1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef BLK_INTERNAL_H 3 #define BLK_INTERNAL_H 4 5 #include <linux/blk-crypto.h> 6 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */ 7 #include <linux/sched/sysctl.h> 8 #include <linux/timekeeping.h> 9 #include <xen/xen.h> 10 #include "blk-crypto-internal.h" 11 12 struct elevator_type; 13 14 /* Max future timer expiry for timeouts */ 15 #define BLK_MAX_TIMEOUT (5 * HZ) 16 17 extern struct dentry *blk_debugfs_root; 18 19 struct blk_flush_queue { 20 spinlock_t mq_flush_lock; 21 unsigned int flush_pending_idx:1; 22 unsigned int flush_running_idx:1; 23 blk_status_t rq_status; 24 unsigned long flush_pending_since; 25 struct list_head flush_queue[2]; 26 unsigned long flush_data_in_flight; 27 struct request *flush_rq; 28 }; 29 30 bool is_flush_rq(struct request *req); 31 32 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 33 gfp_t flags); 34 void blk_free_flush_queue(struct blk_flush_queue *q); 35 36 void blk_freeze_queue(struct request_queue *q); 37 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); 38 void blk_queue_start_drain(struct request_queue *q); 39 int __bio_queue_enter(struct request_queue *q, struct bio *bio); 40 void submit_bio_noacct_nocheck(struct bio *bio); 41 42 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm) 43 { 44 rcu_read_lock(); 45 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter)) 46 goto fail; 47 48 /* 49 * The code that increments the pm_only counter must ensure that the 50 * counter is globally visible before the queue is unfrozen. 51 */ 52 if (blk_queue_pm_only(q) && 53 (!pm || queue_rpm_status(q) == RPM_SUSPENDED)) 54 goto fail_put; 55 56 rcu_read_unlock(); 57 return true; 58 59 fail_put: 60 blk_queue_exit(q); 61 fail: 62 rcu_read_unlock(); 63 return false; 64 } 65 66 static inline int bio_queue_enter(struct bio *bio) 67 { 68 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 69 70 if (blk_try_enter_queue(q, false)) 71 return 0; 72 return __bio_queue_enter(q, bio); 73 } 74 75 static inline void blk_wait_io(struct completion *done) 76 { 77 /* Prevent hang_check timer from firing at us during very long I/O */ 78 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 79 80 if (timeout) 81 while (!wait_for_completion_io_timeout(done, timeout)) 82 ; 83 else 84 wait_for_completion_io(done); 85 } 86 87 #define BIO_INLINE_VECS 4 88 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 89 gfp_t gfp_mask); 90 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); 91 92 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, 93 struct page *page, unsigned len, unsigned offset, 94 bool *same_page); 95 96 static inline bool biovec_phys_mergeable(struct request_queue *q, 97 struct bio_vec *vec1, struct bio_vec *vec2) 98 { 99 unsigned long mask = queue_segment_boundary(q); 100 phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; 101 phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; 102 103 /* 104 * Merging adjacent physical pages may not work correctly under KMSAN 105 * if their metadata pages aren't adjacent. Just disable merging. 106 */ 107 if (IS_ENABLED(CONFIG_KMSAN)) 108 return false; 109 110 if (addr1 + vec1->bv_len != addr2) 111 return false; 112 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) 113 return false; 114 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) 115 return false; 116 return true; 117 } 118 119 static inline bool __bvec_gap_to_prev(const struct queue_limits *lim, 120 struct bio_vec *bprv, unsigned int offset) 121 { 122 return (offset & lim->virt_boundary_mask) || 123 ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask); 124 } 125 126 /* 127 * Check if adding a bio_vec after bprv with offset would create a gap in 128 * the SG list. Most drivers don't care about this, but some do. 129 */ 130 static inline bool bvec_gap_to_prev(const struct queue_limits *lim, 131 struct bio_vec *bprv, unsigned int offset) 132 { 133 if (!lim->virt_boundary_mask) 134 return false; 135 return __bvec_gap_to_prev(lim, bprv, offset); 136 } 137 138 static inline bool rq_mergeable(struct request *rq) 139 { 140 if (blk_rq_is_passthrough(rq)) 141 return false; 142 143 if (req_op(rq) == REQ_OP_FLUSH) 144 return false; 145 146 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 147 return false; 148 149 if (req_op(rq) == REQ_OP_ZONE_APPEND) 150 return false; 151 152 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 153 return false; 154 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 155 return false; 156 157 return true; 158 } 159 160 /* 161 * There are two different ways to handle DISCARD merges: 162 * 1) If max_discard_segments > 1, the driver treats every bio as a range and 163 * send the bios to controller together. The ranges don't need to be 164 * contiguous. 165 * 2) Otherwise, the request will be normal read/write requests. The ranges 166 * need to be contiguous. 167 */ 168 static inline bool blk_discard_mergable(struct request *req) 169 { 170 if (req_op(req) == REQ_OP_DISCARD && 171 queue_max_discard_segments(req->q) > 1) 172 return true; 173 return false; 174 } 175 176 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 177 { 178 if (req_op(rq) == REQ_OP_DISCARD) 179 return queue_max_discard_segments(rq->q); 180 return queue_max_segments(rq->q); 181 } 182 183 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 184 enum req_op op) 185 { 186 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 187 return min(q->limits.max_discard_sectors, 188 UINT_MAX >> SECTOR_SHIFT); 189 190 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 191 return q->limits.max_write_zeroes_sectors; 192 193 return q->limits.max_sectors; 194 } 195 196 #ifdef CONFIG_BLK_DEV_INTEGRITY 197 void blk_flush_integrity(void); 198 bool __bio_integrity_endio(struct bio *); 199 void bio_integrity_free(struct bio *bio); 200 static inline bool bio_integrity_endio(struct bio *bio) 201 { 202 if (bio_integrity(bio)) 203 return __bio_integrity_endio(bio); 204 return true; 205 } 206 207 bool blk_integrity_merge_rq(struct request_queue *, struct request *, 208 struct request *); 209 bool blk_integrity_merge_bio(struct request_queue *, struct request *, 210 struct bio *); 211 212 static inline bool integrity_req_gap_back_merge(struct request *req, 213 struct bio *next) 214 { 215 struct bio_integrity_payload *bip = bio_integrity(req->bio); 216 struct bio_integrity_payload *bip_next = bio_integrity(next); 217 218 return bvec_gap_to_prev(&req->q->limits, 219 &bip->bip_vec[bip->bip_vcnt - 1], 220 bip_next->bip_vec[0].bv_offset); 221 } 222 223 static inline bool integrity_req_gap_front_merge(struct request *req, 224 struct bio *bio) 225 { 226 struct bio_integrity_payload *bip = bio_integrity(bio); 227 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 228 229 return bvec_gap_to_prev(&req->q->limits, 230 &bip->bip_vec[bip->bip_vcnt - 1], 231 bip_next->bip_vec[0].bv_offset); 232 } 233 234 extern const struct attribute_group blk_integrity_attr_group; 235 #else /* CONFIG_BLK_DEV_INTEGRITY */ 236 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 237 struct request *r1, struct request *r2) 238 { 239 return true; 240 } 241 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 242 struct request *r, struct bio *b) 243 { 244 return true; 245 } 246 static inline bool integrity_req_gap_back_merge(struct request *req, 247 struct bio *next) 248 { 249 return false; 250 } 251 static inline bool integrity_req_gap_front_merge(struct request *req, 252 struct bio *bio) 253 { 254 return false; 255 } 256 257 static inline void blk_flush_integrity(void) 258 { 259 } 260 static inline bool bio_integrity_endio(struct bio *bio) 261 { 262 return true; 263 } 264 static inline void bio_integrity_free(struct bio *bio) 265 { 266 } 267 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 268 269 unsigned long blk_rq_timeout(unsigned long timeout); 270 void blk_add_timer(struct request *req); 271 272 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 273 unsigned int nr_segs); 274 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 275 struct bio *bio, unsigned int nr_segs); 276 277 /* 278 * Plug flush limits 279 */ 280 #define BLK_MAX_REQUEST_COUNT 32 281 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 282 283 /* 284 * Internal elevator interface 285 */ 286 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) 287 288 bool blk_insert_flush(struct request *rq); 289 290 int elevator_switch(struct request_queue *q, struct elevator_type *new_e); 291 void elevator_disable(struct request_queue *q); 292 void elevator_exit(struct request_queue *q); 293 int elv_register_queue(struct request_queue *q, bool uevent); 294 void elv_unregister_queue(struct request_queue *q); 295 296 ssize_t part_size_show(struct device *dev, struct device_attribute *attr, 297 char *buf); 298 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, 299 char *buf); 300 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 301 char *buf); 302 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, 303 char *buf); 304 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, 305 const char *buf, size_t count); 306 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); 307 ssize_t part_timeout_store(struct device *, struct device_attribute *, 308 const char *, size_t); 309 310 static inline bool bio_may_exceed_limits(struct bio *bio, 311 const struct queue_limits *lim) 312 { 313 switch (bio_op(bio)) { 314 case REQ_OP_DISCARD: 315 case REQ_OP_SECURE_ERASE: 316 case REQ_OP_WRITE_ZEROES: 317 return true; /* non-trivial splitting decisions */ 318 default: 319 break; 320 } 321 322 /* 323 * All drivers must accept single-segments bios that are <= PAGE_SIZE. 324 * This is a quick and dirty check that relies on the fact that 325 * bi_io_vec[0] is always valid if a bio has data. The check might 326 * lead to occasional false negatives when bios are cloned, but compared 327 * to the performance impact of cloned bios themselves the loop below 328 * doesn't matter anyway. 329 */ 330 return lim->chunk_sectors || bio->bi_vcnt != 1 || 331 bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE; 332 } 333 334 struct bio *__bio_split_to_limits(struct bio *bio, 335 const struct queue_limits *lim, 336 unsigned int *nr_segs); 337 int ll_back_merge_fn(struct request *req, struct bio *bio, 338 unsigned int nr_segs); 339 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 340 struct request *next); 341 unsigned int blk_recalc_rq_segments(struct request *rq); 342 void blk_rq_set_mixed_merge(struct request *rq); 343 bool blk_rq_merge_ok(struct request *rq, struct bio *bio); 344 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); 345 346 int blk_set_default_limits(struct queue_limits *lim); 347 int blk_dev_init(void); 348 349 /* 350 * Contribute to IO statistics IFF: 351 * 352 * a) it's attached to a gendisk, and 353 * b) the queue had IO stats enabled when this request was started 354 */ 355 static inline bool blk_do_io_stat(struct request *rq) 356 { 357 return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq); 358 } 359 360 void update_io_ticks(struct block_device *part, unsigned long now, bool end); 361 362 static inline void req_set_nomerge(struct request_queue *q, struct request *req) 363 { 364 req->cmd_flags |= REQ_NOMERGE; 365 if (req == q->last_merge) 366 q->last_merge = NULL; 367 } 368 369 /* 370 * Internal io_context interface 371 */ 372 struct io_cq *ioc_find_get_icq(struct request_queue *q); 373 struct io_cq *ioc_lookup_icq(struct request_queue *q); 374 #ifdef CONFIG_BLK_ICQ 375 void ioc_clear_queue(struct request_queue *q); 376 #else 377 static inline void ioc_clear_queue(struct request_queue *q) 378 { 379 } 380 #endif /* CONFIG_BLK_ICQ */ 381 382 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 383 extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); 384 extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, 385 const char *page, size_t count); 386 extern void blk_throtl_bio_endio(struct bio *bio); 387 extern void blk_throtl_stat_add(struct request *rq, u64 time); 388 #else 389 static inline void blk_throtl_bio_endio(struct bio *bio) { } 390 static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } 391 #endif 392 393 struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q); 394 395 static inline bool blk_queue_may_bounce(struct request_queue *q) 396 { 397 return IS_ENABLED(CONFIG_BOUNCE) && 398 q->limits.bounce == BLK_BOUNCE_HIGH && 399 max_low_pfn >= max_pfn; 400 } 401 402 static inline struct bio *blk_queue_bounce(struct bio *bio, 403 struct request_queue *q) 404 { 405 if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio))) 406 return __blk_queue_bounce(bio, q); 407 return bio; 408 } 409 410 #ifdef CONFIG_BLK_DEV_ZONED 411 void disk_free_zone_bitmaps(struct gendisk *disk); 412 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, 413 unsigned long arg); 414 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, 415 unsigned int cmd, unsigned long arg); 416 #else /* CONFIG_BLK_DEV_ZONED */ 417 static inline void disk_free_zone_bitmaps(struct gendisk *disk) {} 418 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 419 unsigned int cmd, unsigned long arg) 420 { 421 return -ENOTTY; 422 } 423 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 424 blk_mode_t mode, unsigned int cmd, unsigned long arg) 425 { 426 return -ENOTTY; 427 } 428 #endif /* CONFIG_BLK_DEV_ZONED */ 429 430 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 431 void bdev_add(struct block_device *bdev, dev_t dev); 432 433 int blk_alloc_ext_minor(void); 434 void blk_free_ext_minor(unsigned int minor); 435 #define ADDPART_FLAG_NONE 0 436 #define ADDPART_FLAG_RAID 1 437 #define ADDPART_FLAG_WHOLEDISK 2 438 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, 439 sector_t length); 440 int bdev_del_partition(struct gendisk *disk, int partno); 441 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, 442 sector_t length); 443 void drop_partition(struct block_device *part); 444 445 void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors); 446 447 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, 448 struct lock_class_key *lkclass); 449 450 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 451 struct page *page, unsigned int len, unsigned int offset, 452 unsigned int max_sectors, bool *same_page); 453 454 /* 455 * Clean up a page appropriately, where the page may be pinned, may have a 456 * ref taken on it or neither. 457 */ 458 static inline void bio_release_page(struct bio *bio, struct page *page) 459 { 460 if (bio_flagged(bio, BIO_PAGE_PINNED)) 461 unpin_user_page(page); 462 } 463 464 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id); 465 466 int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode); 467 468 int disk_alloc_events(struct gendisk *disk); 469 void disk_add_events(struct gendisk *disk); 470 void disk_del_events(struct gendisk *disk); 471 void disk_release_events(struct gendisk *disk); 472 void disk_block_events(struct gendisk *disk); 473 void disk_unblock_events(struct gendisk *disk); 474 void disk_flush_events(struct gendisk *disk, unsigned int mask); 475 extern struct device_attribute dev_attr_events; 476 extern struct device_attribute dev_attr_events_async; 477 extern struct device_attribute dev_attr_events_poll_msecs; 478 479 extern struct attribute_group blk_trace_attr_group; 480 481 blk_mode_t file_to_blk_mode(struct file *file); 482 int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode, 483 loff_t lstart, loff_t lend); 484 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 485 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 486 487 extern const struct address_space_operations def_blk_aops; 488 489 int disk_register_independent_access_ranges(struct gendisk *disk); 490 void disk_unregister_independent_access_ranges(struct gendisk *disk); 491 492 #ifdef CONFIG_FAIL_MAKE_REQUEST 493 bool should_fail_request(struct block_device *part, unsigned int bytes); 494 #else /* CONFIG_FAIL_MAKE_REQUEST */ 495 static inline bool should_fail_request(struct block_device *part, 496 unsigned int bytes) 497 { 498 return false; 499 } 500 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 501 502 /* 503 * Optimized request reference counting. Ideally we'd make timeouts be more 504 * clever, as that's the only reason we need references at all... But until 505 * this happens, this is faster than using refcount_t. Also see: 506 * 507 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count") 508 */ 509 #define req_ref_zero_or_close_to_overflow(req) \ 510 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u) 511 512 static inline bool req_ref_inc_not_zero(struct request *req) 513 { 514 return atomic_inc_not_zero(&req->ref); 515 } 516 517 static inline bool req_ref_put_and_test(struct request *req) 518 { 519 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); 520 return atomic_dec_and_test(&req->ref); 521 } 522 523 static inline void req_ref_set(struct request *req, int value) 524 { 525 atomic_set(&req->ref, value); 526 } 527 528 static inline int req_ref_read(struct request *req) 529 { 530 return atomic_read(&req->ref); 531 } 532 533 static inline u64 blk_time_get_ns(void) 534 { 535 struct blk_plug *plug = current->plug; 536 537 if (!plug) 538 return ktime_get_ns(); 539 540 /* 541 * 0 could very well be a valid time, but rather than flag "this is 542 * a valid timestamp" separately, just accept that we'll do an extra 543 * ktime_get_ns() if we just happen to get 0 as the current time. 544 */ 545 if (!plug->cur_ktime) { 546 plug->cur_ktime = ktime_get_ns(); 547 current->flags |= PF_BLOCK_TS; 548 } 549 return plug->cur_ktime; 550 } 551 552 static inline ktime_t blk_time_get(void) 553 { 554 return ns_to_ktime(blk_time_get_ns()); 555 } 556 557 /* 558 * From most significant bit: 559 * 1 bit: reserved for other usage, see below 560 * 12 bits: original size of bio 561 * 51 bits: issue time of bio 562 */ 563 #define BIO_ISSUE_RES_BITS 1 564 #define BIO_ISSUE_SIZE_BITS 12 565 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) 566 #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) 567 #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) 568 #define BIO_ISSUE_SIZE_MASK \ 569 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) 570 #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) 571 572 /* Reserved bit for blk-throtl */ 573 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) 574 575 static inline u64 __bio_issue_time(u64 time) 576 { 577 return time & BIO_ISSUE_TIME_MASK; 578 } 579 580 static inline u64 bio_issue_time(struct bio_issue *issue) 581 { 582 return __bio_issue_time(issue->value); 583 } 584 585 static inline sector_t bio_issue_size(struct bio_issue *issue) 586 { 587 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); 588 } 589 590 static inline void bio_issue_init(struct bio_issue *issue, 591 sector_t size) 592 { 593 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; 594 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | 595 (blk_time_get_ns() & BIO_ISSUE_TIME_MASK) | 596 ((u64)size << BIO_ISSUE_SIZE_SHIFT)); 597 } 598 599 void bdev_release(struct file *bdev_file); 600 int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder, 601 const struct blk_holder_ops *hops, struct file *bdev_file); 602 int bdev_permission(dev_t dev, blk_mode_t mode, void *holder); 603 604 #endif /* BLK_INTERNAL_H */ 605