xref: /linux/block/elevator.c (revision 2277ab4a1df50e05bc732fe9488d4e902bb8399a)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
38 
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
45 
46 /*
47  * Merge hash stuff.
48  */
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec)	((sec) >> 3)
51 #define ELV_HASH_FN(sec)	\
52 		(hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES	(1 << elv_hash_shift)
54 #define rq_hash_key(rq)		(blk_rq_pos(rq) + blk_rq_sectors(rq))
55 
56 /*
57  * Query io scheduler to see if the current process issuing bio may be
58  * merged with rq.
59  */
60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
61 {
62 	struct request_queue *q = rq->q;
63 	struct elevator_queue *e = q->elevator;
64 
65 	if (e->ops->elevator_allow_merge_fn)
66 		return e->ops->elevator_allow_merge_fn(q, rq, bio);
67 
68 	return 1;
69 }
70 
71 /*
72  * can we safely merge with this request?
73  */
74 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
75 {
76 	if (!rq_mergeable(rq))
77 		return 0;
78 
79 	/*
80 	 * Don't merge file system requests and discard requests
81 	 */
82 	if (bio_discard(bio) != bio_discard(rq->bio))
83 		return 0;
84 
85 	/*
86 	 * different data direction or already started, don't merge
87 	 */
88 	if (bio_data_dir(bio) != rq_data_dir(rq))
89 		return 0;
90 
91 	/*
92 	 * must be same device and not a special request
93 	 */
94 	if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
95 		return 0;
96 
97 	/*
98 	 * only merge integrity protected bio into ditto rq
99 	 */
100 	if (bio_integrity(bio) != blk_integrity_rq(rq))
101 		return 0;
102 
103 	/*
104 	 * Don't merge if failfast settings don't match
105 	 */
106 	if (bio_failfast_dev(bio)	!= blk_failfast_dev(rq)		||
107 	    bio_failfast_transport(bio)	!= blk_failfast_transport(rq)	||
108 	    bio_failfast_driver(bio)	!= blk_failfast_driver(rq))
109 		return 0;
110 
111 	if (!elv_iosched_allow_merge(rq, bio))
112 		return 0;
113 
114 	return 1;
115 }
116 EXPORT_SYMBOL(elv_rq_merge_ok);
117 
118 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
119 {
120 	int ret = ELEVATOR_NO_MERGE;
121 
122 	/*
123 	 * we can merge and sequence is ok, check if it's possible
124 	 */
125 	if (elv_rq_merge_ok(__rq, bio)) {
126 		if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
127 			ret = ELEVATOR_BACK_MERGE;
128 		else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
129 			ret = ELEVATOR_FRONT_MERGE;
130 	}
131 
132 	return ret;
133 }
134 
135 static struct elevator_type *elevator_find(const char *name)
136 {
137 	struct elevator_type *e;
138 
139 	list_for_each_entry(e, &elv_list, list) {
140 		if (!strcmp(e->elevator_name, name))
141 			return e;
142 	}
143 
144 	return NULL;
145 }
146 
147 static void elevator_put(struct elevator_type *e)
148 {
149 	module_put(e->elevator_owner);
150 }
151 
152 static struct elevator_type *elevator_get(const char *name)
153 {
154 	struct elevator_type *e;
155 
156 	spin_lock(&elv_list_lock);
157 
158 	e = elevator_find(name);
159 	if (!e) {
160 		char elv[ELV_NAME_MAX + strlen("-iosched")];
161 
162 		spin_unlock(&elv_list_lock);
163 
164 		if (!strcmp(name, "anticipatory"))
165 			sprintf(elv, "as-iosched");
166 		else
167 			sprintf(elv, "%s-iosched", name);
168 
169 		request_module("%s", elv);
170 		spin_lock(&elv_list_lock);
171 		e = elevator_find(name);
172 	}
173 
174 	if (e && !try_module_get(e->elevator_owner))
175 		e = NULL;
176 
177 	spin_unlock(&elv_list_lock);
178 
179 	return e;
180 }
181 
182 static void *elevator_init_queue(struct request_queue *q,
183 				 struct elevator_queue *eq)
184 {
185 	return eq->ops->elevator_init_fn(q);
186 }
187 
188 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
189 			   void *data)
190 {
191 	q->elevator = eq;
192 	eq->elevator_data = data;
193 }
194 
195 static char chosen_elevator[16];
196 
197 static int __init elevator_setup(char *str)
198 {
199 	/*
200 	 * Be backwards-compatible with previous kernels, so users
201 	 * won't get the wrong elevator.
202 	 */
203 	if (!strcmp(str, "as"))
204 		strcpy(chosen_elevator, "anticipatory");
205 	else
206 		strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
207 	return 1;
208 }
209 
210 __setup("elevator=", elevator_setup);
211 
212 static struct kobj_type elv_ktype;
213 
214 static struct elevator_queue *elevator_alloc(struct request_queue *q,
215 				  struct elevator_type *e)
216 {
217 	struct elevator_queue *eq;
218 	int i;
219 
220 	eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
221 	if (unlikely(!eq))
222 		goto err;
223 
224 	eq->ops = &e->ops;
225 	eq->elevator_type = e;
226 	kobject_init(&eq->kobj, &elv_ktype);
227 	mutex_init(&eq->sysfs_lock);
228 
229 	eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
230 					GFP_KERNEL, q->node);
231 	if (!eq->hash)
232 		goto err;
233 
234 	for (i = 0; i < ELV_HASH_ENTRIES; i++)
235 		INIT_HLIST_HEAD(&eq->hash[i]);
236 
237 	return eq;
238 err:
239 	kfree(eq);
240 	elevator_put(e);
241 	return NULL;
242 }
243 
244 static void elevator_release(struct kobject *kobj)
245 {
246 	struct elevator_queue *e;
247 
248 	e = container_of(kobj, struct elevator_queue, kobj);
249 	elevator_put(e->elevator_type);
250 	kfree(e->hash);
251 	kfree(e);
252 }
253 
254 int elevator_init(struct request_queue *q, char *name)
255 {
256 	struct elevator_type *e = NULL;
257 	struct elevator_queue *eq;
258 	int ret = 0;
259 	void *data;
260 
261 	INIT_LIST_HEAD(&q->queue_head);
262 	q->last_merge = NULL;
263 	q->end_sector = 0;
264 	q->boundary_rq = NULL;
265 
266 	if (name) {
267 		e = elevator_get(name);
268 		if (!e)
269 			return -EINVAL;
270 	}
271 
272 	if (!e && *chosen_elevator) {
273 		e = elevator_get(chosen_elevator);
274 		if (!e)
275 			printk(KERN_ERR "I/O scheduler %s not found\n",
276 							chosen_elevator);
277 	}
278 
279 	if (!e) {
280 		e = elevator_get(CONFIG_DEFAULT_IOSCHED);
281 		if (!e) {
282 			printk(KERN_ERR
283 				"Default I/O scheduler not found. " \
284 				"Using noop.\n");
285 			e = elevator_get("noop");
286 		}
287 	}
288 
289 	eq = elevator_alloc(q, e);
290 	if (!eq)
291 		return -ENOMEM;
292 
293 	data = elevator_init_queue(q, eq);
294 	if (!data) {
295 		kobject_put(&eq->kobj);
296 		return -ENOMEM;
297 	}
298 
299 	elevator_attach(q, eq, data);
300 	return ret;
301 }
302 EXPORT_SYMBOL(elevator_init);
303 
304 void elevator_exit(struct elevator_queue *e)
305 {
306 	mutex_lock(&e->sysfs_lock);
307 	if (e->ops->elevator_exit_fn)
308 		e->ops->elevator_exit_fn(e);
309 	e->ops = NULL;
310 	mutex_unlock(&e->sysfs_lock);
311 
312 	kobject_put(&e->kobj);
313 }
314 EXPORT_SYMBOL(elevator_exit);
315 
316 static inline void __elv_rqhash_del(struct request *rq)
317 {
318 	hlist_del_init(&rq->hash);
319 }
320 
321 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
322 {
323 	if (ELV_ON_HASH(rq))
324 		__elv_rqhash_del(rq);
325 }
326 
327 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
328 {
329 	struct elevator_queue *e = q->elevator;
330 
331 	BUG_ON(ELV_ON_HASH(rq));
332 	hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
333 }
334 
335 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
336 {
337 	__elv_rqhash_del(rq);
338 	elv_rqhash_add(q, rq);
339 }
340 
341 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
342 {
343 	struct elevator_queue *e = q->elevator;
344 	struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
345 	struct hlist_node *entry, *next;
346 	struct request *rq;
347 
348 	hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
349 		BUG_ON(!ELV_ON_HASH(rq));
350 
351 		if (unlikely(!rq_mergeable(rq))) {
352 			__elv_rqhash_del(rq);
353 			continue;
354 		}
355 
356 		if (rq_hash_key(rq) == offset)
357 			return rq;
358 	}
359 
360 	return NULL;
361 }
362 
363 /*
364  * RB-tree support functions for inserting/lookup/removal of requests
365  * in a sorted RB tree.
366  */
367 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
368 {
369 	struct rb_node **p = &root->rb_node;
370 	struct rb_node *parent = NULL;
371 	struct request *__rq;
372 
373 	while (*p) {
374 		parent = *p;
375 		__rq = rb_entry(parent, struct request, rb_node);
376 
377 		if (blk_rq_pos(rq) < blk_rq_pos(__rq))
378 			p = &(*p)->rb_left;
379 		else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
380 			p = &(*p)->rb_right;
381 		else
382 			return __rq;
383 	}
384 
385 	rb_link_node(&rq->rb_node, parent, p);
386 	rb_insert_color(&rq->rb_node, root);
387 	return NULL;
388 }
389 EXPORT_SYMBOL(elv_rb_add);
390 
391 void elv_rb_del(struct rb_root *root, struct request *rq)
392 {
393 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
394 	rb_erase(&rq->rb_node, root);
395 	RB_CLEAR_NODE(&rq->rb_node);
396 }
397 EXPORT_SYMBOL(elv_rb_del);
398 
399 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
400 {
401 	struct rb_node *n = root->rb_node;
402 	struct request *rq;
403 
404 	while (n) {
405 		rq = rb_entry(n, struct request, rb_node);
406 
407 		if (sector < blk_rq_pos(rq))
408 			n = n->rb_left;
409 		else if (sector > blk_rq_pos(rq))
410 			n = n->rb_right;
411 		else
412 			return rq;
413 	}
414 
415 	return NULL;
416 }
417 EXPORT_SYMBOL(elv_rb_find);
418 
419 /*
420  * Insert rq into dispatch queue of q.  Queue lock must be held on
421  * entry.  rq is sort instead into the dispatch queue. To be used by
422  * specific elevators.
423  */
424 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
425 {
426 	sector_t boundary;
427 	struct list_head *entry;
428 	int stop_flags;
429 
430 	if (q->last_merge == rq)
431 		q->last_merge = NULL;
432 
433 	elv_rqhash_del(q, rq);
434 
435 	q->nr_sorted--;
436 
437 	boundary = q->end_sector;
438 	stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
439 	list_for_each_prev(entry, &q->queue_head) {
440 		struct request *pos = list_entry_rq(entry);
441 
442 		if (blk_discard_rq(rq) != blk_discard_rq(pos))
443 			break;
444 		if (rq_data_dir(rq) != rq_data_dir(pos))
445 			break;
446 		if (pos->cmd_flags & stop_flags)
447 			break;
448 		if (blk_rq_pos(rq) >= boundary) {
449 			if (blk_rq_pos(pos) < boundary)
450 				continue;
451 		} else {
452 			if (blk_rq_pos(pos) >= boundary)
453 				break;
454 		}
455 		if (blk_rq_pos(rq) >= blk_rq_pos(pos))
456 			break;
457 	}
458 
459 	list_add(&rq->queuelist, entry);
460 }
461 EXPORT_SYMBOL(elv_dispatch_sort);
462 
463 /*
464  * Insert rq into dispatch queue of q.  Queue lock must be held on
465  * entry.  rq is added to the back of the dispatch queue. To be used by
466  * specific elevators.
467  */
468 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
469 {
470 	if (q->last_merge == rq)
471 		q->last_merge = NULL;
472 
473 	elv_rqhash_del(q, rq);
474 
475 	q->nr_sorted--;
476 
477 	q->end_sector = rq_end_sector(rq);
478 	q->boundary_rq = rq;
479 	list_add_tail(&rq->queuelist, &q->queue_head);
480 }
481 EXPORT_SYMBOL(elv_dispatch_add_tail);
482 
483 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
484 {
485 	struct elevator_queue *e = q->elevator;
486 	struct request *__rq;
487 	int ret;
488 
489 	/*
490 	 * First try one-hit cache.
491 	 */
492 	if (q->last_merge) {
493 		ret = elv_try_merge(q->last_merge, bio);
494 		if (ret != ELEVATOR_NO_MERGE) {
495 			*req = q->last_merge;
496 			return ret;
497 		}
498 	}
499 
500 	if (blk_queue_nomerges(q))
501 		return ELEVATOR_NO_MERGE;
502 
503 	/*
504 	 * See if our hash lookup can find a potential backmerge.
505 	 */
506 	__rq = elv_rqhash_find(q, bio->bi_sector);
507 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
508 		*req = __rq;
509 		return ELEVATOR_BACK_MERGE;
510 	}
511 
512 	if (e->ops->elevator_merge_fn)
513 		return e->ops->elevator_merge_fn(q, req, bio);
514 
515 	return ELEVATOR_NO_MERGE;
516 }
517 
518 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
519 {
520 	struct elevator_queue *e = q->elevator;
521 
522 	if (e->ops->elevator_merged_fn)
523 		e->ops->elevator_merged_fn(q, rq, type);
524 
525 	if (type == ELEVATOR_BACK_MERGE)
526 		elv_rqhash_reposition(q, rq);
527 
528 	q->last_merge = rq;
529 }
530 
531 void elv_merge_requests(struct request_queue *q, struct request *rq,
532 			     struct request *next)
533 {
534 	struct elevator_queue *e = q->elevator;
535 
536 	if (e->ops->elevator_merge_req_fn)
537 		e->ops->elevator_merge_req_fn(q, rq, next);
538 
539 	elv_rqhash_reposition(q, rq);
540 	elv_rqhash_del(q, next);
541 
542 	q->nr_sorted--;
543 	q->last_merge = rq;
544 }
545 
546 void elv_requeue_request(struct request_queue *q, struct request *rq)
547 {
548 	/*
549 	 * it already went through dequeue, we need to decrement the
550 	 * in_flight count again
551 	 */
552 	if (blk_account_rq(rq)) {
553 		q->in_flight[rq_is_sync(rq)]--;
554 		if (blk_sorted_rq(rq))
555 			elv_deactivate_rq(q, rq);
556 	}
557 
558 	rq->cmd_flags &= ~REQ_STARTED;
559 
560 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
561 }
562 
563 void elv_drain_elevator(struct request_queue *q)
564 {
565 	static int printed;
566 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
567 		;
568 	if (q->nr_sorted == 0)
569 		return;
570 	if (printed++ < 10) {
571 		printk(KERN_ERR "%s: forced dispatching is broken "
572 		       "(nr_sorted=%u), please report this\n",
573 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
574 	}
575 }
576 
577 /*
578  * Call with queue lock held, interrupts disabled
579  */
580 void elv_quiesce_start(struct request_queue *q)
581 {
582 	if (!q->elevator)
583 		return;
584 
585 	queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
586 
587 	/*
588 	 * make sure we don't have any requests in flight
589 	 */
590 	elv_drain_elevator(q);
591 	while (q->rq.elvpriv) {
592 		__blk_run_queue(q);
593 		spin_unlock_irq(q->queue_lock);
594 		msleep(10);
595 		spin_lock_irq(q->queue_lock);
596 		elv_drain_elevator(q);
597 	}
598 }
599 
600 void elv_quiesce_end(struct request_queue *q)
601 {
602 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
603 }
604 
605 void elv_insert(struct request_queue *q, struct request *rq, int where)
606 {
607 	struct list_head *pos;
608 	unsigned ordseq;
609 	int unplug_it = 1;
610 
611 	trace_block_rq_insert(q, rq);
612 
613 	rq->q = q;
614 
615 	switch (where) {
616 	case ELEVATOR_INSERT_FRONT:
617 		rq->cmd_flags |= REQ_SOFTBARRIER;
618 
619 		list_add(&rq->queuelist, &q->queue_head);
620 		break;
621 
622 	case ELEVATOR_INSERT_BACK:
623 		rq->cmd_flags |= REQ_SOFTBARRIER;
624 		elv_drain_elevator(q);
625 		list_add_tail(&rq->queuelist, &q->queue_head);
626 		/*
627 		 * We kick the queue here for the following reasons.
628 		 * - The elevator might have returned NULL previously
629 		 *   to delay requests and returned them now.  As the
630 		 *   queue wasn't empty before this request, ll_rw_blk
631 		 *   won't run the queue on return, resulting in hang.
632 		 * - Usually, back inserted requests won't be merged
633 		 *   with anything.  There's no point in delaying queue
634 		 *   processing.
635 		 */
636 		__blk_run_queue(q);
637 		break;
638 
639 	case ELEVATOR_INSERT_SORT:
640 		BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
641 		rq->cmd_flags |= REQ_SORTED;
642 		q->nr_sorted++;
643 		if (rq_mergeable(rq)) {
644 			elv_rqhash_add(q, rq);
645 			if (!q->last_merge)
646 				q->last_merge = rq;
647 		}
648 
649 		/*
650 		 * Some ioscheds (cfq) run q->request_fn directly, so
651 		 * rq cannot be accessed after calling
652 		 * elevator_add_req_fn.
653 		 */
654 		q->elevator->ops->elevator_add_req_fn(q, rq);
655 		break;
656 
657 	case ELEVATOR_INSERT_REQUEUE:
658 		/*
659 		 * If ordered flush isn't in progress, we do front
660 		 * insertion; otherwise, requests should be requeued
661 		 * in ordseq order.
662 		 */
663 		rq->cmd_flags |= REQ_SOFTBARRIER;
664 
665 		/*
666 		 * Most requeues happen because of a busy condition,
667 		 * don't force unplug of the queue for that case.
668 		 */
669 		unplug_it = 0;
670 
671 		if (q->ordseq == 0) {
672 			list_add(&rq->queuelist, &q->queue_head);
673 			break;
674 		}
675 
676 		ordseq = blk_ordered_req_seq(rq);
677 
678 		list_for_each(pos, &q->queue_head) {
679 			struct request *pos_rq = list_entry_rq(pos);
680 			if (ordseq <= blk_ordered_req_seq(pos_rq))
681 				break;
682 		}
683 
684 		list_add_tail(&rq->queuelist, pos);
685 		break;
686 
687 	default:
688 		printk(KERN_ERR "%s: bad insertion point %d\n",
689 		       __func__, where);
690 		BUG();
691 	}
692 
693 	if (unplug_it && blk_queue_plugged(q)) {
694 		int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
695 				- queue_in_flight(q);
696 
697 		if (nrq >= q->unplug_thresh)
698 			__generic_unplug_device(q);
699 	}
700 }
701 
702 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
703 		       int plug)
704 {
705 	if (q->ordcolor)
706 		rq->cmd_flags |= REQ_ORDERED_COLOR;
707 
708 	if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
709 		/*
710 		 * toggle ordered color
711 		 */
712 		if (blk_barrier_rq(rq))
713 			q->ordcolor ^= 1;
714 
715 		/*
716 		 * barriers implicitly indicate back insertion
717 		 */
718 		if (where == ELEVATOR_INSERT_SORT)
719 			where = ELEVATOR_INSERT_BACK;
720 
721 		/*
722 		 * this request is scheduling boundary, update
723 		 * end_sector
724 		 */
725 		if (blk_fs_request(rq) || blk_discard_rq(rq)) {
726 			q->end_sector = rq_end_sector(rq);
727 			q->boundary_rq = rq;
728 		}
729 	} else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
730 		    where == ELEVATOR_INSERT_SORT)
731 		where = ELEVATOR_INSERT_BACK;
732 
733 	if (plug)
734 		blk_plug_device(q);
735 
736 	elv_insert(q, rq, where);
737 }
738 EXPORT_SYMBOL(__elv_add_request);
739 
740 void elv_add_request(struct request_queue *q, struct request *rq, int where,
741 		     int plug)
742 {
743 	unsigned long flags;
744 
745 	spin_lock_irqsave(q->queue_lock, flags);
746 	__elv_add_request(q, rq, where, plug);
747 	spin_unlock_irqrestore(q->queue_lock, flags);
748 }
749 EXPORT_SYMBOL(elv_add_request);
750 
751 int elv_queue_empty(struct request_queue *q)
752 {
753 	struct elevator_queue *e = q->elevator;
754 
755 	if (!list_empty(&q->queue_head))
756 		return 0;
757 
758 	if (e->ops->elevator_queue_empty_fn)
759 		return e->ops->elevator_queue_empty_fn(q);
760 
761 	return 1;
762 }
763 EXPORT_SYMBOL(elv_queue_empty);
764 
765 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
766 {
767 	struct elevator_queue *e = q->elevator;
768 
769 	if (e->ops->elevator_latter_req_fn)
770 		return e->ops->elevator_latter_req_fn(q, rq);
771 	return NULL;
772 }
773 
774 struct request *elv_former_request(struct request_queue *q, struct request *rq)
775 {
776 	struct elevator_queue *e = q->elevator;
777 
778 	if (e->ops->elevator_former_req_fn)
779 		return e->ops->elevator_former_req_fn(q, rq);
780 	return NULL;
781 }
782 
783 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
784 {
785 	struct elevator_queue *e = q->elevator;
786 
787 	if (e->ops->elevator_set_req_fn)
788 		return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
789 
790 	rq->elevator_private = NULL;
791 	return 0;
792 }
793 
794 void elv_put_request(struct request_queue *q, struct request *rq)
795 {
796 	struct elevator_queue *e = q->elevator;
797 
798 	if (e->ops->elevator_put_req_fn)
799 		e->ops->elevator_put_req_fn(rq);
800 }
801 
802 int elv_may_queue(struct request_queue *q, int rw)
803 {
804 	struct elevator_queue *e = q->elevator;
805 
806 	if (e->ops->elevator_may_queue_fn)
807 		return e->ops->elevator_may_queue_fn(q, rw);
808 
809 	return ELV_MQUEUE_MAY;
810 }
811 
812 void elv_abort_queue(struct request_queue *q)
813 {
814 	struct request *rq;
815 
816 	while (!list_empty(&q->queue_head)) {
817 		rq = list_entry_rq(q->queue_head.next);
818 		rq->cmd_flags |= REQ_QUIET;
819 		trace_block_rq_abort(q, rq);
820 		/*
821 		 * Mark this request as started so we don't trigger
822 		 * any debug logic in the end I/O path.
823 		 */
824 		blk_start_request(rq);
825 		__blk_end_request_all(rq, -EIO);
826 	}
827 }
828 EXPORT_SYMBOL(elv_abort_queue);
829 
830 void elv_completed_request(struct request_queue *q, struct request *rq)
831 {
832 	struct elevator_queue *e = q->elevator;
833 
834 	/*
835 	 * request is released from the driver, io must be done
836 	 */
837 	if (blk_account_rq(rq)) {
838 		q->in_flight[rq_is_sync(rq)]--;
839 		if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
840 			e->ops->elevator_completed_req_fn(q, rq);
841 	}
842 
843 	/*
844 	 * Check if the queue is waiting for fs requests to be
845 	 * drained for flush sequence.
846 	 */
847 	if (unlikely(q->ordseq)) {
848 		struct request *next = NULL;
849 
850 		if (!list_empty(&q->queue_head))
851 			next = list_entry_rq(q->queue_head.next);
852 
853 		if (!queue_in_flight(q) &&
854 		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
855 		    (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
856 			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
857 			__blk_run_queue(q);
858 		}
859 	}
860 }
861 
862 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
863 
864 static ssize_t
865 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
866 {
867 	struct elv_fs_entry *entry = to_elv(attr);
868 	struct elevator_queue *e;
869 	ssize_t error;
870 
871 	if (!entry->show)
872 		return -EIO;
873 
874 	e = container_of(kobj, struct elevator_queue, kobj);
875 	mutex_lock(&e->sysfs_lock);
876 	error = e->ops ? entry->show(e, page) : -ENOENT;
877 	mutex_unlock(&e->sysfs_lock);
878 	return error;
879 }
880 
881 static ssize_t
882 elv_attr_store(struct kobject *kobj, struct attribute *attr,
883 	       const char *page, size_t length)
884 {
885 	struct elv_fs_entry *entry = to_elv(attr);
886 	struct elevator_queue *e;
887 	ssize_t error;
888 
889 	if (!entry->store)
890 		return -EIO;
891 
892 	e = container_of(kobj, struct elevator_queue, kobj);
893 	mutex_lock(&e->sysfs_lock);
894 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
895 	mutex_unlock(&e->sysfs_lock);
896 	return error;
897 }
898 
899 static struct sysfs_ops elv_sysfs_ops = {
900 	.show	= elv_attr_show,
901 	.store	= elv_attr_store,
902 };
903 
904 static struct kobj_type elv_ktype = {
905 	.sysfs_ops	= &elv_sysfs_ops,
906 	.release	= elevator_release,
907 };
908 
909 int elv_register_queue(struct request_queue *q)
910 {
911 	struct elevator_queue *e = q->elevator;
912 	int error;
913 
914 	error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
915 	if (!error) {
916 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
917 		if (attr) {
918 			while (attr->attr.name) {
919 				if (sysfs_create_file(&e->kobj, &attr->attr))
920 					break;
921 				attr++;
922 			}
923 		}
924 		kobject_uevent(&e->kobj, KOBJ_ADD);
925 	}
926 	return error;
927 }
928 
929 static void __elv_unregister_queue(struct elevator_queue *e)
930 {
931 	kobject_uevent(&e->kobj, KOBJ_REMOVE);
932 	kobject_del(&e->kobj);
933 }
934 
935 void elv_unregister_queue(struct request_queue *q)
936 {
937 	if (q)
938 		__elv_unregister_queue(q->elevator);
939 }
940 
941 void elv_register(struct elevator_type *e)
942 {
943 	char *def = "";
944 
945 	spin_lock(&elv_list_lock);
946 	BUG_ON(elevator_find(e->elevator_name));
947 	list_add_tail(&e->list, &elv_list);
948 	spin_unlock(&elv_list_lock);
949 
950 	if (!strcmp(e->elevator_name, chosen_elevator) ||
951 			(!*chosen_elevator &&
952 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
953 				def = " (default)";
954 
955 	printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
956 								def);
957 }
958 EXPORT_SYMBOL_GPL(elv_register);
959 
960 void elv_unregister(struct elevator_type *e)
961 {
962 	struct task_struct *g, *p;
963 
964 	/*
965 	 * Iterate every thread in the process to remove the io contexts.
966 	 */
967 	if (e->ops.trim) {
968 		read_lock(&tasklist_lock);
969 		do_each_thread(g, p) {
970 			task_lock(p);
971 			if (p->io_context)
972 				e->ops.trim(p->io_context);
973 			task_unlock(p);
974 		} while_each_thread(g, p);
975 		read_unlock(&tasklist_lock);
976 	}
977 
978 	spin_lock(&elv_list_lock);
979 	list_del_init(&e->list);
980 	spin_unlock(&elv_list_lock);
981 }
982 EXPORT_SYMBOL_GPL(elv_unregister);
983 
984 /*
985  * switch to new_e io scheduler. be careful not to introduce deadlocks -
986  * we don't free the old io scheduler, before we have allocated what we
987  * need for the new one. this way we have a chance of going back to the old
988  * one, if the new one fails init for some reason.
989  */
990 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
991 {
992 	struct elevator_queue *old_elevator, *e;
993 	void *data;
994 
995 	/*
996 	 * Allocate new elevator
997 	 */
998 	e = elevator_alloc(q, new_e);
999 	if (!e)
1000 		return 0;
1001 
1002 	data = elevator_init_queue(q, e);
1003 	if (!data) {
1004 		kobject_put(&e->kobj);
1005 		return 0;
1006 	}
1007 
1008 	/*
1009 	 * Turn on BYPASS and drain all requests w/ elevator private data
1010 	 */
1011 	spin_lock_irq(q->queue_lock);
1012 	elv_quiesce_start(q);
1013 
1014 	/*
1015 	 * Remember old elevator.
1016 	 */
1017 	old_elevator = q->elevator;
1018 
1019 	/*
1020 	 * attach and start new elevator
1021 	 */
1022 	elevator_attach(q, e, data);
1023 
1024 	spin_unlock_irq(q->queue_lock);
1025 
1026 	__elv_unregister_queue(old_elevator);
1027 
1028 	if (elv_register_queue(q))
1029 		goto fail_register;
1030 
1031 	/*
1032 	 * finally exit old elevator and turn off BYPASS.
1033 	 */
1034 	elevator_exit(old_elevator);
1035 	spin_lock_irq(q->queue_lock);
1036 	elv_quiesce_end(q);
1037 	spin_unlock_irq(q->queue_lock);
1038 
1039 	blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1040 
1041 	return 1;
1042 
1043 fail_register:
1044 	/*
1045 	 * switch failed, exit the new io scheduler and reattach the old
1046 	 * one again (along with re-adding the sysfs dir)
1047 	 */
1048 	elevator_exit(e);
1049 	q->elevator = old_elevator;
1050 	elv_register_queue(q);
1051 
1052 	spin_lock_irq(q->queue_lock);
1053 	queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1054 	spin_unlock_irq(q->queue_lock);
1055 
1056 	return 0;
1057 }
1058 
1059 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1060 			  size_t count)
1061 {
1062 	char elevator_name[ELV_NAME_MAX];
1063 	struct elevator_type *e;
1064 
1065 	if (!q->elevator)
1066 		return count;
1067 
1068 	strlcpy(elevator_name, name, sizeof(elevator_name));
1069 	strstrip(elevator_name);
1070 
1071 	e = elevator_get(elevator_name);
1072 	if (!e) {
1073 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1074 		return -EINVAL;
1075 	}
1076 
1077 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1078 		elevator_put(e);
1079 		return count;
1080 	}
1081 
1082 	if (!elevator_switch(q, e))
1083 		printk(KERN_ERR "elevator: switch to %s failed\n",
1084 							elevator_name);
1085 	return count;
1086 }
1087 
1088 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1089 {
1090 	struct elevator_queue *e = q->elevator;
1091 	struct elevator_type *elv;
1092 	struct elevator_type *__e;
1093 	int len = 0;
1094 
1095 	if (!q->elevator)
1096 		return sprintf(name, "none\n");
1097 
1098 	elv = e->elevator_type;
1099 
1100 	spin_lock(&elv_list_lock);
1101 	list_for_each_entry(__e, &elv_list, list) {
1102 		if (!strcmp(elv->elevator_name, __e->elevator_name))
1103 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
1104 		else
1105 			len += sprintf(name+len, "%s ", __e->elevator_name);
1106 	}
1107 	spin_unlock(&elv_list_lock);
1108 
1109 	len += sprintf(len+name, "\n");
1110 	return len;
1111 }
1112 
1113 struct request *elv_rb_former_request(struct request_queue *q,
1114 				      struct request *rq)
1115 {
1116 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
1117 
1118 	if (rbprev)
1119 		return rb_entry_rq(rbprev);
1120 
1121 	return NULL;
1122 }
1123 EXPORT_SYMBOL(elv_rb_former_request);
1124 
1125 struct request *elv_rb_latter_request(struct request_queue *q,
1126 				      struct request *rq)
1127 {
1128 	struct rb_node *rbnext = rb_next(&rq->rb_node);
1129 
1130 	if (rbnext)
1131 		return rb_entry_rq(rbnext);
1132 
1133 	return NULL;
1134 }
1135 EXPORT_SYMBOL(elv_rb_latter_request);
1136