1 /* 2 * Block device elevator/IO-scheduler. 3 * 4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * 6 * 30042000 Jens Axboe <axboe@kernel.dk> : 7 * 8 * Split the elevator a bit so that it is possible to choose a different 9 * one or even write a new "plug in". There are three pieces: 10 * - elevator_fn, inserts a new request in the queue list 11 * - elevator_merge_fn, decides whether a new buffer can be merged with 12 * an existing request 13 * - elevator_dequeue_fn, called when a request is taken off the active list 14 * 15 * 20082000 Dave Jones <davej@suse.de> : 16 * Removed tests for max-bomb-segments, which was breaking elvtune 17 * when run without -bN 18 * 19 * Jens: 20 * - Rework again to work with bio instead of buffer_heads 21 * - loose bi_dev comparisons, partition handling is right now 22 * - completely modularize elevator setup and teardown 23 * 24 */ 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/blkdev.h> 28 #include <linux/elevator.h> 29 #include <linux/bio.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/compiler.h> 34 #include <linux/delay.h> 35 #include <linux/blktrace_api.h> 36 #include <linux/hash.h> 37 #include <linux/uaccess.h> 38 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 43 static DEFINE_SPINLOCK(elv_list_lock); 44 static LIST_HEAD(elv_list); 45 46 /* 47 * Merge hash stuff. 48 */ 49 static const int elv_hash_shift = 6; 50 #define ELV_HASH_BLOCK(sec) ((sec) >> 3) 51 #define ELV_HASH_FN(sec) \ 52 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift)) 53 #define ELV_HASH_ENTRIES (1 << elv_hash_shift) 54 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq)) 55 56 /* 57 * Query io scheduler to see if the current process issuing bio may be 58 * merged with rq. 59 */ 60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio) 61 { 62 struct request_queue *q = rq->q; 63 struct elevator_queue *e = q->elevator; 64 65 if (e->ops->elevator_allow_merge_fn) 66 return e->ops->elevator_allow_merge_fn(q, rq, bio); 67 68 return 1; 69 } 70 71 /* 72 * can we safely merge with this request? 73 */ 74 int elv_rq_merge_ok(struct request *rq, struct bio *bio) 75 { 76 if (!rq_mergeable(rq)) 77 return 0; 78 79 /* 80 * Don't merge file system requests and discard requests 81 */ 82 if ((bio->bi_rw & REQ_DISCARD) != (rq->bio->bi_rw & REQ_DISCARD)) 83 return 0; 84 85 /* 86 * different data direction or already started, don't merge 87 */ 88 if (bio_data_dir(bio) != rq_data_dir(rq)) 89 return 0; 90 91 /* 92 * must be same device and not a special request 93 */ 94 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special) 95 return 0; 96 97 /* 98 * only merge integrity protected bio into ditto rq 99 */ 100 if (bio_integrity(bio) != blk_integrity_rq(rq)) 101 return 0; 102 103 if (!elv_iosched_allow_merge(rq, bio)) 104 return 0; 105 106 return 1; 107 } 108 EXPORT_SYMBOL(elv_rq_merge_ok); 109 110 static inline int elv_try_merge(struct request *__rq, struct bio *bio) 111 { 112 int ret = ELEVATOR_NO_MERGE; 113 114 /* 115 * we can merge and sequence is ok, check if it's possible 116 */ 117 if (elv_rq_merge_ok(__rq, bio)) { 118 if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector) 119 ret = ELEVATOR_BACK_MERGE; 120 else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector) 121 ret = ELEVATOR_FRONT_MERGE; 122 } 123 124 return ret; 125 } 126 127 static struct elevator_type *elevator_find(const char *name) 128 { 129 struct elevator_type *e; 130 131 list_for_each_entry(e, &elv_list, list) { 132 if (!strcmp(e->elevator_name, name)) 133 return e; 134 } 135 136 return NULL; 137 } 138 139 static void elevator_put(struct elevator_type *e) 140 { 141 module_put(e->elevator_owner); 142 } 143 144 static struct elevator_type *elevator_get(const char *name) 145 { 146 struct elevator_type *e; 147 148 spin_lock(&elv_list_lock); 149 150 e = elevator_find(name); 151 if (!e) { 152 char elv[ELV_NAME_MAX + strlen("-iosched")]; 153 154 spin_unlock(&elv_list_lock); 155 156 snprintf(elv, sizeof(elv), "%s-iosched", name); 157 158 request_module("%s", elv); 159 spin_lock(&elv_list_lock); 160 e = elevator_find(name); 161 } 162 163 if (e && !try_module_get(e->elevator_owner)) 164 e = NULL; 165 166 spin_unlock(&elv_list_lock); 167 168 return e; 169 } 170 171 static void *elevator_init_queue(struct request_queue *q, 172 struct elevator_queue *eq) 173 { 174 return eq->ops->elevator_init_fn(q); 175 } 176 177 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq, 178 void *data) 179 { 180 q->elevator = eq; 181 eq->elevator_data = data; 182 } 183 184 static char chosen_elevator[16]; 185 186 static int __init elevator_setup(char *str) 187 { 188 /* 189 * Be backwards-compatible with previous kernels, so users 190 * won't get the wrong elevator. 191 */ 192 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 193 return 1; 194 } 195 196 __setup("elevator=", elevator_setup); 197 198 static struct kobj_type elv_ktype; 199 200 static struct elevator_queue *elevator_alloc(struct request_queue *q, 201 struct elevator_type *e) 202 { 203 struct elevator_queue *eq; 204 int i; 205 206 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node); 207 if (unlikely(!eq)) 208 goto err; 209 210 eq->ops = &e->ops; 211 eq->elevator_type = e; 212 kobject_init(&eq->kobj, &elv_ktype); 213 mutex_init(&eq->sysfs_lock); 214 215 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, 216 GFP_KERNEL, q->node); 217 if (!eq->hash) 218 goto err; 219 220 for (i = 0; i < ELV_HASH_ENTRIES; i++) 221 INIT_HLIST_HEAD(&eq->hash[i]); 222 223 return eq; 224 err: 225 kfree(eq); 226 elevator_put(e); 227 return NULL; 228 } 229 230 static void elevator_release(struct kobject *kobj) 231 { 232 struct elevator_queue *e; 233 234 e = container_of(kobj, struct elevator_queue, kobj); 235 elevator_put(e->elevator_type); 236 kfree(e->hash); 237 kfree(e); 238 } 239 240 int elevator_init(struct request_queue *q, char *name) 241 { 242 struct elevator_type *e = NULL; 243 struct elevator_queue *eq; 244 void *data; 245 246 if (unlikely(q->elevator)) 247 return 0; 248 249 INIT_LIST_HEAD(&q->queue_head); 250 q->last_merge = NULL; 251 q->end_sector = 0; 252 q->boundary_rq = NULL; 253 254 if (name) { 255 e = elevator_get(name); 256 if (!e) 257 return -EINVAL; 258 } 259 260 if (!e && *chosen_elevator) { 261 e = elevator_get(chosen_elevator); 262 if (!e) 263 printk(KERN_ERR "I/O scheduler %s not found\n", 264 chosen_elevator); 265 } 266 267 if (!e) { 268 e = elevator_get(CONFIG_DEFAULT_IOSCHED); 269 if (!e) { 270 printk(KERN_ERR 271 "Default I/O scheduler not found. " \ 272 "Using noop.\n"); 273 e = elevator_get("noop"); 274 } 275 } 276 277 eq = elevator_alloc(q, e); 278 if (!eq) 279 return -ENOMEM; 280 281 data = elevator_init_queue(q, eq); 282 if (!data) { 283 kobject_put(&eq->kobj); 284 return -ENOMEM; 285 } 286 287 elevator_attach(q, eq, data); 288 return 0; 289 } 290 EXPORT_SYMBOL(elevator_init); 291 292 void elevator_exit(struct elevator_queue *e) 293 { 294 mutex_lock(&e->sysfs_lock); 295 if (e->ops->elevator_exit_fn) 296 e->ops->elevator_exit_fn(e); 297 e->ops = NULL; 298 mutex_unlock(&e->sysfs_lock); 299 300 kobject_put(&e->kobj); 301 } 302 EXPORT_SYMBOL(elevator_exit); 303 304 static inline void __elv_rqhash_del(struct request *rq) 305 { 306 hlist_del_init(&rq->hash); 307 } 308 309 static void elv_rqhash_del(struct request_queue *q, struct request *rq) 310 { 311 if (ELV_ON_HASH(rq)) 312 __elv_rqhash_del(rq); 313 } 314 315 static void elv_rqhash_add(struct request_queue *q, struct request *rq) 316 { 317 struct elevator_queue *e = q->elevator; 318 319 BUG_ON(ELV_ON_HASH(rq)); 320 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]); 321 } 322 323 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq) 324 { 325 __elv_rqhash_del(rq); 326 elv_rqhash_add(q, rq); 327 } 328 329 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) 330 { 331 struct elevator_queue *e = q->elevator; 332 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)]; 333 struct hlist_node *entry, *next; 334 struct request *rq; 335 336 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) { 337 BUG_ON(!ELV_ON_HASH(rq)); 338 339 if (unlikely(!rq_mergeable(rq))) { 340 __elv_rqhash_del(rq); 341 continue; 342 } 343 344 if (rq_hash_key(rq) == offset) 345 return rq; 346 } 347 348 return NULL; 349 } 350 351 /* 352 * RB-tree support functions for inserting/lookup/removal of requests 353 * in a sorted RB tree. 354 */ 355 struct request *elv_rb_add(struct rb_root *root, struct request *rq) 356 { 357 struct rb_node **p = &root->rb_node; 358 struct rb_node *parent = NULL; 359 struct request *__rq; 360 361 while (*p) { 362 parent = *p; 363 __rq = rb_entry(parent, struct request, rb_node); 364 365 if (blk_rq_pos(rq) < blk_rq_pos(__rq)) 366 p = &(*p)->rb_left; 367 else if (blk_rq_pos(rq) > blk_rq_pos(__rq)) 368 p = &(*p)->rb_right; 369 else 370 return __rq; 371 } 372 373 rb_link_node(&rq->rb_node, parent, p); 374 rb_insert_color(&rq->rb_node, root); 375 return NULL; 376 } 377 EXPORT_SYMBOL(elv_rb_add); 378 379 void elv_rb_del(struct rb_root *root, struct request *rq) 380 { 381 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 382 rb_erase(&rq->rb_node, root); 383 RB_CLEAR_NODE(&rq->rb_node); 384 } 385 EXPORT_SYMBOL(elv_rb_del); 386 387 struct request *elv_rb_find(struct rb_root *root, sector_t sector) 388 { 389 struct rb_node *n = root->rb_node; 390 struct request *rq; 391 392 while (n) { 393 rq = rb_entry(n, struct request, rb_node); 394 395 if (sector < blk_rq_pos(rq)) 396 n = n->rb_left; 397 else if (sector > blk_rq_pos(rq)) 398 n = n->rb_right; 399 else 400 return rq; 401 } 402 403 return NULL; 404 } 405 EXPORT_SYMBOL(elv_rb_find); 406 407 /* 408 * Insert rq into dispatch queue of q. Queue lock must be held on 409 * entry. rq is sort instead into the dispatch queue. To be used by 410 * specific elevators. 411 */ 412 void elv_dispatch_sort(struct request_queue *q, struct request *rq) 413 { 414 sector_t boundary; 415 struct list_head *entry; 416 int stop_flags; 417 418 if (q->last_merge == rq) 419 q->last_merge = NULL; 420 421 elv_rqhash_del(q, rq); 422 423 q->nr_sorted--; 424 425 boundary = q->end_sector; 426 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED; 427 list_for_each_prev(entry, &q->queue_head) { 428 struct request *pos = list_entry_rq(entry); 429 430 if ((rq->cmd_flags & REQ_DISCARD) != 431 (pos->cmd_flags & REQ_DISCARD)) 432 break; 433 if (rq_data_dir(rq) != rq_data_dir(pos)) 434 break; 435 if (pos->cmd_flags & stop_flags) 436 break; 437 if (blk_rq_pos(rq) >= boundary) { 438 if (blk_rq_pos(pos) < boundary) 439 continue; 440 } else { 441 if (blk_rq_pos(pos) >= boundary) 442 break; 443 } 444 if (blk_rq_pos(rq) >= blk_rq_pos(pos)) 445 break; 446 } 447 448 list_add(&rq->queuelist, entry); 449 } 450 EXPORT_SYMBOL(elv_dispatch_sort); 451 452 /* 453 * Insert rq into dispatch queue of q. Queue lock must be held on 454 * entry. rq is added to the back of the dispatch queue. To be used by 455 * specific elevators. 456 */ 457 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq) 458 { 459 if (q->last_merge == rq) 460 q->last_merge = NULL; 461 462 elv_rqhash_del(q, rq); 463 464 q->nr_sorted--; 465 466 q->end_sector = rq_end_sector(rq); 467 q->boundary_rq = rq; 468 list_add_tail(&rq->queuelist, &q->queue_head); 469 } 470 EXPORT_SYMBOL(elv_dispatch_add_tail); 471 472 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio) 473 { 474 struct elevator_queue *e = q->elevator; 475 struct request *__rq; 476 int ret; 477 478 /* 479 * Levels of merges: 480 * nomerges: No merges at all attempted 481 * noxmerges: Only simple one-hit cache try 482 * merges: All merge tries attempted 483 */ 484 if (blk_queue_nomerges(q)) 485 return ELEVATOR_NO_MERGE; 486 487 /* 488 * First try one-hit cache. 489 */ 490 if (q->last_merge) { 491 ret = elv_try_merge(q->last_merge, bio); 492 if (ret != ELEVATOR_NO_MERGE) { 493 *req = q->last_merge; 494 return ret; 495 } 496 } 497 498 if (blk_queue_noxmerges(q)) 499 return ELEVATOR_NO_MERGE; 500 501 /* 502 * See if our hash lookup can find a potential backmerge. 503 */ 504 __rq = elv_rqhash_find(q, bio->bi_sector); 505 if (__rq && elv_rq_merge_ok(__rq, bio)) { 506 *req = __rq; 507 return ELEVATOR_BACK_MERGE; 508 } 509 510 if (e->ops->elevator_merge_fn) 511 return e->ops->elevator_merge_fn(q, req, bio); 512 513 return ELEVATOR_NO_MERGE; 514 } 515 516 void elv_merged_request(struct request_queue *q, struct request *rq, int type) 517 { 518 struct elevator_queue *e = q->elevator; 519 520 if (e->ops->elevator_merged_fn) 521 e->ops->elevator_merged_fn(q, rq, type); 522 523 if (type == ELEVATOR_BACK_MERGE) 524 elv_rqhash_reposition(q, rq); 525 526 q->last_merge = rq; 527 } 528 529 void elv_merge_requests(struct request_queue *q, struct request *rq, 530 struct request *next) 531 { 532 struct elevator_queue *e = q->elevator; 533 534 if (e->ops->elevator_merge_req_fn) 535 e->ops->elevator_merge_req_fn(q, rq, next); 536 537 elv_rqhash_reposition(q, rq); 538 elv_rqhash_del(q, next); 539 540 q->nr_sorted--; 541 q->last_merge = rq; 542 } 543 544 void elv_bio_merged(struct request_queue *q, struct request *rq, 545 struct bio *bio) 546 { 547 struct elevator_queue *e = q->elevator; 548 549 if (e->ops->elevator_bio_merged_fn) 550 e->ops->elevator_bio_merged_fn(q, rq, bio); 551 } 552 553 void elv_requeue_request(struct request_queue *q, struct request *rq) 554 { 555 /* 556 * it already went through dequeue, we need to decrement the 557 * in_flight count again 558 */ 559 if (blk_account_rq(rq)) { 560 q->in_flight[rq_is_sync(rq)]--; 561 if (rq->cmd_flags & REQ_SORTED) 562 elv_deactivate_rq(q, rq); 563 } 564 565 rq->cmd_flags &= ~REQ_STARTED; 566 567 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE); 568 } 569 570 void elv_drain_elevator(struct request_queue *q) 571 { 572 static int printed; 573 while (q->elevator->ops->elevator_dispatch_fn(q, 1)) 574 ; 575 if (q->nr_sorted == 0) 576 return; 577 if (printed++ < 10) { 578 printk(KERN_ERR "%s: forced dispatching is broken " 579 "(nr_sorted=%u), please report this\n", 580 q->elevator->elevator_type->elevator_name, q->nr_sorted); 581 } 582 } 583 584 /* 585 * Call with queue lock held, interrupts disabled 586 */ 587 void elv_quiesce_start(struct request_queue *q) 588 { 589 if (!q->elevator) 590 return; 591 592 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q); 593 594 /* 595 * make sure we don't have any requests in flight 596 */ 597 elv_drain_elevator(q); 598 while (q->rq.elvpriv) { 599 __blk_run_queue(q); 600 spin_unlock_irq(q->queue_lock); 601 msleep(10); 602 spin_lock_irq(q->queue_lock); 603 elv_drain_elevator(q); 604 } 605 } 606 607 void elv_quiesce_end(struct request_queue *q) 608 { 609 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 610 } 611 612 void elv_insert(struct request_queue *q, struct request *rq, int where) 613 { 614 struct list_head *pos; 615 unsigned ordseq; 616 int unplug_it = 1; 617 618 trace_block_rq_insert(q, rq); 619 620 rq->q = q; 621 622 switch (where) { 623 case ELEVATOR_INSERT_FRONT: 624 rq->cmd_flags |= REQ_SOFTBARRIER; 625 626 list_add(&rq->queuelist, &q->queue_head); 627 break; 628 629 case ELEVATOR_INSERT_BACK: 630 rq->cmd_flags |= REQ_SOFTBARRIER; 631 elv_drain_elevator(q); 632 list_add_tail(&rq->queuelist, &q->queue_head); 633 /* 634 * We kick the queue here for the following reasons. 635 * - The elevator might have returned NULL previously 636 * to delay requests and returned them now. As the 637 * queue wasn't empty before this request, ll_rw_blk 638 * won't run the queue on return, resulting in hang. 639 * - Usually, back inserted requests won't be merged 640 * with anything. There's no point in delaying queue 641 * processing. 642 */ 643 __blk_run_queue(q); 644 break; 645 646 case ELEVATOR_INSERT_SORT: 647 BUG_ON(rq->cmd_type != REQ_TYPE_FS && 648 !(rq->cmd_flags & REQ_DISCARD)); 649 rq->cmd_flags |= REQ_SORTED; 650 q->nr_sorted++; 651 if (rq_mergeable(rq)) { 652 elv_rqhash_add(q, rq); 653 if (!q->last_merge) 654 q->last_merge = rq; 655 } 656 657 /* 658 * Some ioscheds (cfq) run q->request_fn directly, so 659 * rq cannot be accessed after calling 660 * elevator_add_req_fn. 661 */ 662 q->elevator->ops->elevator_add_req_fn(q, rq); 663 break; 664 665 case ELEVATOR_INSERT_REQUEUE: 666 /* 667 * If ordered flush isn't in progress, we do front 668 * insertion; otherwise, requests should be requeued 669 * in ordseq order. 670 */ 671 rq->cmd_flags |= REQ_SOFTBARRIER; 672 673 /* 674 * Most requeues happen because of a busy condition, 675 * don't force unplug of the queue for that case. 676 */ 677 unplug_it = 0; 678 679 if (q->ordseq == 0) { 680 list_add(&rq->queuelist, &q->queue_head); 681 break; 682 } 683 684 ordseq = blk_ordered_req_seq(rq); 685 686 list_for_each(pos, &q->queue_head) { 687 struct request *pos_rq = list_entry_rq(pos); 688 if (ordseq <= blk_ordered_req_seq(pos_rq)) 689 break; 690 } 691 692 list_add_tail(&rq->queuelist, pos); 693 break; 694 695 default: 696 printk(KERN_ERR "%s: bad insertion point %d\n", 697 __func__, where); 698 BUG(); 699 } 700 701 if (unplug_it && blk_queue_plugged(q)) { 702 int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC] 703 - queue_in_flight(q); 704 705 if (nrq >= q->unplug_thresh) 706 __generic_unplug_device(q); 707 } 708 } 709 710 void __elv_add_request(struct request_queue *q, struct request *rq, int where, 711 int plug) 712 { 713 if (q->ordcolor) 714 rq->cmd_flags |= REQ_ORDERED_COLOR; 715 716 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) { 717 /* 718 * toggle ordered color 719 */ 720 if (rq->cmd_flags & REQ_HARDBARRIER) 721 q->ordcolor ^= 1; 722 723 /* 724 * barriers implicitly indicate back insertion 725 */ 726 if (where == ELEVATOR_INSERT_SORT) 727 where = ELEVATOR_INSERT_BACK; 728 729 /* 730 * this request is scheduling boundary, update 731 * end_sector 732 */ 733 if (rq->cmd_type == REQ_TYPE_FS || 734 (rq->cmd_flags & REQ_DISCARD)) { 735 q->end_sector = rq_end_sector(rq); 736 q->boundary_rq = rq; 737 } 738 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && 739 where == ELEVATOR_INSERT_SORT) 740 where = ELEVATOR_INSERT_BACK; 741 742 if (plug) 743 blk_plug_device(q); 744 745 elv_insert(q, rq, where); 746 } 747 EXPORT_SYMBOL(__elv_add_request); 748 749 void elv_add_request(struct request_queue *q, struct request *rq, int where, 750 int plug) 751 { 752 unsigned long flags; 753 754 spin_lock_irqsave(q->queue_lock, flags); 755 __elv_add_request(q, rq, where, plug); 756 spin_unlock_irqrestore(q->queue_lock, flags); 757 } 758 EXPORT_SYMBOL(elv_add_request); 759 760 int elv_queue_empty(struct request_queue *q) 761 { 762 struct elevator_queue *e = q->elevator; 763 764 if (!list_empty(&q->queue_head)) 765 return 0; 766 767 if (e->ops->elevator_queue_empty_fn) 768 return e->ops->elevator_queue_empty_fn(q); 769 770 return 1; 771 } 772 EXPORT_SYMBOL(elv_queue_empty); 773 774 struct request *elv_latter_request(struct request_queue *q, struct request *rq) 775 { 776 struct elevator_queue *e = q->elevator; 777 778 if (e->ops->elevator_latter_req_fn) 779 return e->ops->elevator_latter_req_fn(q, rq); 780 return NULL; 781 } 782 783 struct request *elv_former_request(struct request_queue *q, struct request *rq) 784 { 785 struct elevator_queue *e = q->elevator; 786 787 if (e->ops->elevator_former_req_fn) 788 return e->ops->elevator_former_req_fn(q, rq); 789 return NULL; 790 } 791 792 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask) 793 { 794 struct elevator_queue *e = q->elevator; 795 796 if (e->ops->elevator_set_req_fn) 797 return e->ops->elevator_set_req_fn(q, rq, gfp_mask); 798 799 rq->elevator_private = NULL; 800 return 0; 801 } 802 803 void elv_put_request(struct request_queue *q, struct request *rq) 804 { 805 struct elevator_queue *e = q->elevator; 806 807 if (e->ops->elevator_put_req_fn) 808 e->ops->elevator_put_req_fn(rq); 809 } 810 811 int elv_may_queue(struct request_queue *q, int rw) 812 { 813 struct elevator_queue *e = q->elevator; 814 815 if (e->ops->elevator_may_queue_fn) 816 return e->ops->elevator_may_queue_fn(q, rw); 817 818 return ELV_MQUEUE_MAY; 819 } 820 821 void elv_abort_queue(struct request_queue *q) 822 { 823 struct request *rq; 824 825 while (!list_empty(&q->queue_head)) { 826 rq = list_entry_rq(q->queue_head.next); 827 rq->cmd_flags |= REQ_QUIET; 828 trace_block_rq_abort(q, rq); 829 /* 830 * Mark this request as started so we don't trigger 831 * any debug logic in the end I/O path. 832 */ 833 blk_start_request(rq); 834 __blk_end_request_all(rq, -EIO); 835 } 836 } 837 EXPORT_SYMBOL(elv_abort_queue); 838 839 void elv_completed_request(struct request_queue *q, struct request *rq) 840 { 841 struct elevator_queue *e = q->elevator; 842 843 /* 844 * request is released from the driver, io must be done 845 */ 846 if (blk_account_rq(rq)) { 847 q->in_flight[rq_is_sync(rq)]--; 848 if ((rq->cmd_flags & REQ_SORTED) && 849 e->ops->elevator_completed_req_fn) 850 e->ops->elevator_completed_req_fn(q, rq); 851 } 852 853 /* 854 * Check if the queue is waiting for fs requests to be 855 * drained for flush sequence. 856 */ 857 if (unlikely(q->ordseq)) { 858 struct request *next = NULL; 859 860 if (!list_empty(&q->queue_head)) 861 next = list_entry_rq(q->queue_head.next); 862 863 if (!queue_in_flight(q) && 864 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN && 865 (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) { 866 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0); 867 __blk_run_queue(q); 868 } 869 } 870 } 871 872 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) 873 874 static ssize_t 875 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 876 { 877 struct elv_fs_entry *entry = to_elv(attr); 878 struct elevator_queue *e; 879 ssize_t error; 880 881 if (!entry->show) 882 return -EIO; 883 884 e = container_of(kobj, struct elevator_queue, kobj); 885 mutex_lock(&e->sysfs_lock); 886 error = e->ops ? entry->show(e, page) : -ENOENT; 887 mutex_unlock(&e->sysfs_lock); 888 return error; 889 } 890 891 static ssize_t 892 elv_attr_store(struct kobject *kobj, struct attribute *attr, 893 const char *page, size_t length) 894 { 895 struct elv_fs_entry *entry = to_elv(attr); 896 struct elevator_queue *e; 897 ssize_t error; 898 899 if (!entry->store) 900 return -EIO; 901 902 e = container_of(kobj, struct elevator_queue, kobj); 903 mutex_lock(&e->sysfs_lock); 904 error = e->ops ? entry->store(e, page, length) : -ENOENT; 905 mutex_unlock(&e->sysfs_lock); 906 return error; 907 } 908 909 static const struct sysfs_ops elv_sysfs_ops = { 910 .show = elv_attr_show, 911 .store = elv_attr_store, 912 }; 913 914 static struct kobj_type elv_ktype = { 915 .sysfs_ops = &elv_sysfs_ops, 916 .release = elevator_release, 917 }; 918 919 int elv_register_queue(struct request_queue *q) 920 { 921 struct elevator_queue *e = q->elevator; 922 int error; 923 924 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched"); 925 if (!error) { 926 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs; 927 if (attr) { 928 while (attr->attr.name) { 929 if (sysfs_create_file(&e->kobj, &attr->attr)) 930 break; 931 attr++; 932 } 933 } 934 kobject_uevent(&e->kobj, KOBJ_ADD); 935 } 936 return error; 937 } 938 EXPORT_SYMBOL(elv_register_queue); 939 940 static void __elv_unregister_queue(struct elevator_queue *e) 941 { 942 kobject_uevent(&e->kobj, KOBJ_REMOVE); 943 kobject_del(&e->kobj); 944 } 945 946 void elv_unregister_queue(struct request_queue *q) 947 { 948 if (q) 949 __elv_unregister_queue(q->elevator); 950 } 951 EXPORT_SYMBOL(elv_unregister_queue); 952 953 void elv_register(struct elevator_type *e) 954 { 955 char *def = ""; 956 957 spin_lock(&elv_list_lock); 958 BUG_ON(elevator_find(e->elevator_name)); 959 list_add_tail(&e->list, &elv_list); 960 spin_unlock(&elv_list_lock); 961 962 if (!strcmp(e->elevator_name, chosen_elevator) || 963 (!*chosen_elevator && 964 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED))) 965 def = " (default)"; 966 967 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, 968 def); 969 } 970 EXPORT_SYMBOL_GPL(elv_register); 971 972 void elv_unregister(struct elevator_type *e) 973 { 974 struct task_struct *g, *p; 975 976 /* 977 * Iterate every thread in the process to remove the io contexts. 978 */ 979 if (e->ops.trim) { 980 read_lock(&tasklist_lock); 981 do_each_thread(g, p) { 982 task_lock(p); 983 if (p->io_context) 984 e->ops.trim(p->io_context); 985 task_unlock(p); 986 } while_each_thread(g, p); 987 read_unlock(&tasklist_lock); 988 } 989 990 spin_lock(&elv_list_lock); 991 list_del_init(&e->list); 992 spin_unlock(&elv_list_lock); 993 } 994 EXPORT_SYMBOL_GPL(elv_unregister); 995 996 /* 997 * switch to new_e io scheduler. be careful not to introduce deadlocks - 998 * we don't free the old io scheduler, before we have allocated what we 999 * need for the new one. this way we have a chance of going back to the old 1000 * one, if the new one fails init for some reason. 1001 */ 1002 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e) 1003 { 1004 struct elevator_queue *old_elevator, *e; 1005 void *data; 1006 1007 /* 1008 * Allocate new elevator 1009 */ 1010 e = elevator_alloc(q, new_e); 1011 if (!e) 1012 return 0; 1013 1014 data = elevator_init_queue(q, e); 1015 if (!data) { 1016 kobject_put(&e->kobj); 1017 return 0; 1018 } 1019 1020 /* 1021 * Turn on BYPASS and drain all requests w/ elevator private data 1022 */ 1023 spin_lock_irq(q->queue_lock); 1024 elv_quiesce_start(q); 1025 1026 /* 1027 * Remember old elevator. 1028 */ 1029 old_elevator = q->elevator; 1030 1031 /* 1032 * attach and start new elevator 1033 */ 1034 elevator_attach(q, e, data); 1035 1036 spin_unlock_irq(q->queue_lock); 1037 1038 __elv_unregister_queue(old_elevator); 1039 1040 if (elv_register_queue(q)) 1041 goto fail_register; 1042 1043 /* 1044 * finally exit old elevator and turn off BYPASS. 1045 */ 1046 elevator_exit(old_elevator); 1047 spin_lock_irq(q->queue_lock); 1048 elv_quiesce_end(q); 1049 spin_unlock_irq(q->queue_lock); 1050 1051 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name); 1052 1053 return 1; 1054 1055 fail_register: 1056 /* 1057 * switch failed, exit the new io scheduler and reattach the old 1058 * one again (along with re-adding the sysfs dir) 1059 */ 1060 elevator_exit(e); 1061 q->elevator = old_elevator; 1062 elv_register_queue(q); 1063 1064 spin_lock_irq(q->queue_lock); 1065 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 1066 spin_unlock_irq(q->queue_lock); 1067 1068 return 0; 1069 } 1070 1071 ssize_t elv_iosched_store(struct request_queue *q, const char *name, 1072 size_t count) 1073 { 1074 char elevator_name[ELV_NAME_MAX]; 1075 struct elevator_type *e; 1076 1077 if (!q->elevator) 1078 return count; 1079 1080 strlcpy(elevator_name, name, sizeof(elevator_name)); 1081 e = elevator_get(strstrip(elevator_name)); 1082 if (!e) { 1083 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 1084 return -EINVAL; 1085 } 1086 1087 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) { 1088 elevator_put(e); 1089 return count; 1090 } 1091 1092 if (!elevator_switch(q, e)) 1093 printk(KERN_ERR "elevator: switch to %s failed\n", 1094 elevator_name); 1095 return count; 1096 } 1097 1098 ssize_t elv_iosched_show(struct request_queue *q, char *name) 1099 { 1100 struct elevator_queue *e = q->elevator; 1101 struct elevator_type *elv; 1102 struct elevator_type *__e; 1103 int len = 0; 1104 1105 if (!q->elevator || !blk_queue_stackable(q)) 1106 return sprintf(name, "none\n"); 1107 1108 elv = e->elevator_type; 1109 1110 spin_lock(&elv_list_lock); 1111 list_for_each_entry(__e, &elv_list, list) { 1112 if (!strcmp(elv->elevator_name, __e->elevator_name)) 1113 len += sprintf(name+len, "[%s] ", elv->elevator_name); 1114 else 1115 len += sprintf(name+len, "%s ", __e->elevator_name); 1116 } 1117 spin_unlock(&elv_list_lock); 1118 1119 len += sprintf(len+name, "\n"); 1120 return len; 1121 } 1122 1123 struct request *elv_rb_former_request(struct request_queue *q, 1124 struct request *rq) 1125 { 1126 struct rb_node *rbprev = rb_prev(&rq->rb_node); 1127 1128 if (rbprev) 1129 return rb_entry_rq(rbprev); 1130 1131 return NULL; 1132 } 1133 EXPORT_SYMBOL(elv_rb_former_request); 1134 1135 struct request *elv_rb_latter_request(struct request_queue *q, 1136 struct request *rq) 1137 { 1138 struct rb_node *rbnext = rb_next(&rq->rb_node); 1139 1140 if (rbnext) 1141 return rb_entry_rq(rbnext); 1142 1143 return NULL; 1144 } 1145 EXPORT_SYMBOL(elv_rb_latter_request); 1146