 		return 0;
991 
992 	data = elevator_init_queue(q, e);
993 	if (!data) {
994 		kobject_put(&e->kobj);
995 		return 0;
996 	}
997 
998 	/*
999 	 * Turn on BYPASS and drain all requests w/ elevator private data
1000 	 */
1001 	spin_lock_irq(q->queue_lock);
1002 
1003 	set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1004 
1005 	elv_drain_elevator(q);
1006 
1007 	while (q->rq.elvpriv) {
1008 		blk_remove_plug(q);
1009 		q->request_fn(q);
1010 		spin_unlock_irq(q->queue_lock);
1011 		msleep(10);
1012 		spin_lock_irq(q->queue_lock);
1013 		elv_drain_elevator(q);
1014 	}
1015 
1016 	/*
1017 	 * Remember old elevator.
1018 	 */
1019 	old_elevator = q->elevator;
1020 
1021 	/*
1022 	 * attach and start new elevator
1023 	 */
1024 	elevator_attach(q, e, data);
1025 
1026 	spin_unlock_irq(q->queue_lock);
1027 
1028 	__elv_unregister_queue(old_elevator);
1029 
1030 	if (elv_register_queue(q))
1031 		goto fail_register;
1032 
1033 	/*
1034 	 * finally exit old elevator and turn off BYPASS.
1035 	 */
1036 	elevator_exit(old_elevator);
1037 	clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1038 	return 1;
1039 
1040 fail_register:
1041 	/*
1042 	 * switch failed, exit the new io scheduler and reattach the old
1043 	 * one again (along with re-adding the sysfs dir)
1044 	 */
1045 	elevator_exit(e);
1046 	q->elevator = old_elevator;
1047 	elv_register_queue(q);
1048 	clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1049 	return 0;
1050 }
1051 
1052 ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
1053 {
1054 	char elevator_name[ELV_NAME_MAX];
1055 	size_t len;
1056 	struct elevator_type *e;
1057 
1058 	elevator_name[sizeof(elevator_name) - 1] = '\0';
1059 	strncpy(elevator_name, name, sizeof(elevator_name) - 1);
1060 	len = strlen(elevator_name);
1061 
1062 	if (len && elevator_name[len - 1] == '\n')
1063 		elevator_name[len - 1] = '\0';
1064 
1065 	e = elevator_get(elevator_name);
1066 	if (!e) {
1067 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1068 		return -EINVAL;
1069 	}
1070 
1071 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1072 		elevator_put(e);
1073 		return count;
1074 	}
1075 
1076 	if (!elevator_switch(q, e))
1077 		printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
1078 	return count;
1079 }
1080 
1081 ssize_t elv_iosched_show(request_queue_t *q, char *name)
1082 {
1083 	elevator_t *e = q->elevator;
1084 	struct elevator_type *elv = e->elevator_type;
1085 	struct list_head *entry;
1086 	int len = 0;
1087 
1088 	spin_lock_irq(&elv_list_lock);
1089 	list_for_each(entry, &elv_list) {
1090 		struct elevator_type *__e;
1091 
1092 		__e = list_entry(entry, struct elevator_type, list);
1093 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1094 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1095 		else
1096 			len += sprintf(name+len, "%s ", __e->elevator_name);
1097 	}
1098 	spin_unlock_irq(&elv_list_lock);
1099 
1100 	len += sprintf(len+name, "\n");
1101 	return len;
1102 }
1103 
1104 struct request *elv_rb_former_request(request_queue_t *q, struct request *rq)
1105 {
1106 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1107 
1108 	if (rbprev)
1109 		return rb_entry_rq(rbprev);
1110 
1111 	return NULL;
1112 }
1113 
1114 EXPORT_SYMBOL(elv_rb_former_request);
1115 
1116 struct request *elv_rb_latter_request(request_queue_t *q, struct request *rq)
1117 {
1118 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1119 
1120 	if (rbnext)
1121 		return rb_entry_rq(rbnext);
1122 
1123 	return NULL;
1124 }
1125 
1126 EXPORT_SYMBOL(elv_rb_latter_request);
1127