1 /* 2 * Block device elevator/IO-scheduler. 3 * 4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * 6 * 30042000 Jens Axboe <axboe@kernel.dk> : 7 * 8 * Split the elevator a bit so that it is possible to choose a different 9 * one or even write a new "plug in". There are three pieces: 10 * - elevator_fn, inserts a new request in the queue list 11 * - elevator_merge_fn, decides whether a new buffer can be merged with 12 * an existing request 13 * - elevator_dequeue_fn, called when a request is taken off the active list 14 * 15 * 20082000 Dave Jones <davej@suse.de> : 16 * Removed tests for max-bomb-segments, which was breaking elvtune 17 * when run without -bN 18 * 19 * Jens: 20 * - Rework again to work with bio instead of buffer_heads 21 * - loose bi_dev comparisons, partition handling is right now 22 * - completely modularize elevator setup and teardown 23 * 24 */ 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/blkdev.h> 28 #include <linux/elevator.h> 29 #include <linux/bio.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/compiler.h> 34 #include <linux/delay.h> 35 #include <linux/blktrace_api.h> 36 #include <linux/hash.h> 37 #include <linux/uaccess.h> 38 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 43 static DEFINE_SPINLOCK(elv_list_lock); 44 static LIST_HEAD(elv_list); 45 46 /* 47 * Merge hash stuff. 48 */ 49 static const int elv_hash_shift = 6; 50 #define ELV_HASH_BLOCK(sec) ((sec) >> 3) 51 #define ELV_HASH_FN(sec) \ 52 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift)) 53 #define ELV_HASH_ENTRIES (1 << elv_hash_shift) 54 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq)) 55 56 /* 57 * Query io scheduler to see if the current process issuing bio may be 58 * merged with rq. 59 */ 60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio) 61 { 62 struct request_queue *q = rq->q; 63 struct elevator_queue *e = q->elevator; 64 65 if (e->ops->elevator_allow_merge_fn) 66 return e->ops->elevator_allow_merge_fn(q, rq, bio); 67 68 return 1; 69 } 70 71 /* 72 * can we safely merge with this request? 73 */ 74 int elv_rq_merge_ok(struct request *rq, struct bio *bio) 75 { 76 if (!rq_mergeable(rq)) 77 return 0; 78 79 /* 80 * Don't merge file system requests and discard requests 81 */ 82 if (bio_discard(bio) != bio_discard(rq->bio)) 83 return 0; 84 85 /* 86 * different data direction or already started, don't merge 87 */ 88 if (bio_data_dir(bio) != rq_data_dir(rq)) 89 return 0; 90 91 /* 92 * must be same device and not a special request 93 */ 94 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special) 95 return 0; 96 97 /* 98 * only merge integrity protected bio into ditto rq 99 */ 100 if (bio_integrity(bio) != blk_integrity_rq(rq)) 101 return 0; 102 103 /* 104 * Don't merge if failfast settings don't match. 105 * 106 * FIXME: The negation in front of each condition is necessary 107 * because bio and request flags use different bit positions 108 * and the accessors return those bits directly. This 109 * ugliness will soon go away. 110 */ 111 if (!bio_failfast_dev(bio) != !blk_failfast_dev(rq) || 112 !bio_failfast_transport(bio) != !blk_failfast_transport(rq) || 113 !bio_failfast_driver(bio) != !blk_failfast_driver(rq)) 114 return 0; 115 116 if (!elv_iosched_allow_merge(rq, bio)) 117 return 0; 118 119 return 1; 120 } 121 EXPORT_SYMBOL(elv_rq_merge_ok); 122 123 static inline int elv_try_merge(struct request *__rq, struct bio *bio) 124 { 125 int ret = ELEVATOR_NO_MERGE; 126 127 /* 128 * we can merge and sequence is ok, check if it's possible 129 */ 130 if (elv_rq_merge_ok(__rq, bio)) { 131 if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector) 132 ret = ELEVATOR_BACK_MERGE; 133 else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector) 134 ret = ELEVATOR_FRONT_MERGE; 135 } 136 137 return ret; 138 } 139 140 static struct elevator_type *elevator_find(const char *name) 141 { 142 struct elevator_type *e; 143 144 list_for_each_entry(e, &elv_list, list) { 145 if (!strcmp(e->elevator_name, name)) 146 return e; 147 } 148 149 return NULL; 150 } 151 152 static void elevator_put(struct elevator_type *e) 153 { 154 module_put(e->elevator_owner); 155 } 156 157 static struct elevator_type *elevator_get(const char *name) 158 { 159 struct elevator_type *e; 160 161 spin_lock(&elv_list_lock); 162 163 e = elevator_find(name); 164 if (!e) { 165 char elv[ELV_NAME_MAX + strlen("-iosched")]; 166 167 spin_unlock(&elv_list_lock); 168 169 if (!strcmp(name, "anticipatory")) 170 sprintf(elv, "as-iosched"); 171 else 172 sprintf(elv, "%s-iosched", name); 173 174 request_module("%s", elv); 175 spin_lock(&elv_list_lock); 176 e = elevator_find(name); 177 } 178 179 if (e && !try_module_get(e->elevator_owner)) 180 e = NULL; 181 182 spin_unlock(&elv_list_lock); 183 184 return e; 185 } 186 187 static void *elevator_init_queue(struct request_queue *q, 188 struct elevator_queue *eq) 189 { 190 return eq->ops->elevator_init_fn(q); 191 } 192 193 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq, 194 void *data) 195 { 196 q->elevator = eq; 197 eq->elevator_data = data; 198 } 199 200 static char chosen_elevator[16]; 201 202 static int __init elevator_setup(char *str) 203 { 204 /* 205 * Be backwards-compatible with previous kernels, so users 206 * won't get the wrong elevator. 207 */ 208 if (!strcmp(str, "as")) 209 strcpy(chosen_elevator, "anticipatory"); 210 else 211 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 212 return 1; 213 } 214 215 __setup("elevator=", elevator_setup); 216 217 static struct kobj_type elv_ktype; 218 219 static struct elevator_queue *elevator_alloc(struct request_queue *q, 220 struct elevator_type *e) 221 { 222 struct elevator_queue *eq; 223 int i; 224 225 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node); 226 if (unlikely(!eq)) 227 goto err; 228 229 eq->ops = &e->ops; 230 eq->elevator_type = e; 231 kobject_init(&eq->kobj, &elv_ktype); 232 mutex_init(&eq->sysfs_lock); 233 234 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, 235 GFP_KERNEL, q->node); 236 if (!eq->hash) 237 goto err; 238 239 for (i = 0; i < ELV_HASH_ENTRIES; i++) 240 INIT_HLIST_HEAD(&eq->hash[i]); 241 242 return eq; 243 err: 244 kfree(eq); 245 elevator_put(e); 246 return NULL; 247 } 248 249 static void elevator_release(struct kobject *kobj) 250 { 251 struct elevator_queue *e; 252 253 e = container_of(kobj, struct elevator_queue, kobj); 254 elevator_put(e->elevator_type); 255 kfree(e->hash); 256 kfree(e); 257 } 258 259 int elevator_init(struct request_queue *q, char *name) 260 { 261 struct elevator_type *e = NULL; 262 struct elevator_queue *eq; 263 int ret = 0; 264 void *data; 265 266 INIT_LIST_HEAD(&q->queue_head); 267 q->last_merge = NULL; 268 q->end_sector = 0; 269 q->boundary_rq = NULL; 270 271 if (name) { 272 e = elevator_get(name); 273 if (!e) 274 return -EINVAL; 275 } 276 277 if (!e && *chosen_elevator) { 278 e = elevator_get(chosen_elevator); 279 if (!e) 280 printk(KERN_ERR "I/O scheduler %s not found\n", 281 chosen_elevator); 282 } 283 284 if (!e) { 285 e = elevator_get(CONFIG_DEFAULT_IOSCHED); 286 if (!e) { 287 printk(KERN_ERR 288 "Default I/O scheduler not found. " \ 289 "Using noop.\n"); 290 e = elevator_get("noop"); 291 } 292 } 293 294 eq = elevator_alloc(q, e); 295 if (!eq) 296 return -ENOMEM; 297 298 data = elevator_init_queue(q, eq); 299 if (!data) { 300 kobject_put(&eq->kobj); 301 return -ENOMEM; 302 } 303 304 elevator_attach(q, eq, data); 305 return ret; 306 } 307 EXPORT_SYMBOL(elevator_init); 308 309 void elevator_exit(struct elevator_queue *e) 310 { 311 mutex_lock(&e->sysfs_lock); 312 if (e->ops->elevator_exit_fn) 313 e->ops->elevator_exit_fn(e); 314 e->ops = NULL; 315 mutex_unlock(&e->sysfs_lock); 316 317 kobject_put(&e->kobj); 318 } 319 EXPORT_SYMBOL(elevator_exit); 320 321 static inline void __elv_rqhash_del(struct request *rq) 322 { 323 hlist_del_init(&rq->hash); 324 } 325 326 static void elv_rqhash_del(struct request_queue *q, struct request *rq) 327 { 328 if (ELV_ON_HASH(rq)) 329 __elv_rqhash_del(rq); 330 } 331 332 static void elv_rqhash_add(struct request_queue *q, struct request *rq) 333 { 334 struct elevator_queue *e = q->elevator; 335 336 BUG_ON(ELV_ON_HASH(rq)); 337 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]); 338 } 339 340 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq) 341 { 342 __elv_rqhash_del(rq); 343 elv_rqhash_add(q, rq); 344 } 345 346 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) 347 { 348 struct elevator_queue *e = q->elevator; 349 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)]; 350 struct hlist_node *entry, *next; 351 struct request *rq; 352 353 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) { 354 BUG_ON(!ELV_ON_HASH(rq)); 355 356 if (unlikely(!rq_mergeable(rq))) { 357 __elv_rqhash_del(rq); 358 continue; 359 } 360 361 if (rq_hash_key(rq) == offset) 362 return rq; 363 } 364 365 return NULL; 366 } 367 368 /* 369 * RB-tree support functions for inserting/lookup/removal of requests 370 * in a sorted RB tree. 371 */ 372 struct request *elv_rb_add(struct rb_root *root, struct request *rq) 373 { 374 struct rb_node **p = &root->rb_node; 375 struct rb_node *parent = NULL; 376 struct request *__rq; 377 378 while (*p) { 379 parent = *p; 380 __rq = rb_entry(parent, struct request, rb_node); 381 382 if (blk_rq_pos(rq) < blk_rq_pos(__rq)) 383 p = &(*p)->rb_left; 384 else if (blk_rq_pos(rq) > blk_rq_pos(__rq)) 385 p = &(*p)->rb_right; 386 else 387 return __rq; 388 } 389 390 rb_link_node(&rq->rb_node, parent, p); 391 rb_insert_color(&rq->rb_node, root); 392 return NULL; 393 } 394 EXPORT_SYMBOL(elv_rb_add); 395 396 void elv_rb_del(struct rb_root *root, struct request *rq) 397 { 398 BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); 399 rb_erase(&rq->rb_node, root); 400 RB_CLEAR_NODE(&rq->rb_node); 401 } 402 EXPORT_SYMBOL(elv_rb_del); 403 404 struct request *elv_rb_find(struct rb_root *root, sector_t sector) 405 { 406 struct rb_node *n = root->rb_node; 407 struct request *rq; 408 409 while (n) { 410 rq = rb_entry(n, struct request, rb_node); 411 412 if (sector < blk_rq_pos(rq)) 413 n = n->rb_left; 414 else if (sector > blk_rq_pos(rq)) 415 n = n->rb_right; 416 else 417 return rq; 418 } 419 420 return NULL; 421 } 422 EXPORT_SYMBOL(elv_rb_find); 423 424 /* 425 * Insert rq into dispatch queue of q. Queue lock must be held on 426 * entry. rq is sort instead into the dispatch queue. To be used by 427 * specific elevators. 428 */ 429 void elv_dispatch_sort(struct request_queue *q, struct request *rq) 430 { 431 sector_t boundary; 432 struct list_head *entry; 433 int stop_flags; 434 435 if (q->last_merge == rq) 436 q->last_merge = NULL; 437 438 elv_rqhash_del(q, rq); 439 440 q->nr_sorted--; 441 442 boundary = q->end_sector; 443 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED; 444 list_for_each_prev(entry, &q->queue_head) { 445 struct request *pos = list_entry_rq(entry); 446 447 if (blk_discard_rq(rq) != blk_discard_rq(pos)) 448 break; 449 if (rq_data_dir(rq) != rq_data_dir(pos)) 450 break; 451 if (pos->cmd_flags & stop_flags) 452 break; 453 if (blk_rq_pos(rq) >= boundary) { 454 if (blk_rq_pos(pos) < boundary) 455 continue; 456 } else { 457 if (blk_rq_pos(pos) >= boundary) 458 break; 459 } 460 if (blk_rq_pos(rq) >= blk_rq_pos(pos)) 461 break; 462 } 463 464 list_add(&rq->queuelist, entry); 465 } 466 EXPORT_SYMBOL(elv_dispatch_sort); 467 468 /* 469 * Insert rq into dispatch queue of q. Queue lock must be held on 470 * entry. rq is added to the back of the dispatch queue. To be used by 471 * specific elevators. 472 */ 473 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq) 474 { 475 if (q->last_merge == rq) 476 q->last_merge = NULL; 477 478 elv_rqhash_del(q, rq); 479 480 q->nr_sorted--; 481 482 q->end_sector = rq_end_sector(rq); 483 q->boundary_rq = rq; 484 list_add_tail(&rq->queuelist, &q->queue_head); 485 } 486 EXPORT_SYMBOL(elv_dispatch_add_tail); 487 488 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio) 489 { 490 struct elevator_queue *e = q->elevator; 491 struct request *__rq; 492 int ret; 493 494 /* 495 * First try one-hit cache. 496 */ 497 if (q->last_merge) { 498 ret = elv_try_merge(q->last_merge, bio); 499 if (ret != ELEVATOR_NO_MERGE) { 500 *req = q->last_merge; 501 return ret; 502 } 503 } 504 505 if (blk_queue_nomerges(q)) 506 return ELEVATOR_NO_MERGE; 507 508 /* 509 * See if our hash lookup can find a potential backmerge. 510 */ 511 __rq = elv_rqhash_find(q, bio->bi_sector); 512 if (__rq && elv_rq_merge_ok(__rq, bio)) { 513 *req = __rq; 514 return ELEVATOR_BACK_MERGE; 515 } 516 517 if (e->ops->elevator_merge_fn) 518 return e->ops->elevator_merge_fn(q, req, bio); 519 520 return ELEVATOR_NO_MERGE; 521 } 522 523 void elv_merged_request(struct request_queue *q, struct request *rq, int type) 524 { 525 struct elevator_queue *e = q->elevator; 526 527 if (e->ops->elevator_merged_fn) 528 e->ops->elevator_merged_fn(q, rq, type); 529 530 if (type == ELEVATOR_BACK_MERGE) 531 elv_rqhash_reposition(q, rq); 532 533 q->last_merge = rq; 534 } 535 536 void elv_merge_requests(struct request_queue *q, struct request *rq, 537 struct request *next) 538 { 539 struct elevator_queue *e = q->elevator; 540 541 if (e->ops->elevator_merge_req_fn) 542 e->ops->elevator_merge_req_fn(q, rq, next); 543 544 elv_rqhash_reposition(q, rq); 545 elv_rqhash_del(q, next); 546 547 q->nr_sorted--; 548 q->last_merge = rq; 549 } 550 551 void elv_requeue_request(struct request_queue *q, struct request *rq) 552 { 553 /* 554 * it already went through dequeue, we need to decrement the 555 * in_flight count again 556 */ 557 if (blk_account_rq(rq)) { 558 q->in_flight[rq_is_sync(rq)]--; 559 if (blk_sorted_rq(rq)) 560 elv_deactivate_rq(q, rq); 561 } 562 563 rq->cmd_flags &= ~REQ_STARTED; 564 565 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE); 566 } 567 568 void elv_drain_elevator(struct request_queue *q) 569 { 570 static int printed; 571 while (q->elevator->ops->elevator_dispatch_fn(q, 1)) 572 ; 573 if (q->nr_sorted == 0) 574 return; 575 if (printed++ < 10) { 576 printk(KERN_ERR "%s: forced dispatching is broken " 577 "(nr_sorted=%u), please report this\n", 578 q->elevator->elevator_type->elevator_name, q->nr_sorted); 579 } 580 } 581 582 /* 583 * Call with queue lock held, interrupts disabled 584 */ 585 void elv_quiesce_start(struct request_queue *q) 586 { 587 if (!q->elevator) 588 return; 589 590 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q); 591 592 /* 593 * make sure we don't have any requests in flight 594 */ 595 elv_drain_elevator(q); 596 while (q->rq.elvpriv) { 597 __blk_run_queue(q); 598 spin_unlock_irq(q->queue_lock); 599 msleep(10); 600 spin_lock_irq(q->queue_lock); 601 elv_drain_elevator(q); 602 } 603 } 604 605 void elv_quiesce_end(struct request_queue *q) 606 { 607 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 608 } 609 610 void elv_insert(struct request_queue *q, struct request *rq, int where) 611 { 612 struct list_head *pos; 613 unsigned ordseq; 614 int unplug_it = 1; 615 616 trace_block_rq_insert(q, rq); 617 618 rq->q = q; 619 620 switch (where) { 621 case ELEVATOR_INSERT_FRONT: 622 rq->cmd_flags |= REQ_SOFTBARRIER; 623 624 list_add(&rq->queuelist, &q->queue_head); 625 break; 626 627 case ELEVATOR_INSERT_BACK: 628 rq->cmd_flags |= REQ_SOFTBARRIER; 629 elv_drain_elevator(q); 630 list_add_tail(&rq->queuelist, &q->queue_head); 631 /* 632 * We kick the queue here for the following reasons. 633 * - The elevator might have returned NULL previously 634 * to delay requests and returned them now. As the 635 * queue wasn't empty before this request, ll_rw_blk 636 * won't run the queue on return, resulting in hang. 637 * - Usually, back inserted requests won't be merged 638 * with anything. There's no point in delaying queue 639 * processing. 640 */ 641 __blk_run_queue(q); 642 break; 643 644 case ELEVATOR_INSERT_SORT: 645 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq)); 646 rq->cmd_flags |= REQ_SORTED; 647 q->nr_sorted++; 648 if (rq_mergeable(rq)) { 649 elv_rqhash_add(q, rq); 650 if (!q->last_merge) 651 q->last_merge = rq; 652 } 653 654 /* 655 * Some ioscheds (cfq) run q->request_fn directly, so 656 * rq cannot be accessed after calling 657 * elevator_add_req_fn. 658 */ 659 q->elevator->ops->elevator_add_req_fn(q, rq); 660 break; 661 662 case ELEVATOR_INSERT_REQUEUE: 663 /* 664 * If ordered flush isn't in progress, we do front 665 * insertion; otherwise, requests should be requeued 666 * in ordseq order. 667 */ 668 rq->cmd_flags |= REQ_SOFTBARRIER; 669 670 /* 671 * Most requeues happen because of a busy condition, 672 * don't force unplug of the queue for that case. 673 */ 674 unplug_it = 0; 675 676 if (q->ordseq == 0) { 677 list_add(&rq->queuelist, &q->queue_head); 678 break; 679 } 680 681 ordseq = blk_ordered_req_seq(rq); 682 683 list_for_each(pos, &q->queue_head) { 684 struct request *pos_rq = list_entry_rq(pos); 685 if (ordseq <= blk_ordered_req_seq(pos_rq)) 686 break; 687 } 688 689 list_add_tail(&rq->queuelist, pos); 690 break; 691 692 default: 693 printk(KERN_ERR "%s: bad insertion point %d\n", 694 __func__, where); 695 BUG(); 696 } 697 698 if (unplug_it && blk_queue_plugged(q)) { 699 int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC] 700 - queue_in_flight(q); 701 702 if (nrq >= q->unplug_thresh) 703 __generic_unplug_device(q); 704 } 705 } 706 707 void __elv_add_request(struct request_queue *q, struct request *rq, int where, 708 int plug) 709 { 710 if (q->ordcolor) 711 rq->cmd_flags |= REQ_ORDERED_COLOR; 712 713 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) { 714 /* 715 * toggle ordered color 716 */ 717 if (blk_barrier_rq(rq)) 718 q->ordcolor ^= 1; 719 720 /* 721 * barriers implicitly indicate back insertion 722 */ 723 if (where == ELEVATOR_INSERT_SORT) 724 where = ELEVATOR_INSERT_BACK; 725 726 /* 727 * this request is scheduling boundary, update 728 * end_sector 729 */ 730 if (blk_fs_request(rq) || blk_discard_rq(rq)) { 731 q->end_sector = rq_end_sector(rq); 732 q->boundary_rq = rq; 733 } 734 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && 735 where == ELEVATOR_INSERT_SORT) 736 where = ELEVATOR_INSERT_BACK; 737 738 if (plug) 739 blk_plug_device(q); 740 741 elv_insert(q, rq, where); 742 } 743 EXPORT_SYMBOL(__elv_add_request); 744 745 void elv_add_request(struct request_queue *q, struct request *rq, int where, 746 int plug) 747 { 748 unsigned long flags; 749 750 spin_lock_irqsave(q->queue_lock, flags); 751 __elv_add_request(q, rq, where, plug); 752 spin_unlock_irqrestore(q->queue_lock, flags); 753 } 754 EXPORT_SYMBOL(elv_add_request); 755 756 int elv_queue_empty(struct request_queue *q) 757 { 758 struct elevator_queue *e = q->elevator; 759 760 if (!list_empty(&q->queue_head)) 761 return 0; 762 763 if (e->ops->elevator_queue_empty_fn) 764 return e->ops->elevator_queue_empty_fn(q); 765 766 return 1; 767 } 768 EXPORT_SYMBOL(elv_queue_empty); 769 770 struct request *elv_latter_request(struct request_queue *q, struct request *rq) 771 { 772 struct elevator_queue *e = q->elevator; 773 774 if (e->ops->elevator_latter_req_fn) 775 return e->ops->elevator_latter_req_fn(q, rq); 776 return NULL; 777 } 778 779 struct request *elv_former_request(struct request_queue *q, struct request *rq) 780 { 781 struct elevator_queue *e = q->elevator; 782 783 if (e->ops->elevator_former_req_fn) 784 return e->ops->elevator_former_req_fn(q, rq); 785 return NULL; 786 } 787 788 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask) 789 { 790 struct elevator_queue *e = q->elevator; 791 792 if (e->ops->elevator_set_req_fn) 793 return e->ops->elevator_set_req_fn(q, rq, gfp_mask); 794 795 rq->elevator_private = NULL; 796 return 0; 797 } 798 799 void elv_put_request(struct request_queue *q, struct request *rq) 800 { 801 struct elevator_queue *e = q->elevator; 802 803 if (e->ops->elevator_put_req_fn) 804 e->ops->elevator_put_req_fn(rq); 805 } 806 807 int elv_may_queue(struct request_queue *q, int rw) 808 { 809 struct elevator_queue *e = q->elevator; 810 811 if (e->ops->elevator_may_queue_fn) 812 return e->ops->elevator_may_queue_fn(q, rw); 813 814 return ELV_MQUEUE_MAY; 815 } 816 817 void elv_abort_queue(struct request_queue *q) 818 { 819 struct request *rq; 820 821 while (!list_empty(&q->queue_head)) { 822 rq = list_entry_rq(q->queue_head.next); 823 rq->cmd_flags |= REQ_QUIET; 824 trace_block_rq_abort(q, rq); 825 /* 826 * Mark this request as started so we don't trigger 827 * any debug logic in the end I/O path. 828 */ 829 blk_start_request(rq); 830 __blk_end_request_all(rq, -EIO); 831 } 832 } 833 EXPORT_SYMBOL(elv_abort_queue); 834 835 void elv_completed_request(struct request_queue *q, struct request *rq) 836 { 837 struct elevator_queue *e = q->elevator; 838 839 /* 840 * request is released from the driver, io must be done 841 */ 842 if (blk_account_rq(rq)) { 843 q->in_flight[rq_is_sync(rq)]--; 844 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn) 845 e->ops->elevator_completed_req_fn(q, rq); 846 } 847 848 /* 849 * Check if the queue is waiting for fs requests to be 850 * drained for flush sequence. 851 */ 852 if (unlikely(q->ordseq)) { 853 struct request *next = NULL; 854 855 if (!list_empty(&q->queue_head)) 856 next = list_entry_rq(q->queue_head.next); 857 858 if (!queue_in_flight(q) && 859 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN && 860 (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) { 861 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0); 862 __blk_run_queue(q); 863 } 864 } 865 } 866 867 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) 868 869 static ssize_t 870 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 871 { 872 struct elv_fs_entry *entry = to_elv(attr); 873 struct elevator_queue *e; 874 ssize_t error; 875 876 if (!entry->show) 877 return -EIO; 878 879 e = container_of(kobj, struct elevator_queue, kobj); 880 mutex_lock(&e->sysfs_lock); 881 error = e->ops ? entry->show(e, page) : -ENOENT; 882 mutex_unlock(&e->sysfs_lock); 883 return error; 884 } 885 886 static ssize_t 887 elv_attr_store(struct kobject *kobj, struct attribute *attr, 888 const char *page, size_t length) 889 { 890 struct elv_fs_entry *entry = to_elv(attr); 891 struct elevator_queue *e; 892 ssize_t error; 893 894 if (!entry->store) 895 return -EIO; 896 897 e = container_of(kobj, struct elevator_queue, kobj); 898 mutex_lock(&e->sysfs_lock); 899 error = e->ops ? entry->store(e, page, length) : -ENOENT; 900 mutex_unlock(&e->sysfs_lock); 901 return error; 902 } 903 904 static struct sysfs_ops elv_sysfs_ops = { 905 .show = elv_attr_show, 906 .store = elv_attr_store, 907 }; 908 909 static struct kobj_type elv_ktype = { 910 .sysfs_ops = &elv_sysfs_ops, 911 .release = elevator_release, 912 }; 913 914 int elv_register_queue(struct request_queue *q) 915 { 916 struct elevator_queue *e = q->elevator; 917 int error; 918 919 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched"); 920 if (!error) { 921 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs; 922 if (attr) { 923 while (attr->attr.name) { 924 if (sysfs_create_file(&e->kobj, &attr->attr)) 925 break; 926 attr++; 927 } 928 } 929 kobject_uevent(&e->kobj, KOBJ_ADD); 930 } 931 return error; 932 } 933 934 static void __elv_unregister_queue(struct elevator_queue *e) 935 { 936 kobject_uevent(&e->kobj, KOBJ_REMOVE); 937 kobject_del(&e->kobj); 938 } 939 940 void elv_unregister_queue(struct request_queue *q) 941 { 942 if (q) 943 __elv_unregister_queue(q->elevator); 944 } 945 946 void elv_register(struct elevator_type *e) 947 { 948 char *def = ""; 949 950 spin_lock(&elv_list_lock); 951 BUG_ON(elevator_find(e->elevator_name)); 952 list_add_tail(&e->list, &elv_list); 953 spin_unlock(&elv_list_lock); 954 955 if (!strcmp(e->elevator_name, chosen_elevator) || 956 (!*chosen_elevator && 957 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED))) 958 def = " (default)"; 959 960 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, 961 def); 962 } 963 EXPORT_SYMBOL_GPL(elv_register); 964 965 void elv_unregister(struct elevator_type *e) 966 { 967 struct task_struct *g, *p; 968 969 /* 970 * Iterate every thread in the process to remove the io contexts. 971 */ 972 if (e->ops.trim) { 973 read_lock(&tasklist_lock); 974 do_each_thread(g, p) { 975 task_lock(p); 976 if (p->io_context) 977 e->ops.trim(p->io_context); 978 task_unlock(p); 979 } while_each_thread(g, p); 980 read_unlock(&tasklist_lock); 981 } 982 983 spin_lock(&elv_list_lock); 984 list_del_init(&e->list); 985 spin_unlock(&elv_list_lock); 986 } 987 EXPORT_SYMBOL_GPL(elv_unregister); 988 989 /* 990 * switch to new_e io scheduler. be careful not to introduce deadlocks - 991 * we don't free the old io scheduler, before we have allocated what we 992 * need for the new one. this way we have a chance of going back to the old 993 * one, if the new one fails init for some reason. 994 */ 995 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e) 996 { 997 struct elevator_queue *old_elevator, *e; 998 void *data; 999 1000 /* 1001 * Allocate new elevator 1002 */ 1003 e = elevator_alloc(q, new_e); 1004 if (!e) 1005 return 0; 1006 1007 data = elevator_init_queue(q, e); 1008 if (!data) { 1009 kobject_put(&e->kobj); 1010 return 0; 1011 } 1012 1013 /* 1014 * Turn on BYPASS and drain all requests w/ elevator private data 1015 */ 1016 spin_lock_irq(q->queue_lock); 1017 elv_quiesce_start(q); 1018 1019 /* 1020 * Remember old elevator. 1021 */ 1022 old_elevator = q->elevator; 1023 1024 /* 1025 * attach and start new elevator 1026 */ 1027 elevator_attach(q, e, data); 1028 1029 spin_unlock_irq(q->queue_lock); 1030 1031 __elv_unregister_queue(old_elevator); 1032 1033 if (elv_register_queue(q)) 1034 goto fail_register; 1035 1036 /* 1037 * finally exit old elevator and turn off BYPASS. 1038 */ 1039 elevator_exit(old_elevator); 1040 spin_lock_irq(q->queue_lock); 1041 elv_quiesce_end(q); 1042 spin_unlock_irq(q->queue_lock); 1043 1044 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name); 1045 1046 return 1; 1047 1048 fail_register: 1049 /* 1050 * switch failed, exit the new io scheduler and reattach the old 1051 * one again (along with re-adding the sysfs dir) 1052 */ 1053 elevator_exit(e); 1054 q->elevator = old_elevator; 1055 elv_register_queue(q); 1056 1057 spin_lock_irq(q->queue_lock); 1058 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q); 1059 spin_unlock_irq(q->queue_lock); 1060 1061 return 0; 1062 } 1063 1064 ssize_t elv_iosched_store(struct request_queue *q, const char *name, 1065 size_t count) 1066 { 1067 char elevator_name[ELV_NAME_MAX]; 1068 struct elevator_type *e; 1069 1070 if (!q->elevator) 1071 return count; 1072 1073 strlcpy(elevator_name, name, sizeof(elevator_name)); 1074 strstrip(elevator_name); 1075 1076 e = elevator_get(elevator_name); 1077 if (!e) { 1078 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 1079 return -EINVAL; 1080 } 1081 1082 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) { 1083 elevator_put(e); 1084 return count; 1085 } 1086 1087 if (!elevator_switch(q, e)) 1088 printk(KERN_ERR "elevator: switch to %s failed\n", 1089 elevator_name); 1090 return count; 1091 } 1092 1093 ssize_t elv_iosched_show(struct request_queue *q, char *name) 1094 { 1095 struct elevator_queue *e = q->elevator; 1096 struct elevator_type *elv; 1097 struct elevator_type *__e; 1098 int len = 0; 1099 1100 if (!q->elevator) 1101 return sprintf(name, "none\n"); 1102 1103 elv = e->elevator_type; 1104 1105 spin_lock(&elv_list_lock); 1106 list_for_each_entry(__e, &elv_list, list) { 1107 if (!strcmp(elv->elevator_name, __e->elevator_name)) 1108 len += sprintf(name+len, "[%s] ", elv->elevator_name); 1109 else 1110 len += sprintf(name+len, "%s ", __e->elevator_name); 1111 } 1112 spin_unlock(&elv_list_lock); 1113 1114 len += sprintf(len+name, "\n"); 1115 return len; 1116 } 1117 1118 struct request *elv_rb_former_request(struct request_queue *q, 1119 struct request *rq) 1120 { 1121 struct rb_node *rbprev = rb_prev(&rq->rb_node); 1122 1123 if (rbprev) 1124 return rb_entry_rq(rbprev); 1125 1126 return NULL; 1127 } 1128 EXPORT_SYMBOL(elv_rb_former_request); 1129 1130 struct request *elv_rb_latter_request(struct request_queue *q, 1131 struct request *rq) 1132 { 1133 struct rb_node *rbnext = rb_next(&rq->rb_node); 1134 1135 if (rbnext) 1136 return rb_entry_rq(rbnext); 1137 1138 return NULL; 1139 } 1140 EXPORT_SYMBOL(elv_rb_latter_request); 1141