xref: /linux/block/elevator.c (revision 2056a782f8e7e65fd4bfd027506b4ce1c5e9ccd4)
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@suse.de> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/config.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/compiler.h>
35 #include <linux/delay.h>
36 #include <linux/blktrace_api.h>
37 
38 #include <asm/uaccess.h>
39 
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
42 
43 /*
44  * can we safely merge with this request?
45  */
46 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
47 {
48 	if (!rq_mergeable(rq))
49 		return 0;
50 
51 	/*
52 	 * different data direction or already started, don't merge
53 	 */
54 	if (bio_data_dir(bio) != rq_data_dir(rq))
55 		return 0;
56 
57 	/*
58 	 * same device and no special stuff set, merge is ok
59 	 */
60 	if (rq->rq_disk == bio->bi_bdev->bd_disk &&
61 	    !rq->waiting && !rq->special)
62 		return 1;
63 
64 	return 0;
65 }
66 EXPORT_SYMBOL(elv_rq_merge_ok);
67 
68 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
69 {
70 	int ret = ELEVATOR_NO_MERGE;
71 
72 	/*
73 	 * we can merge and sequence is ok, check if it's possible
74 	 */
75 	if (elv_rq_merge_ok(__rq, bio)) {
76 		if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
77 			ret = ELEVATOR_BACK_MERGE;
78 		else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
79 			ret = ELEVATOR_FRONT_MERGE;
80 	}
81 
82 	return ret;
83 }
84 
85 static struct elevator_type *elevator_find(const char *name)
86 {
87 	struct elevator_type *e = NULL;
88 	struct list_head *entry;
89 
90 	list_for_each(entry, &elv_list) {
91 		struct elevator_type *__e;
92 
93 		__e = list_entry(entry, struct elevator_type, list);
94 
95 		if (!strcmp(__e->elevator_name, name)) {
96 			e = __e;
97 			break;
98 		}
99 	}
100 
101 	return e;
102 }
103 
104 static void elevator_put(struct elevator_type *e)
105 {
106 	module_put(e->elevator_owner);
107 }
108 
109 static struct elevator_type *elevator_get(const char *name)
110 {
111 	struct elevator_type *e;
112 
113 	spin_lock_irq(&elv_list_lock);
114 
115 	e = elevator_find(name);
116 	if (e && !try_module_get(e->elevator_owner))
117 		e = NULL;
118 
119 	spin_unlock_irq(&elv_list_lock);
120 
121 	return e;
122 }
123 
124 static int elevator_attach(request_queue_t *q, struct elevator_queue *eq)
125 {
126 	int ret = 0;
127 
128 	q->elevator = eq;
129 
130 	if (eq->ops->elevator_init_fn)
131 		ret = eq->ops->elevator_init_fn(q, eq);
132 
133 	return ret;
134 }
135 
136 static char chosen_elevator[16];
137 
138 static int __init elevator_setup(char *str)
139 {
140 	/*
141 	 * Be backwards-compatible with previous kernels, so users
142 	 * won't get the wrong elevator.
143 	 */
144 	if (!strcmp(str, "as"))
145 		strcpy(chosen_elevator, "anticipatory");
146 	else
147 		strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
148 	return 0;
149 }
150 
151 __setup("elevator=", elevator_setup);
152 
153 static struct kobj_type elv_ktype;
154 
155 static elevator_t *elevator_alloc(struct elevator_type *e)
156 {
157 	elevator_t *eq = kmalloc(sizeof(elevator_t), GFP_KERNEL);
158 	if (eq) {
159 		memset(eq, 0, sizeof(*eq));
160 		eq->ops = &e->ops;
161 		eq->elevator_type = e;
162 		kobject_init(&eq->kobj);
163 		snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
164 		eq->kobj.ktype = &elv_ktype;
165 		mutex_init(&eq->sysfs_lock);
166 	} else {
167 		elevator_put(e);
168 	}
169 	return eq;
170 }
171 
172 static void elevator_release(struct kobject *kobj)
173 {
174 	elevator_t *e = container_of(kobj, elevator_t, kobj);
175 	elevator_put(e->elevator_type);
176 	kfree(e);
177 }
178 
179 int elevator_init(request_queue_t *q, char *name)
180 {
181 	struct elevator_type *e = NULL;
182 	struct elevator_queue *eq;
183 	int ret = 0;
184 
185 	INIT_LIST_HEAD(&q->queue_head);
186 	q->last_merge = NULL;
187 	q->end_sector = 0;
188 	q->boundary_rq = NULL;
189 
190 	if (name && !(e = elevator_get(name)))
191 		return -EINVAL;
192 
193 	if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
194 		printk("I/O scheduler %s not found\n", chosen_elevator);
195 
196 	if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
197 		printk("Default I/O scheduler not found, using no-op\n");
198 		e = elevator_get("noop");
199 	}
200 
201 	eq = elevator_alloc(e);
202 	if (!eq)
203 		return -ENOMEM;
204 
205 	ret = elevator_attach(q, eq);
206 	if (ret)
207 		kobject_put(&eq->kobj);
208 
209 	return ret;
210 }
211 
212 void elevator_exit(elevator_t *e)
213 {
214 	mutex_lock(&e->sysfs_lock);
215 	if (e->ops->elevator_exit_fn)
216 		e->ops->elevator_exit_fn(e);
217 	e->ops = NULL;
218 	mutex_unlock(&e->sysfs_lock);
219 
220 	kobject_put(&e->kobj);
221 }
222 
223 /*
224  * Insert rq into dispatch queue of q.  Queue lock must be held on
225  * entry.  If sort != 0, rq is sort-inserted; otherwise, rq will be
226  * appended to the dispatch queue.  To be used by specific elevators.
227  */
228 void elv_dispatch_sort(request_queue_t *q, struct request *rq)
229 {
230 	sector_t boundary;
231 	struct list_head *entry;
232 
233 	if (q->last_merge == rq)
234 		q->last_merge = NULL;
235 	q->nr_sorted--;
236 
237 	boundary = q->end_sector;
238 
239 	list_for_each_prev(entry, &q->queue_head) {
240 		struct request *pos = list_entry_rq(entry);
241 
242 		if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
243 			break;
244 		if (rq->sector >= boundary) {
245 			if (pos->sector < boundary)
246 				continue;
247 		} else {
248 			if (pos->sector >= boundary)
249 				break;
250 		}
251 		if (rq->sector >= pos->sector)
252 			break;
253 	}
254 
255 	list_add(&rq->queuelist, entry);
256 }
257 
258 int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
259 {
260 	elevator_t *e = q->elevator;
261 	int ret;
262 
263 	if (q->last_merge) {
264 		ret = elv_try_merge(q->last_merge, bio);
265 		if (ret != ELEVATOR_NO_MERGE) {
266 			*req = q->last_merge;
267 			return ret;
268 		}
269 	}
270 
271 	if (e->ops->elevator_merge_fn)
272 		return e->ops->elevator_merge_fn(q, req, bio);
273 
274 	return ELEVATOR_NO_MERGE;
275 }
276 
277 void elv_merged_request(request_queue_t *q, struct request *rq)
278 {
279 	elevator_t *e = q->elevator;
280 
281 	if (e->ops->elevator_merged_fn)
282 		e->ops->elevator_merged_fn(q, rq);
283 
284 	q->last_merge = rq;
285 }
286 
287 void elv_merge_requests(request_queue_t *q, struct request *rq,
288 			     struct request *next)
289 {
290 	elevator_t *e = q->elevator;
291 
292 	if (e->ops->elevator_merge_req_fn)
293 		e->ops->elevator_merge_req_fn(q, rq, next);
294 	q->nr_sorted--;
295 
296 	q->last_merge = rq;
297 }
298 
299 void elv_requeue_request(request_queue_t *q, struct request *rq)
300 {
301 	elevator_t *e = q->elevator;
302 
303 	/*
304 	 * it already went through dequeue, we need to decrement the
305 	 * in_flight count again
306 	 */
307 	if (blk_account_rq(rq)) {
308 		q->in_flight--;
309 		if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
310 			e->ops->elevator_deactivate_req_fn(q, rq);
311 	}
312 
313 	rq->flags &= ~REQ_STARTED;
314 
315 	elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
316 }
317 
318 static void elv_drain_elevator(request_queue_t *q)
319 {
320 	static int printed;
321 	while (q->elevator->ops->elevator_dispatch_fn(q, 1))
322 		;
323 	if (q->nr_sorted == 0)
324 		return;
325 	if (printed++ < 10) {
326 		printk(KERN_ERR "%s: forced dispatching is broken "
327 		       "(nr_sorted=%u), please report this\n",
328 		       q->elevator->elevator_type->elevator_name, q->nr_sorted);
329 	}
330 }
331 
332 void elv_insert(request_queue_t *q, struct request *rq, int where)
333 {
334 	struct list_head *pos;
335 	unsigned ordseq;
336 
337 	blk_add_trace_rq(q, rq, BLK_TA_INSERT);
338 
339 	rq->q = q;
340 
341 	switch (where) {
342 	case ELEVATOR_INSERT_FRONT:
343 		rq->flags |= REQ_SOFTBARRIER;
344 
345 		list_add(&rq->queuelist, &q->queue_head);
346 		break;
347 
348 	case ELEVATOR_INSERT_BACK:
349 		rq->flags |= REQ_SOFTBARRIER;
350 		elv_drain_elevator(q);
351 		list_add_tail(&rq->queuelist, &q->queue_head);
352 		/*
353 		 * We kick the queue here for the following reasons.
354 		 * - The elevator might have returned NULL previously
355 		 *   to delay requests and returned them now.  As the
356 		 *   queue wasn't empty before this request, ll_rw_blk
357 		 *   won't run the queue on return, resulting in hang.
358 		 * - Usually, back inserted requests won't be merged
359 		 *   with anything.  There's no point in delaying queue
360 		 *   processing.
361 		 */
362 		blk_remove_plug(q);
363 		q->request_fn(q);
364 		break;
365 
366 	case ELEVATOR_INSERT_SORT:
367 		BUG_ON(!blk_fs_request(rq));
368 		rq->flags |= REQ_SORTED;
369 		q->nr_sorted++;
370 		if (q->last_merge == NULL && rq_mergeable(rq))
371 			q->last_merge = rq;
372 		/*
373 		 * Some ioscheds (cfq) run q->request_fn directly, so
374 		 * rq cannot be accessed after calling
375 		 * elevator_add_req_fn.
376 		 */
377 		q->elevator->ops->elevator_add_req_fn(q, rq);
378 		break;
379 
380 	case ELEVATOR_INSERT_REQUEUE:
381 		/*
382 		 * If ordered flush isn't in progress, we do front
383 		 * insertion; otherwise, requests should be requeued
384 		 * in ordseq order.
385 		 */
386 		rq->flags |= REQ_SOFTBARRIER;
387 
388 		if (q->ordseq == 0) {
389 			list_add(&rq->queuelist, &q->queue_head);
390 			break;
391 		}
392 
393 		ordseq = blk_ordered_req_seq(rq);
394 
395 		list_for_each(pos, &q->queue_head) {
396 			struct request *pos_rq = list_entry_rq(pos);
397 			if (ordseq <= blk_ordered_req_seq(pos_rq))
398 				break;
399 		}
400 
401 		list_add_tail(&rq->queuelist, pos);
402 		break;
403 
404 	default:
405 		printk(KERN_ERR "%s: bad insertion point %d\n",
406 		       __FUNCTION__, where);
407 		BUG();
408 	}
409 
410 	if (blk_queue_plugged(q)) {
411 		int nrq = q->rq.count[READ] + q->rq.count[WRITE]
412 			- q->in_flight;
413 
414 		if (nrq >= q->unplug_thresh)
415 			__generic_unplug_device(q);
416 	}
417 }
418 
419 void __elv_add_request(request_queue_t *q, struct request *rq, int where,
420 		       int plug)
421 {
422 	if (q->ordcolor)
423 		rq->flags |= REQ_ORDERED_COLOR;
424 
425 	if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
426 		/*
427 		 * toggle ordered color
428 		 */
429 		if (blk_barrier_rq(rq))
430 			q->ordcolor ^= 1;
431 
432 		/*
433 		 * barriers implicitly indicate back insertion
434 		 */
435 		if (where == ELEVATOR_INSERT_SORT)
436 			where = ELEVATOR_INSERT_BACK;
437 
438 		/*
439 		 * this request is scheduling boundary, update
440 		 * end_sector
441 		 */
442 		if (blk_fs_request(rq)) {
443 			q->end_sector = rq_end_sector(rq);
444 			q->boundary_rq = rq;
445 		}
446 	} else if (!(rq->flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
447 		where = ELEVATOR_INSERT_BACK;
448 
449 	if (plug)
450 		blk_plug_device(q);
451 
452 	elv_insert(q, rq, where);
453 }
454 
455 void elv_add_request(request_queue_t *q, struct request *rq, int where,
456 		     int plug)
457 {
458 	unsigned long flags;
459 
460 	spin_lock_irqsave(q->queue_lock, flags);
461 	__elv_add_request(q, rq, where, plug);
462 	spin_unlock_irqrestore(q->queue_lock, flags);
463 }
464 
465 static inline struct request *__elv_next_request(request_queue_t *q)
466 {
467 	struct request *rq;
468 
469 	while (1) {
470 		while (!list_empty(&q->queue_head)) {
471 			rq = list_entry_rq(q->queue_head.next);
472 			if (blk_do_ordered(q, &rq))
473 				return rq;
474 		}
475 
476 		if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
477 			return NULL;
478 	}
479 }
480 
481 struct request *elv_next_request(request_queue_t *q)
482 {
483 	struct request *rq;
484 	int ret;
485 
486 	while ((rq = __elv_next_request(q)) != NULL) {
487 		if (!(rq->flags & REQ_STARTED)) {
488 			elevator_t *e = q->elevator;
489 
490 			/*
491 			 * This is the first time the device driver
492 			 * sees this request (possibly after
493 			 * requeueing).  Notify IO scheduler.
494 			 */
495 			if (blk_sorted_rq(rq) &&
496 			    e->ops->elevator_activate_req_fn)
497 				e->ops->elevator_activate_req_fn(q, rq);
498 
499 			/*
500 			 * just mark as started even if we don't start
501 			 * it, a request that has been delayed should
502 			 * not be passed by new incoming requests
503 			 */
504 			rq->flags |= REQ_STARTED;
505 			blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
506 		}
507 
508 		if (!q->boundary_rq || q->boundary_rq == rq) {
509 			q->end_sector = rq_end_sector(rq);
510 			q->boundary_rq = NULL;
511 		}
512 
513 		if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn)
514 			break;
515 
516 		ret = q->prep_rq_fn(q, rq);
517 		if (ret == BLKPREP_OK) {
518 			break;
519 		} else if (ret == BLKPREP_DEFER) {
520 			/*
521 			 * the request may have been (partially) prepped.
522 			 * we need to keep this request in the front to
523 			 * avoid resource deadlock.  REQ_STARTED will
524 			 * prevent other fs requests from passing this one.
525 			 */
526 			rq = NULL;
527 			break;
528 		} else if (ret == BLKPREP_KILL) {
529 			int nr_bytes = rq->hard_nr_sectors << 9;
530 
531 			if (!nr_bytes)
532 				nr_bytes = rq->data_len;
533 
534 			blkdev_dequeue_request(rq);
535 			rq->flags |= REQ_QUIET;
536 			end_that_request_chunk(rq, 0, nr_bytes);
537 			end_that_request_last(rq, 0);
538 		} else {
539 			printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
540 								ret);
541 			break;
542 		}
543 	}
544 
545 	return rq;
546 }
547 
548 void elv_dequeue_request(request_queue_t *q, struct request *rq)
549 {
550 	BUG_ON(list_empty(&rq->queuelist));
551 
552 	list_del_init(&rq->queuelist);
553 
554 	/*
555 	 * the time frame between a request being removed from the lists
556 	 * and to it is freed is accounted as io that is in progress at
557 	 * the driver side.
558 	 */
559 	if (blk_account_rq(rq))
560 		q->in_flight++;
561 }
562 
563 int elv_queue_empty(request_queue_t *q)
564 {
565 	elevator_t *e = q->elevator;
566 
567 	if (!list_empty(&q->queue_head))
568 		return 0;
569 
570 	if (e->ops->elevator_queue_empty_fn)
571 		return e->ops->elevator_queue_empty_fn(q);
572 
573 	return 1;
574 }
575 
576 struct request *elv_latter_request(request_queue_t *q, struct request *rq)
577 {
578 	elevator_t *e = q->elevator;
579 
580 	if (e->ops->elevator_latter_req_fn)
581 		return e->ops->elevator_latter_req_fn(q, rq);
582 	return NULL;
583 }
584 
585 struct request *elv_former_request(request_queue_t *q, struct request *rq)
586 {
587 	elevator_t *e = q->elevator;
588 
589 	if (e->ops->elevator_former_req_fn)
590 		return e->ops->elevator_former_req_fn(q, rq);
591 	return NULL;
592 }
593 
594 int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
595 		    gfp_t gfp_mask)
596 {
597 	elevator_t *e = q->elevator;
598 
599 	if (e->ops->elevator_set_req_fn)
600 		return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
601 
602 	rq->elevator_private = NULL;
603 	return 0;
604 }
605 
606 void elv_put_request(request_queue_t *q, struct request *rq)
607 {
608 	elevator_t *e = q->elevator;
609 
610 	if (e->ops->elevator_put_req_fn)
611 		e->ops->elevator_put_req_fn(q, rq);
612 }
613 
614 int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
615 {
616 	elevator_t *e = q->elevator;
617 
618 	if (e->ops->elevator_may_queue_fn)
619 		return e->ops->elevator_may_queue_fn(q, rw, bio);
620 
621 	return ELV_MQUEUE_MAY;
622 }
623 
624 void elv_completed_request(request_queue_t *q, struct request *rq)
625 {
626 	elevator_t *e = q->elevator;
627 
628 	/*
629 	 * request is released from the driver, io must be done
630 	 */
631 	if (blk_account_rq(rq)) {
632 		q->in_flight--;
633 		if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
634 			e->ops->elevator_completed_req_fn(q, rq);
635 	}
636 
637 	/*
638 	 * Check if the queue is waiting for fs requests to be
639 	 * drained for flush sequence.
640 	 */
641 	if (unlikely(q->ordseq)) {
642 		struct request *first_rq = list_entry_rq(q->queue_head.next);
643 		if (q->in_flight == 0 &&
644 		    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
645 		    blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
646 			blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
647 			q->request_fn(q);
648 		}
649 	}
650 }
651 
652 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
653 
654 static ssize_t
655 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
656 {
657 	elevator_t *e = container_of(kobj, elevator_t, kobj);
658 	struct elv_fs_entry *entry = to_elv(attr);
659 	ssize_t error;
660 
661 	if (!entry->show)
662 		return -EIO;
663 
664 	mutex_lock(&e->sysfs_lock);
665 	error = e->ops ? entry->show(e, page) : -ENOENT;
666 	mutex_unlock(&e->sysfs_lock);
667 	return error;
668 }
669 
670 static ssize_t
671 elv_attr_store(struct kobject *kobj, struct attribute *attr,
672 	       const char *page, size_t length)
673 {
674 	elevator_t *e = container_of(kobj, elevator_t, kobj);
675 	struct elv_fs_entry *entry = to_elv(attr);
676 	ssize_t error;
677 
678 	if (!entry->store)
679 		return -EIO;
680 
681 	mutex_lock(&e->sysfs_lock);
682 	error = e->ops ? entry->store(e, page, length) : -ENOENT;
683 	mutex_unlock(&e->sysfs_lock);
684 	return error;
685 }
686 
687 static struct sysfs_ops elv_sysfs_ops = {
688 	.show	= elv_attr_show,
689 	.store	= elv_attr_store,
690 };
691 
692 static struct kobj_type elv_ktype = {
693 	.sysfs_ops	= &elv_sysfs_ops,
694 	.release	= elevator_release,
695 };
696 
697 int elv_register_queue(struct request_queue *q)
698 {
699 	elevator_t *e = q->elevator;
700 	int error;
701 
702 	e->kobj.parent = &q->kobj;
703 
704 	error = kobject_add(&e->kobj);
705 	if (!error) {
706 		struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
707 		if (attr) {
708 			while (attr->attr.name) {
709 				if (sysfs_create_file(&e->kobj, &attr->attr))
710 					break;
711 				attr++;
712 			}
713 		}
714 		kobject_uevent(&e->kobj, KOBJ_ADD);
715 	}
716 	return error;
717 }
718 
719 void elv_unregister_queue(struct request_queue *q)
720 {
721 	if (q) {
722 		elevator_t *e = q->elevator;
723 		kobject_uevent(&e->kobj, KOBJ_REMOVE);
724 		kobject_del(&e->kobj);
725 	}
726 }
727 
728 int elv_register(struct elevator_type *e)
729 {
730 	spin_lock_irq(&elv_list_lock);
731 	if (elevator_find(e->elevator_name))
732 		BUG();
733 	list_add_tail(&e->list, &elv_list);
734 	spin_unlock_irq(&elv_list_lock);
735 
736 	printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
737 	if (!strcmp(e->elevator_name, chosen_elevator) ||
738 			(!*chosen_elevator &&
739 			 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
740 				printk(" (default)");
741 	printk("\n");
742 	return 0;
743 }
744 EXPORT_SYMBOL_GPL(elv_register);
745 
746 void elv_unregister(struct elevator_type *e)
747 {
748 	struct task_struct *g, *p;
749 
750 	/*
751 	 * Iterate every thread in the process to remove the io contexts.
752 	 */
753 	if (e->ops.trim) {
754 		read_lock(&tasklist_lock);
755 		do_each_thread(g, p) {
756 			task_lock(p);
757 			e->ops.trim(p->io_context);
758 			task_unlock(p);
759 		} while_each_thread(g, p);
760 		read_unlock(&tasklist_lock);
761 	}
762 
763 	spin_lock_irq(&elv_list_lock);
764 	list_del_init(&e->list);
765 	spin_unlock_irq(&elv_list_lock);
766 }
767 EXPORT_SYMBOL_GPL(elv_unregister);
768 
769 /*
770  * switch to new_e io scheduler. be careful not to introduce deadlocks -
771  * we don't free the old io scheduler, before we have allocated what we
772  * need for the new one. this way we have a chance of going back to the old
773  * one, if the new one fails init for some reason.
774  */
775 static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
776 {
777 	elevator_t *old_elevator, *e;
778 
779 	/*
780 	 * Allocate new elevator
781 	 */
782 	e = elevator_alloc(new_e);
783 	if (!e)
784 		return 0;
785 
786 	/*
787 	 * Turn on BYPASS and drain all requests w/ elevator private data
788 	 */
789 	spin_lock_irq(q->queue_lock);
790 
791 	set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
792 
793 	elv_drain_elevator(q);
794 
795 	while (q->rq.elvpriv) {
796 		blk_remove_plug(q);
797 		q->request_fn(q);
798 		spin_unlock_irq(q->queue_lock);
799 		msleep(10);
800 		spin_lock_irq(q->queue_lock);
801 		elv_drain_elevator(q);
802 	}
803 
804 	spin_unlock_irq(q->queue_lock);
805 
806 	/*
807 	 * unregister old elevator data
808 	 */
809 	elv_unregister_queue(q);
810 	old_elevator = q->elevator;
811 
812 	/*
813 	 * attach and start new elevator
814 	 */
815 	if (elevator_attach(q, e))
816 		goto fail;
817 
818 	if (elv_register_queue(q))
819 		goto fail_register;
820 
821 	/*
822 	 * finally exit old elevator and turn off BYPASS.
823 	 */
824 	elevator_exit(old_elevator);
825 	clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
826 	return 1;
827 
828 fail_register:
829 	/*
830 	 * switch failed, exit the new io scheduler and reattach the old
831 	 * one again (along with re-adding the sysfs dir)
832 	 */
833 	elevator_exit(e);
834 	e = NULL;
835 fail:
836 	q->elevator = old_elevator;
837 	elv_register_queue(q);
838 	clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
839 	if (e)
840 		kobject_put(&e->kobj);
841 	return 0;
842 }
843 
844 ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
845 {
846 	char elevator_name[ELV_NAME_MAX];
847 	size_t len;
848 	struct elevator_type *e;
849 
850 	elevator_name[sizeof(elevator_name) - 1] = '\0';
851 	strncpy(elevator_name, name, sizeof(elevator_name) - 1);
852 	len = strlen(elevator_name);
853 
854 	if (len && elevator_name[len - 1] == '\n')
855 		elevator_name[len - 1] = '\0';
856 
857 	e = elevator_get(elevator_name);
858 	if (!e) {
859 		printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
860 		return -EINVAL;
861 	}
862 
863 	if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
864 		elevator_put(e);
865 		return count;
866 	}
867 
868 	if (!elevator_switch(q, e))
869 		printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
870 	return count;
871 }
872 
873 ssize_t elv_iosched_show(request_queue_t *q, char *name)
874 {
875 	elevator_t *e = q->elevator;
876 	struct elevator_type *elv = e->elevator_type;
877 	struct list_head *entry;
878 	int len = 0;
879 
880 	spin_lock_irq(q->queue_lock);
881 	list_for_each(entry, &elv_list) {
882 		struct elevator_type *__e;
883 
884 		__e = list_entry(entry, struct elevator_type, list);
885 		if (!strcmp(elv->elevator_name, __e->elevator_name))
886 			len += sprintf(name+len, "[%s] ", elv->elevator_name);
887 		else
888 			len += sprintf(name+len, "%s ", __e->elevator_name);
889 	}
890 	spin_unlock_irq(q->queue_lock);
891 
892 	len += sprintf(len+name, "\n");
893 	return len;
894 }
895 
896 EXPORT_SYMBOL(elv_dispatch_sort);
897 EXPORT_SYMBOL(elv_add_request);
898 EXPORT_SYMBOL(__elv_add_request);
899 EXPORT_SYMBOL(elv_requeue_request);
900 EXPORT_SYMBOL(elv_next_request);
901 EXPORT_SYMBOL(elv_dequeue_request);
902 EXPORT_SYMBOL(elv_queue_empty);
903 EXPORT_SYMBOL(elv_completed_request);
904 EXPORT_SYMBOL(elevator_exit);
905 EXPORT_SYMBOL(elevator_init);
906