xref: /linux/block/elevator.c (revision 5bf2b19320ec31d094d7370fdf536f7fd91fd799)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
38 
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
45 
46 /*
47  * Merge hash stuff.
48  */
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
51 #define ELV_HASH_FN(sec)	\
52 		(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
54 #define rq_hash_key(rq)		(blk_rq_pos(rq) + blk_rq_sectors(rq))
55 
56 /*
57  * Query io scheduler to see if the current process issuing bio may be
58  * merged with rq.
59  */
60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
61 {
62 	struct request_queue *q = rq->q;
63 	struct elevator_queue *e = q->elevator;
64 
65 	if (e->ops->elevator_allow_merge_fn)
66 		return e->ops->elevator_allow_merge_fn(q, rq, bio);
67 
68 	return 1;
69 }
70 
71 /*
72  * can we safely merge with this request?
73  */
74 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
75 {
76 	if (!rq_mergeable(rq))
77 		return 0;
78 
79 	/*
80 	 * Don't merge file system requests and discard requests
81 	 */
82 	if ((bio->bi_rw & REQ_DISCARD) != (rq->bio->bi_rw & REQ_DISCARD))
83 		return 0;
84 
85 	/*
86 	 * different data direction or already started, don't merge
87 	 */
88 	if (bio_data_dir(bio) != rq_data_dir(rq))
89 		return 0;
90 
91 	/*
92 	 * must be same device and not a special request
93 	 */
94 	if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
95 		return 0;
96 
97 	/*
98 	 * only merge integrity protected bio into ditto rq
99 	 */
100 	if (bio_integrity(bio) != blk_integrity_rq(rq))
101 		return 0;
102 
103 	if (!elv_iosched_allow_merge(rq, bio))
104 		return 0;
105 
106 	return 1;
107 }
108 EXPORT_SYMBOL(elv_rq_merge_ok);
109 
110 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
111 {
112 	int ret = ELEVATOR_NO_MERGE;
113 
114 	/*
115 	 * we can merge and sequence is ok, check if it's possible
116 	 */
117 	if (elv_rq_merge_ok(__rq, bio)) {
118 		if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
119 			ret = ELEVATOR_BACK_MERGE;
120 		else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
121 			ret = ELEVATOR_FRONT_MERGE;
122 	}
123 
124 	return ret;
125 }
126 
127 static struct elevator_type *elevator_find(const char *name)
128 {
129 	struct elevator_type *e;
130 
131 	list_for_each_entry(e, &elv_list, list) {
132 		if (!strcmp(e->elevator_name, name))
133 			return e;
134 	}
135 
136 	return NULL;
137 }
138 
139 static void elevator_put(struct elevator_type *e)
140 {
141 	module_put(e->elevator_owner);
142 }
143 
144 static struct elevator_type *elevator_get(const char *name)
145 {
146 	struct elevator_type *e;
147 
148 	spin_lock(&elv_list_lock);
149 
150 	e = elevator_find(name);
151 	if (!e) {
152 		char elv[ELV_NAME_MAX + strlen("-iosched")];
153 
154 		spin_unlock(&elv_list_lock);
155 
156 		snprintf(elv, sizeof(elv), "%s-iosched", name);
157 
158 		request_module("%s", elv);
159 		spin_lock(&elv_list_lock);
160 		e = elevator_find(name);
161 	}
162 
163 	if (e && !try_module_get(e->elevator_owner))
164 		e = NULL;
165 
166 	spin_unlock(&elv_list_lock);
167 
168 	return e;
169 }
170 
171 static void *elevator_init_queue(struct request_queue *q,
172 				 struct elevator_queue *eq)
173 {
174 	return eq->ops->elevator_init_fn(q);
175 }
176 
177 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
178 			   void *data)
179 {
180 	q->elevator = eq;
181 	eq->elevator_data = data;
182 }
183 
184 static char chosen_elevator[16];
185 
186 static int __init elevator_setup(char *str)
187 {
188 	/*
189 	 * Be backwards-compatible with previous kernels, so users
190 	 * won't get the wrong elevator.
191 	 */
192 	strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
193 	return 1;
194 }
195 
196 __setup("elevator=", elevator_setup);
197 
198 static struct kobj_type elv_ktype;
199 
200 static struct elevator_queue *elevator_alloc(struct request_queue *q,
201 				  struct elevator_type *e)
202 {
203 	struct elevator_queue *eq;
204 	int i;
205 
206 	eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
207 	if (unlikely(!eq))
208 		goto err;
209 
210 	eq->ops = &e->ops;
211 	eq->elevator_type = e;
212 	kobject_init(&eq->kobj, &elv_ktype);
213 	mutex_init(&eq->sysfs_lock);
214 
215 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
216 					GFP_KERNEL, q->node);
217 	if (!eq->hash)
218 		goto err;
219 
220 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
221 		INIT_HLIST_HEAD(&eq->hash[i]);
222 
223 	return eq;
224 err:
225 	kfree(eq);
226 	elevator_put(e);
227 	return NULL;
228 }
229 
230 static void elevator_release(struct kobject *kobj)
231 {
232 	struct elevator_queue *e;
233 
234 	e = container_of(kobj, struct elevator_queue, kobj);
235 	elevator_put(e->elevator_type);
236 	kfree(e->hash);
237 	kfree(e);
238 }
239 
240 int elevator_init(struct request_queue *q, char *name)
241 {
242 	struct elevator_type *e = NULL;
243 	struct elevator_queue *eq;
244 	void *data;
245 
246 	if (unlikely(q->elevator))
247 		return 0;
248 
249 	INIT_LIST_HEAD(&q->queue_head);
250 	q->last_merge = NULL;
251 	q->end_sector = 0;
252 	q->boundary_rq = NULL;
253 
254 	if (name) {
255 		e = elevator_get(name);
256 		if (!e)
257 			return -EINVAL;
258 	}
259 
260 	if (!e && *chosen_elevator) {
261 		e = elevator_get(chosen_elevator);
262 		if (!e)
263 			printk(KERN_ERR "I/O scheduler %s not found\n",
264 							chosen_elevator);
265 	}
266 
267 	if (!e) {
268 		e = elevator_get(CONFIG_DEFAULT_IOSCHED);
269 		if (!e) {
270 			printk(KERN_ERR
271 				"Default I/O scheduler not found. " \
272 				"Using noop.\n");
273 			e = elevator_get("noop");
274 		}
275 	}
276 
277 	eq = elevator_alloc(q, e);
278 	if (!eq)
279 		return -ENOMEM;
280 
281 	data = elevator_init_queue(q, eq);
282 	if (!data) {
283 		kobject_put(&eq->kobj);
284 		return -ENOMEM;
285 	}
286 
287 	elevator_attach(q, eq, data);
288 	return 0;
289 }
290 EXPORT_SYMBOL(elevator_init);
291 
292 void elevator_exit(struct elevator_queue *e)
293 {
294 	mutex_lock(&e->sysfs_lock);
295 	if (e->ops->elevator_exit_fn)
296 		e->ops->elevator_exit_fn(e);
297 	e->ops = NULL;
298 	mutex_unlock(&e->sysfs_lock);
299 
300 	kobject_put(&e->kobj);
301 }
302 EXPORT_SYMBOL(elevator_exit);
303 
304 static inline void __elv_rqhash_del(struct request *rq)
305 {
306 	hlist_del_init(&rq->hash);
307 }
308 
309 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
310 {
311 	if (ELV_ON_HASH(rq))
312 		__elv_rqhash_del(rq);
313 }
314 
315 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
316 {
317 	struct elevator_queue *e = q->elevator;
318 
319 	BUG_ON(ELV_ON_HASH(rq));
320 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
321 }
322 
323 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
324 {
325 	__elv_rqhash_del(rq);
326 	elv_rqhash_add(q, rq);
327 }
328 
329 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
330 {
331 	struct elevator_queue *e = q->elevator;
332 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
333 	struct hlist_node *entry, *next;
334 	struct request *rq;
335 
336 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
337 		BUG_ON(!ELV_ON_HASH(rq));
338 
339 		if (unlikely(!rq_mergeable(rq))) {
340 			__elv_rqhash_del(rq);
341 			continue;
342 		}
343 
344 		if (rq_hash_key(rq) == offset)
345 			return rq;
346 	}
347 
348 	return NULL;
349 }
350 
351 /*
352  * RB-tree support functions for inserting/lookup/removal of requests
353  * in a sorted RB tree.
354  */
355 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
356 {
357 	struct rb_node **p = &root->rb_node;
358 	struct rb_node *parent = NULL;
359 	struct request *__rq;
360 
361 	while (*p) {
362 		parent = *p;
363 		__rq = rb_entry(parent, struct request, rb_node);
364 
365 		if (blk_rq_pos(rq) < blk_rq_pos(__rq))
366 			p = &(*p)->rb_left;
367 		else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
368 			p = &(*p)->rb_right;
369 		else
370 			return __rq;
371 	}
372 
373 	rb_link_node(&rq->rb_node, parent, p);
374 	rb_insert_color(&rq->rb_node, root);
375 	return NULL;
376 }
377 EXPORT_SYMBOL(elv_rb_add);
378 
379 void elv_rb_del(struct rb_root *root, struct request *rq)
380 {
381 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
382 	rb_erase(&rq->rb_node, root);
383 	RB_CLEAR_NODE(&rq->rb_node);
384 }
385 EXPORT_SYMBOL(elv_rb_del);
386 
387 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
388 {
389 	struct rb_node *n = root->rb_node;
390 	struct request *rq;
391 
392 	while (n) {
393 		rq = rb_entry(n, struct request, rb_node);
394 
395 		if (sector < blk_rq_pos(rq))
396 			n = n->rb_left;
397 		else if (sector > blk_rq_pos(rq))
398 			n = n->rb_right;
399 		else
400 			return rq;
401 	}
402 
403 	return NULL;
404 }
405 EXPORT_SYMBOL(elv_rb_find);
406 
407 /*
408  * Insert rq into dispatch queue of q.  Queue lock must be held on
409  * entry.  rq is sort instead into the dispatch queue. To be used by
410  * specific elevators.
411  */
412 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
413 {
414 	sector_t boundary;
415 	struct list_head *entry;
416 	int stop_flags;
417 
418 	if (q->last_merge == rq)
419 		q->last_merge = NULL;
420 
421 	elv_rqhash_del(q, rq);
422 
423 	q->nr_sorted--;
424 
425 	boundary = q->end_sector;
426 	stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
427 	list_for_each_prev(entry, &q->queue_head) {
428 		struct request *pos = list_entry_rq(entry);
429 
430 		if ((rq->cmd_flags & REQ_DISCARD) !=
431 		    (pos->cmd_flags & REQ_DISCARD))
432 			break;
433 		if (rq_data_dir(rq) != rq_data_dir(pos))
434 			break;
435 		if (pos->cmd_flags & stop_flags)
436 			break;
437 		if (blk_rq_pos(rq) >= boundary) {
438 			if (blk_rq_pos(pos) < boundary)
439 				continue;
440 		} else {
441 			if (blk_rq_pos(pos) >= boundary)
442 				break;
443 		}
444 		if (blk_rq_pos(rq) >= blk_rq_pos(pos))
445 			break;
446 	}
447 
448 	list_add(&rq->queuelist, entry);
449 }
450 EXPORT_SYMBOL(elv_dispatch_sort);
451 
452 /*
453  * Insert rq into dispatch queue of q.  Queue lock must be held on
454  * entry.  rq is added to the back of the dispatch queue. To be used by
455  * specific elevators.
456  */
457 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
458 {
459 	if (q->last_merge == rq)
460 		q->last_merge = NULL;
461 
462 	elv_rqhash_del(q, rq);
463 
464 	q->nr_sorted--;
465 
466 	q->end_sector = rq_end_sector(rq);
467 	q->boundary_rq = rq;
468 	list_add_tail(&rq->queuelist, &q->queue_head);
469 }
470 EXPORT_SYMBOL(elv_dispatch_add_tail);
471 
472 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
473 {
474 	struct elevator_queue *e = q->elevator;
475 	struct request *__rq;
476 	int ret;
477 
478 	/*
479 	 * Levels of merges:
480 	 * 	nomerges:  No merges at all attempted
481 	 * 	noxmerges: Only simple one-hit cache try
482 	 * 	merges:	   All merge tries attempted
483 	 */
484 	if (blk_queue_nomerges(q))
485 		return ELEVATOR_NO_MERGE;
486 
487 	/*
488 	 * First try one-hit cache.
489 	 */
490 	if (q->last_merge) {
491 		ret = elv_try_merge(q->last_merge, bio);
492 		if (ret != ELEVATOR_NO_MERGE) {
493 			*req = q->last_merge;
494 			return ret;
495 		}
496 	}
497 
498 	if (blk_queue_noxmerges(q))
499 		return ELEVATOR_NO_MERGE;
500 
501 	/*
502 	 * See if our hash lookup can find a potential backmerge.
503 	 */
504 	__rq = elv_rqhash_find(q, bio->bi_sector);
505 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
506 		*req = __rq;
507 		return ELEVATOR_BACK_MERGE;
508 	}
509 
510 	if (e->ops->elevator_merge_fn)
511 		return e->ops->elevator_merge_fn(q, req, bio);
512 
513 	return ELEVATOR_NO_MERGE;
514 }
515 
516 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
517 {
518 	struct elevator_queue *e = q->elevator;
519 
520 	if (e->ops->elevator_merged_fn)
521 		e->ops->elevator_merged_fn(q, rq, type);
522 
523 	if (type == ELEVATOR_BACK_MERGE)
524 		elv_rqhash_reposition(q, rq);
525 
526 	q->last_merge = rq;
527 }
528 
529 void elv_merge_requests(struct request_queue *q, struct request *rq,
530 			     struct request *next)
531 {
532 	struct elevator_queue *e = q->elevator;
533 
534 	if (e->ops->elevator_merge_req_fn)
535 		e->ops->elevator_merge_req_fn(q, rq, next);
536 
537 	elv_rqhash_reposition(q, rq);
538 	elv_rqhash_del(q, next);
539 
540 	q->nr_sorted--;
541 	q->last_merge = rq;
542 }
543 
544 void elv_bio_merged(struct request_queue *q, struct request *rq,
545 			struct bio *bio)
546 {
547 	struct elevator_queue *e = q->elevator;
548 
549 	if (e->ops->elevator_bio_merged_fn)
550 		e->ops->elevator_bio_merged_fn(q, rq, bio);
551 }
552 
553 void elv_requeue_request(struct request_queue *q, struct request *rq)
554 {
555 	/*
556 	 * it already went through dequeue, we need to decrement the
557 	 * in_flight count again
558 	 */
559 	if (blk_account_rq(rq)) {
560 		q->in_flight[rq_is_sync(rq)]--;
561 		if (rq->cmd_flags & REQ_SORTED)
562 			elv_deactivate_rq(q, rq);
563 	}
564 
565 	rq->cmd_flags &= ~REQ_STARTED;
566 
567 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
568 }
569 
570 void elv_drain_elevator(struct request_queue *q)
571 {
572 	static int printed;
573 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
574 		;
575 	if (q->nr_sorted == 0)
576 		return;
577 	if (printed++ < 10) {
578 		printk(KERN_ERR "%s: forced dispatching is broken "
579 		       "(nr_sorted=%u), please report this\n",
580 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
581 	}
582 }
583 
584 /*
585  * Call with queue lock held, interrupts disabled
586  */
587 void elv_quiesce_start(struct request_queue *q)
588 {
589 	if (!q->elevator)
590 		return;
591 
592 	queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
593 
594 	/*
595 	 * make sure we don't have any requests in flight
596 	 */
597 	elv_drain_elevator(q);
598 	while (q->rq.elvpriv) {
599 		__blk_run_queue(q);
600 		spin_unlock_irq(q->queue_lock);
601 		msleep(10);
602 		spin_lock_irq(q->queue_lock);
603 		elv_drain_elevator(q);
604 	}
605 }
606 
607 void elv_quiesce_end(struct request_queue *q)
608 {
609 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
610 }
611 
612 void elv_insert(struct request_queue *q, struct request *rq, int where)
613 {
614 	struct list_head *pos;
615 	unsigned ordseq;
616 	int unplug_it = 1;
617 
618 	trace_block_rq_insert(q, rq);
619 
620 	rq->q = q;
621 
622 	switch (where) {
623 	case ELEVATOR_INSERT_FRONT:
624 		rq->cmd_flags |= REQ_SOFTBARRIER;
625 
626 		list_add(&rq->queuelist, &q->queue_head);
627 		break;
628 
629 	case ELEVATOR_INSERT_BACK:
630 		rq->cmd_flags |= REQ_SOFTBARRIER;
631 		elv_drain_elevator(q);
632 		list_add_tail(&rq->queuelist, &q->queue_head);
633 		/*
634 		 * We kick the queue here for the following reasons.
635 		 * - The elevator might have returned NULL previously
636 		 *   to delay requests and returned them now.  As the
637 		 *   queue wasn't empty before this request, ll_rw_blk
638 		 *   won't run the queue on return, resulting in hang.
639 		 * - Usually, back inserted requests won't be merged
640 		 *   with anything.  There's no point in delaying queue
641 		 *   processing.
642 		 */
643 		__blk_run_queue(q);
644 		break;
645 
646 	case ELEVATOR_INSERT_SORT:
647 		BUG_ON(rq->cmd_type != REQ_TYPE_FS &&
648 		       !(rq->cmd_flags & REQ_DISCARD));
649 		rq->cmd_flags |= REQ_SORTED;
650 		q->nr_sorted++;
651 		if (rq_mergeable(rq)) {
652 			elv_rqhash_add(q, rq);
653 			if (!q->last_merge)
654 				q->last_merge = rq;
655 		}
656 
657 		/*
658 		 * Some ioscheds (cfq) run q->request_fn directly, so
659 		 * rq cannot be accessed after calling
660 		 * elevator_add_req_fn.
661 		 */
662 		q->elevator->ops->elevator_add_req_fn(q, rq);
663 		break;
664 
665 	case ELEVATOR_INSERT_REQUEUE:
666 		/*
667 		 * If ordered flush isn't in progress, we do front
668 		 * insertion; otherwise, requests should be requeued
669 		 * in ordseq order.
670 		 */
671 		rq->cmd_flags |= REQ_SOFTBARRIER;
672 
673 		/*
674 		 * Most requeues happen because of a busy condition,
675 		 * don't force unplug of the queue for that case.
676 		 */
677 		unplug_it = 0;
678 
679 		if (q->ordseq == 0) {
680 			list_add(&rq->queuelist, &q->queue_head);
681 			break;
682 		}
683 
684 		ordseq = blk_ordered_req_seq(rq);
685 
686 		list_for_each(pos, &q->queue_head) {
687 			struct request *pos_rq = list_entry_rq(pos);
688 			if (ordseq <= blk_ordered_req_seq(pos_rq))
689 				break;
690 		}
691 
692 		list_add_tail(&rq->queuelist, pos);
693 		break;
694 
695 	default:
696 		printk(KERN_ERR "%s: bad insertion point %d\n",
697 		       __func__, where);
698 		BUG();
699 	}
700 
701 	if (unplug_it && blk_queue_plugged(q)) {
702 		int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
703 				- queue_in_flight(q);
704 
705 		if (nrq >= q->unplug_thresh)
706 			__generic_unplug_device(q);
707 	}
708 }
709 
710 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
711 		       int plug)
712 {
713 	if (q->ordcolor)
714 		rq->cmd_flags |= REQ_ORDERED_COLOR;
715 
716 	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
717 		/*
718 		 * toggle ordered color
719 		 */
720 		if (rq->cmd_flags & REQ_HARDBARRIER)
721 			q->ordcolor ^= 1;
722 
723 		/*
724 		 * barriers implicitly indicate back insertion
725 		 */
726 		if (where == ELEVATOR_INSERT_SORT)
727 			where = ELEVATOR_INSERT_BACK;
728 
729 		/*
730 		 * this request is scheduling boundary, update
731 		 * end_sector
732 		 */
733 		if (rq->cmd_type == REQ_TYPE_FS ||
734 		    (rq->cmd_flags & REQ_DISCARD)) {
735 			q->end_sector = rq_end_sector(rq);
736 			q->boundary_rq = rq;
737 		}
738 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
739 		    where == ELEVATOR_INSERT_SORT)
740 		where = ELEVATOR_INSERT_BACK;
741 
742 	if (plug)
743 		blk_plug_device(q);
744 
745 	elv_insert(q, rq, where);
746 }
747 EXPORT_SYMBOL(__elv_add_request);
748 
749 void elv_add_request(struct request_queue *q, struct request *rq, int where,
750 		     int plug)
751 {
752 	unsigned long flags;
753 
754 	spin_lock_irqsave(q->queue_lock, flags);
755 	__elv_add_request(q, rq, where, plug);
756 	spin_unlock_irqrestore(q->queue_lock, flags);
757 }
758 EXPORT_SYMBOL(elv_add_request);
759 
760 int elv_queue_empty(struct request_queue *q)
761 {
762 	struct elevator_queue *e = q->elevator;
763 
764 	if (!list_empty(&q->queue_head))
765 		return 0;
766 
767 	if (e->ops->elevator_queue_empty_fn)
768 		return e->ops->elevator_queue_empty_fn(q);
769 
770 	return 1;
771 }
772 EXPORT_SYMBOL(elv_queue_empty);
773 
774 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
775 {
776 	struct elevator_queue *e = q->elevator;
777 
778 	if (e->ops->elevator_latter_req_fn)
779 		return e->ops->elevator_latter_req_fn(q, rq);
780 	return NULL;
781 }
782 
783 struct request *elv_former_request(struct request_queue *q, struct request *rq)
784 {
785 	struct elevator_queue *e = q->elevator;
786 
787 	if (e->ops->elevator_former_req_fn)
788 		return e->ops->elevator_former_req_fn(q, rq);
789 	return NULL;
790 }
791 
792 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
793 {
794 	struct elevator_queue *e = q->elevator;
795 
796 	if (e->ops->elevator_set_req_fn)
797 		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
798 
799 	rq->elevator_private = NULL;
800 	return 0;
801 }
802 
803 void elv_put_request(struct request_queue *q, struct request *rq)
804 {
805 	struct elevator_queue *e = q->elevator;
806 
807 	if (e->ops->elevator_put_req_fn)
808 		e->ops->elevator_put_req_fn(rq);
809 }
810 
811 int elv_may_queue(struct request_queue *q, int rw)
812 {
813 	struct elevator_queue *e = q->elevator;
814 
815 	if (e->ops->elevator_may_queue_fn)
816 		return e->ops->elevator_may_queue_fn(q, rw);
817 
818 	return ELV_MQUEUE_MAY;
819 }
820 
821 void elv_abort_queue(struct request_queue *q)
822 {
823 	struct request *rq;
824 
825 	while (!list_empty(&q->queue_head)) {
826 		rq = list_entry_rq(q->queue_head.next);
827 		rq->cmd_flags |= REQ_QUIET;
828 		trace_block_rq_abort(q, rq);
829 		/*
830 		 * Mark this request as started so we don't trigger
831 		 * any debug logic in the end I/O path.
832 		 */
833 		blk_start_request(rq);
834 		__blk_end_request_all(rq, -EIO);
835 	}
836 }
837 EXPORT_SYMBOL(elv_abort_queue);
838 
839 void elv_completed_request(struct request_queue *q, struct request *rq)
840 {
841 	struct elevator_queue *e = q->elevator;
842 
843 	/*
844 	 * request is released from the driver, io must be done
845 	 */
846 	if (blk_account_rq(rq)) {
847 		q->in_flight[rq_is_sync(rq)]--;
848 		if ((rq->cmd_flags & REQ_SORTED) &&
849 		    e->ops->elevator_completed_req_fn)
850 			e->ops->elevator_completed_req_fn(q, rq);
851 	}
852 
853 	/*
854 	 * Check if the queue is waiting for fs requests to be
855 	 * drained for flush sequence.
856 	 */
857 	if (unlikely(q->ordseq)) {
858 		struct request *next = NULL;
859 
860 		if (!list_empty(&q->queue_head))
861 			next = list_entry_rq(q->queue_head.next);
862 
863 		if (!queue_in_flight(q) &&
864 		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
865 		    (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
866 			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
867 			__blk_run_queue(q);
868 		}
869 	}
870 }
871 
872 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
873 
874 static ssize_t
875 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
876 {
877 	struct elv_fs_entry *entry = to_elv(attr);
878 	struct elevator_queue *e;
879 	ssize_t error;
880 
881 	if (!entry->show)
882 		return -EIO;
883 
884 	e = container_of(kobj, struct elevator_queue, kobj);
885 	mutex_lock(&e->sysfs_lock);
886 	error = e->ops ? entry->show(e, page) : -ENOENT;
887 	mutex_unlock(&e->sysfs_lock);
888 	return error;
889 }
890 
891 static ssize_t
892 elv_attr_store(struct kobject *kobj, struct attribute *attr,
893 	       const char *page, size_t length)
894 {
895 	struct elv_fs_entry *entry = to_elv(attr);
896 	struct elevator_queue *e;
897 	ssize_t error;
898 
899 	if (!entry->store)
900 		return -EIO;
901 
902 	e = container_of(kobj, struct elevator_queue, kobj);
903 	mutex_lock(&e->sysfs_lock);
904 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
905 	mutex_unlock(&e->sysfs_lock);
906 	return error;
907 }
908 
909 static const struct sysfs_ops elv_sysfs_ops = {
910 	.show	= elv_attr_show,
911 	.store	= elv_attr_store,
912 };
913 
914 static struct kobj_type elv_ktype = {
915 	.sysfs_ops	= &elv_sysfs_ops,
916 	.release	= elevator_release,
917 };
918 
919 int elv_register_queue(struct request_queue *q)
920 {
921 	struct elevator_queue *e = q->elevator;
922 	int error;
923 
924 	error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
925 	if (!error) {
926 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
927 		if (attr) {
928 			while (attr->attr.name) {
929 				if (sysfs_create_file(&e->kobj, &attr->attr))
930 					break;
931 				attr++;
932 			}
933 		}
934 		kobject_uevent(&e->kobj, KOBJ_ADD);
935 	}
936 	return error;
937 }
938 EXPORT_SYMBOL(elv_register_queue);
939 
940 static void __elv_unregister_queue(struct elevator_queue *e)
941 {
942 	kobject_uevent(&e->kobj, KOBJ_REMOVE);
943 	kobject_del(&e->kobj);
944 }
945 
946 void elv_unregister_queue(struct request_queue *q)
947 {
948 	if (q)
949 		__elv_unregister_queue(q->elevator);
950 }
951 EXPORT_SYMBOL(elv_unregister_queue);
952 
953 void elv_register(struct elevator_type *e)
954 {
955 	char *def = "";
956 
957 	spin_lock(&elv_list_lock);
958 	BUG_ON(elevator_find(e->elevator_name));
959 	list_add_tail(&e->list, &elv_list);
960 	spin_unlock(&elv_list_lock);
961 
962 	if (!strcmp(e->elevator_name, chosen_elevator) ||
963 			(!*chosen_elevator &&
964 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
965 				def = " (default)";
966 
967 	printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
968 								def);
969 }
970 EXPORT_SYMBOL_GPL(elv_register);
971 
972 void elv_unregister(struct elevator_type *e)
973 {
974 	struct task_struct *g, *p;
975 
976 	/*
977 	 * Iterate every thread in the process to remove the io contexts.
978 	 */
979 	if (e->ops.trim) {
980 		read_lock(&tasklist_lock);
981 		do_each_thread(g, p) {
982 			task_lock(p);
983 			if (p->io_context)
984 				e->ops.trim(p->io_context);
985 			task_unlock(p);
986 		} while_each_thread(g, p);
987 		read_unlock(&tasklist_lock);
988 	}
989 
990 	spin_lock(&elv_list_lock);
991 	list_del_init(&e->list);
992 	spin_unlock(&elv_list_lock);
993 }
994 EXPORT_SYMBOL_GPL(elv_unregister);
995 
996 /*
997  * switch to new_e io scheduler. be careful not to introduce deadlocks -
998  * we don't free the old io scheduler, before we have allocated what we
999  * need for the new one. this way we have a chance of going back to the old
1000  * one, if the new one fails init for some reason.
1001  */
1002 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1003 {
1004 	struct elevator_queue *old_elevator, *e;
1005 	void *data;
1006 
1007 	/*
1008 	 * Allocate new elevator
1009 	 */
1010 	e = elevator_alloc(q, new_e);
1011 	if (!e)
1012 		return 0;
1013 
1014 	data = elevator_init_queue(q, e);
1015 	if (!data) {
1016 		kobject_put(&e->kobj);
1017 		return 0;
1018 	}
1019 
1020 	/*
1021 	 * Turn on BYPASS and drain all requests w/ elevator private data
1022 	 */
1023 	spin_lock_irq(q->queue_lock);
1024 	elv_quiesce_start(q);
1025 
1026 	/*
1027 	 * Remember old elevator.
1028 	 */
1029 	old_elevator = q->elevator;
1030 
1031 	/*
1032 	 * attach and start new elevator
1033 	 */
1034 	elevator_attach(q, e, data);
1035 
1036 	spin_unlock_irq(q->queue_lock);
1037 
1038 	__elv_unregister_queue(old_elevator);
1039 
1040 	if (elv_register_queue(q))
1041 		goto fail_register;
1042 
1043 	/*
1044 	 * finally exit old elevator and turn off BYPASS.
1045 	 */
1046 	elevator_exit(old_elevator);
1047 	spin_lock_irq(q->queue_lock);
1048 	elv_quiesce_end(q);
1049 	spin_unlock_irq(q->queue_lock);
1050 
1051 	blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1052 
1053 	return 1;
1054 
1055 fail_register:
1056 	/*
1057 	 * switch failed, exit the new io scheduler and reattach the old
1058 	 * one again (along with re-adding the sysfs dir)
1059 	 */
1060 	elevator_exit(e);
1061 	q->elevator = old_elevator;
1062 	elv_register_queue(q);
1063 
1064 	spin_lock_irq(q->queue_lock);
1065 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1066 	spin_unlock_irq(q->queue_lock);
1067 
1068 	return 0;
1069 }
1070 
1071 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1072 			  size_t count)
1073 {
1074 	char elevator_name[ELV_NAME_MAX];
1075 	struct elevator_type *e;
1076 
1077 	if (!q->elevator)
1078 		return count;
1079 
1080 	strlcpy(elevator_name, name, sizeof(elevator_name));
1081 	e = elevator_get(strstrip(elevator_name));
1082 	if (!e) {
1083 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1084 		return -EINVAL;
1085 	}
1086 
1087 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1088 		elevator_put(e);
1089 		return count;
1090 	}
1091 
1092 	if (!elevator_switch(q, e))
1093 		printk(KERN_ERR "elevator: switch to %s failed\n",
1094 							elevator_name);
1095 	return count;
1096 }
1097 
1098 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1099 {
1100 	struct elevator_queue *e = q->elevator;
1101 	struct elevator_type *elv;
1102 	struct elevator_type *__e;
1103 	int len = 0;
1104 
1105 	if (!q->elevator || !blk_queue_stackable(q))
1106 		return sprintf(name, "none\n");
1107 
1108 	elv = e->elevator_type;
1109 
1110 	spin_lock(&elv_list_lock);
1111 	list_for_each_entry(__e, &elv_list, list) {
1112 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1113 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1114 		else
1115 			len += sprintf(name+len, "%s ", __e->elevator_name);
1116 	}
1117 	spin_unlock(&elv_list_lock);
1118 
1119 	len += sprintf(len+name, "\n");
1120 	return len;
1121 }
1122 
1123 struct request *elv_rb_former_request(struct request_queue *q,
1124 				      struct request *rq)
1125 {
1126 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1127 
1128 	if (rbprev)
1129 		return rb_entry_rq(rbprev);
1130 
1131 	return NULL;
1132 }
1133 EXPORT_SYMBOL(elv_rb_former_request);
1134 
1135 struct request *elv_rb_latter_request(struct request_queue *q,
1136 				      struct request *rq)
1137 {
1138 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1139 
1140 	if (rbnext)
1141 		return rb_entry_rq(rbnext);
1142 
1143 	return NULL;
1144 }
1145 EXPORT_SYMBOL(elv_rb_latter_request);
1146