1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef BLK_INTERNAL_H 3 #define BLK_INTERNAL_H 4 5 #include <linux/bio-integrity.h> 6 #include <linux/blk-crypto.h> 7 #include <linux/lockdep.h> 8 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */ 9 #include <linux/sched/sysctl.h> 10 #include <linux/timekeeping.h> 11 #include <xen/xen.h> 12 #include "blk-crypto-internal.h" 13 14 struct elevator_type; 15 16 #define BLK_DEV_MAX_SECTORS (LLONG_MAX >> 9) 17 #define BLK_MIN_SEGMENT_SIZE 4096 18 19 /* Max future timer expiry for timeouts */ 20 #define BLK_MAX_TIMEOUT (5 * HZ) 21 22 extern struct dentry *blk_debugfs_root; 23 24 struct blk_flush_queue { 25 spinlock_t mq_flush_lock; 26 unsigned int flush_pending_idx:1; 27 unsigned int flush_running_idx:1; 28 blk_status_t rq_status; 29 unsigned long flush_pending_since; 30 struct list_head flush_queue[2]; 31 unsigned long flush_data_in_flight; 32 struct request *flush_rq; 33 }; 34 35 bool is_flush_rq(struct request *req); 36 37 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 38 gfp_t flags); 39 void blk_free_flush_queue(struct blk_flush_queue *q); 40 41 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); 42 bool blk_queue_start_drain(struct request_queue *q); 43 bool __blk_freeze_queue_start(struct request_queue *q, 44 struct task_struct *owner); 45 int __bio_queue_enter(struct request_queue *q, struct bio *bio); 46 void submit_bio_noacct_nocheck(struct bio *bio); 47 void bio_await_chain(struct bio *bio); 48 49 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm) 50 { 51 rcu_read_lock(); 52 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter)) 53 goto fail; 54 55 /* 56 * The code that increments the pm_only counter must ensure that the 57 * counter is globally visible before the queue is unfrozen. 58 */ 59 if (blk_queue_pm_only(q) && 60 (!pm || queue_rpm_status(q) == RPM_SUSPENDED)) 61 goto fail_put; 62 63 rcu_read_unlock(); 64 return true; 65 66 fail_put: 67 blk_queue_exit(q); 68 fail: 69 rcu_read_unlock(); 70 return false; 71 } 72 73 static inline int bio_queue_enter(struct bio *bio) 74 { 75 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 76 77 if (blk_try_enter_queue(q, false)) { 78 rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_); 79 rwsem_release(&q->io_lockdep_map, _RET_IP_); 80 return 0; 81 } 82 return __bio_queue_enter(q, bio); 83 } 84 85 static inline void blk_wait_io(struct completion *done) 86 { 87 /* Prevent hang_check timer from firing at us during very long I/O */ 88 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 89 90 if (timeout) 91 while (!wait_for_completion_io_timeout(done, timeout)) 92 ; 93 else 94 wait_for_completion_io(done); 95 } 96 97 struct block_device *blkdev_get_no_open(dev_t dev, bool autoload); 98 void blkdev_put_no_open(struct block_device *bdev); 99 100 #define BIO_INLINE_VECS 4 101 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 102 gfp_t gfp_mask); 103 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); 104 105 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, 106 struct page *page, unsigned len, unsigned offset); 107 108 static inline bool biovec_phys_mergeable(struct request_queue *q, 109 struct bio_vec *vec1, struct bio_vec *vec2) 110 { 111 unsigned long mask = queue_segment_boundary(q); 112 phys_addr_t addr1 = bvec_phys(vec1); 113 phys_addr_t addr2 = bvec_phys(vec2); 114 115 /* 116 * Merging adjacent physical pages may not work correctly under KMSAN 117 * if their metadata pages aren't adjacent. Just disable merging. 118 */ 119 if (IS_ENABLED(CONFIG_KMSAN)) 120 return false; 121 122 if (addr1 + vec1->bv_len != addr2) 123 return false; 124 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) 125 return false; 126 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) 127 return false; 128 return true; 129 } 130 131 static inline bool __bvec_gap_to_prev(const struct queue_limits *lim, 132 struct bio_vec *bprv, unsigned int offset) 133 { 134 return (offset & lim->virt_boundary_mask) || 135 ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask); 136 } 137 138 /* 139 * Check if adding a bio_vec after bprv with offset would create a gap in 140 * the SG list. Most drivers don't care about this, but some do. 141 */ 142 static inline bool bvec_gap_to_prev(const struct queue_limits *lim, 143 struct bio_vec *bprv, unsigned int offset) 144 { 145 if (!lim->virt_boundary_mask) 146 return false; 147 return __bvec_gap_to_prev(lim, bprv, offset); 148 } 149 150 static inline bool rq_mergeable(struct request *rq) 151 { 152 if (blk_rq_is_passthrough(rq)) 153 return false; 154 155 if (req_op(rq) == REQ_OP_FLUSH) 156 return false; 157 158 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 159 return false; 160 161 if (req_op(rq) == REQ_OP_ZONE_APPEND) 162 return false; 163 164 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 165 return false; 166 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 167 return false; 168 169 return true; 170 } 171 172 /* 173 * There are two different ways to handle DISCARD merges: 174 * 1) If max_discard_segments > 1, the driver treats every bio as a range and 175 * send the bios to controller together. The ranges don't need to be 176 * contiguous. 177 * 2) Otherwise, the request will be normal read/write requests. The ranges 178 * need to be contiguous. 179 */ 180 static inline bool blk_discard_mergable(struct request *req) 181 { 182 if (req_op(req) == REQ_OP_DISCARD && 183 queue_max_discard_segments(req->q) > 1) 184 return true; 185 return false; 186 } 187 188 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 189 { 190 if (req_op(rq) == REQ_OP_DISCARD) 191 return queue_max_discard_segments(rq->q); 192 return queue_max_segments(rq->q); 193 } 194 195 static inline unsigned int blk_queue_get_max_sectors(struct request *rq) 196 { 197 struct request_queue *q = rq->q; 198 enum req_op op = req_op(rq); 199 200 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 201 return min(q->limits.max_discard_sectors, 202 UINT_MAX >> SECTOR_SHIFT); 203 204 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 205 return q->limits.max_write_zeroes_sectors; 206 207 if (rq->cmd_flags & REQ_ATOMIC) 208 return q->limits.atomic_write_max_sectors; 209 210 return q->limits.max_sectors; 211 } 212 213 #ifdef CONFIG_BLK_DEV_INTEGRITY 214 void blk_flush_integrity(void); 215 void bio_integrity_free(struct bio *bio); 216 217 /* 218 * Integrity payloads can either be owned by the submitter, in which case 219 * bio_uninit will free them, or owned and generated by the block layer, 220 * in which case we'll verify them here (for reads) and free them before 221 * the bio is handed back to the submitted. 222 */ 223 bool __bio_integrity_endio(struct bio *bio); 224 static inline bool bio_integrity_endio(struct bio *bio) 225 { 226 struct bio_integrity_payload *bip = bio_integrity(bio); 227 228 if (bip && (bip->bip_flags & BIP_BLOCK_INTEGRITY)) 229 return __bio_integrity_endio(bio); 230 return true; 231 } 232 233 bool blk_integrity_merge_rq(struct request_queue *, struct request *, 234 struct request *); 235 bool blk_integrity_merge_bio(struct request_queue *, struct request *, 236 struct bio *); 237 238 static inline bool integrity_req_gap_back_merge(struct request *req, 239 struct bio *next) 240 { 241 struct bio_integrity_payload *bip = bio_integrity(req->bio); 242 struct bio_integrity_payload *bip_next = bio_integrity(next); 243 244 return bvec_gap_to_prev(&req->q->limits, 245 &bip->bip_vec[bip->bip_vcnt - 1], 246 bip_next->bip_vec[0].bv_offset); 247 } 248 249 static inline bool integrity_req_gap_front_merge(struct request *req, 250 struct bio *bio) 251 { 252 struct bio_integrity_payload *bip = bio_integrity(bio); 253 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 254 255 return bvec_gap_to_prev(&req->q->limits, 256 &bip->bip_vec[bip->bip_vcnt - 1], 257 bip_next->bip_vec[0].bv_offset); 258 } 259 260 extern const struct attribute_group blk_integrity_attr_group; 261 #else /* CONFIG_BLK_DEV_INTEGRITY */ 262 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 263 struct request *r1, struct request *r2) 264 { 265 return true; 266 } 267 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 268 struct request *r, struct bio *b) 269 { 270 return true; 271 } 272 static inline bool integrity_req_gap_back_merge(struct request *req, 273 struct bio *next) 274 { 275 return false; 276 } 277 static inline bool integrity_req_gap_front_merge(struct request *req, 278 struct bio *bio) 279 { 280 return false; 281 } 282 283 static inline void blk_flush_integrity(void) 284 { 285 } 286 static inline bool bio_integrity_endio(struct bio *bio) 287 { 288 return true; 289 } 290 static inline void bio_integrity_free(struct bio *bio) 291 { 292 } 293 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 294 295 unsigned long blk_rq_timeout(unsigned long timeout); 296 void blk_add_timer(struct request *req); 297 298 enum bio_merge_status { 299 BIO_MERGE_OK, 300 BIO_MERGE_NONE, 301 BIO_MERGE_FAILED, 302 }; 303 304 enum bio_merge_status bio_attempt_back_merge(struct request *req, 305 struct bio *bio, unsigned int nr_segs); 306 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 307 unsigned int nr_segs); 308 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 309 struct bio *bio, unsigned int nr_segs); 310 311 /* 312 * Plug flush limits 313 */ 314 #define BLK_MAX_REQUEST_COUNT 32 315 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 316 317 /* 318 * Internal elevator interface 319 */ 320 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) 321 322 bool blk_insert_flush(struct request *rq); 323 324 void elv_update_nr_hw_queues(struct request_queue *q); 325 void elevator_set_default(struct request_queue *q); 326 void elevator_set_none(struct request_queue *q); 327 328 ssize_t part_size_show(struct device *dev, struct device_attribute *attr, 329 char *buf); 330 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, 331 char *buf); 332 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 333 char *buf); 334 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, 335 char *buf); 336 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, 337 const char *buf, size_t count); 338 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); 339 ssize_t part_timeout_store(struct device *, struct device_attribute *, 340 const char *, size_t); 341 342 struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim, 343 unsigned *nsegs); 344 struct bio *bio_split_write_zeroes(struct bio *bio, 345 const struct queue_limits *lim, unsigned *nsegs); 346 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, 347 unsigned *nr_segs); 348 struct bio *bio_split_zone_append(struct bio *bio, 349 const struct queue_limits *lim, unsigned *nr_segs); 350 351 /* 352 * All drivers must accept single-segments bios that are smaller than PAGE_SIZE. 353 * 354 * This is a quick and dirty check that relies on the fact that bi_io_vec[0] is 355 * always valid if a bio has data. The check might lead to occasional false 356 * positives when bios are cloned, but compared to the performance impact of 357 * cloned bios themselves the loop below doesn't matter anyway. 358 */ 359 static inline bool bio_may_need_split(struct bio *bio, 360 const struct queue_limits *lim) 361 { 362 if (lim->chunk_sectors) 363 return true; 364 if (bio->bi_vcnt != 1) 365 return true; 366 return bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > 367 lim->min_segment_size; 368 } 369 370 /** 371 * __bio_split_to_limits - split a bio to fit the queue limits 372 * @bio: bio to be split 373 * @lim: queue limits to split based on 374 * @nr_segs: returns the number of segments in the returned bio 375 * 376 * Check if @bio needs splitting based on the queue limits, and if so split off 377 * a bio fitting the limits from the beginning of @bio and return it. @bio is 378 * shortened to the remainder and re-submitted. 379 * 380 * The split bio is allocated from @q->bio_split, which is provided by the 381 * block layer. 382 */ 383 static inline struct bio *__bio_split_to_limits(struct bio *bio, 384 const struct queue_limits *lim, unsigned int *nr_segs) 385 { 386 switch (bio_op(bio)) { 387 case REQ_OP_READ: 388 case REQ_OP_WRITE: 389 if (bio_may_need_split(bio, lim)) 390 return bio_split_rw(bio, lim, nr_segs); 391 *nr_segs = 1; 392 return bio; 393 case REQ_OP_ZONE_APPEND: 394 return bio_split_zone_append(bio, lim, nr_segs); 395 case REQ_OP_DISCARD: 396 case REQ_OP_SECURE_ERASE: 397 return bio_split_discard(bio, lim, nr_segs); 398 case REQ_OP_WRITE_ZEROES: 399 return bio_split_write_zeroes(bio, lim, nr_segs); 400 default: 401 /* other operations can't be split */ 402 *nr_segs = 0; 403 return bio; 404 } 405 } 406 407 /** 408 * get_max_segment_size() - maximum number of bytes to add as a single segment 409 * @lim: Request queue limits. 410 * @paddr: address of the range to add 411 * @len: maximum length available to add at @paddr 412 * 413 * Returns the maximum number of bytes of the range starting at @paddr that can 414 * be added to a single segment. 415 */ 416 static inline unsigned get_max_segment_size(const struct queue_limits *lim, 417 phys_addr_t paddr, unsigned int len) 418 { 419 /* 420 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1 421 * after having calculated the minimum. 422 */ 423 return min_t(unsigned long, len, 424 min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr), 425 (unsigned long)lim->max_segment_size - 1) + 1); 426 } 427 428 int ll_back_merge_fn(struct request *req, struct bio *bio, 429 unsigned int nr_segs); 430 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 431 struct request *next); 432 unsigned int blk_recalc_rq_segments(struct request *rq); 433 bool blk_rq_merge_ok(struct request *rq, struct bio *bio); 434 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); 435 436 int blk_set_default_limits(struct queue_limits *lim); 437 void blk_apply_bdi_limits(struct backing_dev_info *bdi, 438 struct queue_limits *lim); 439 int blk_dev_init(void); 440 441 void update_io_ticks(struct block_device *part, unsigned long now, bool end); 442 443 static inline void req_set_nomerge(struct request_queue *q, struct request *req) 444 { 445 req->cmd_flags |= REQ_NOMERGE; 446 if (req == q->last_merge) 447 q->last_merge = NULL; 448 } 449 450 /* 451 * Internal io_context interface 452 */ 453 struct io_cq *ioc_find_get_icq(struct request_queue *q); 454 struct io_cq *ioc_lookup_icq(struct request_queue *q); 455 #ifdef CONFIG_BLK_ICQ 456 void ioc_clear_queue(struct request_queue *q); 457 #else 458 static inline void ioc_clear_queue(struct request_queue *q) 459 { 460 } 461 #endif /* CONFIG_BLK_ICQ */ 462 463 #ifdef CONFIG_BLK_DEV_ZONED 464 void disk_init_zone_resources(struct gendisk *disk); 465 void disk_free_zone_resources(struct gendisk *disk); 466 static inline bool bio_zone_write_plugging(struct bio *bio) 467 { 468 return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING); 469 } 470 void blk_zone_write_plug_bio_merged(struct bio *bio); 471 void blk_zone_write_plug_init_request(struct request *rq); 472 static inline void blk_zone_update_request_bio(struct request *rq, 473 struct bio *bio) 474 { 475 /* 476 * For zone append requests, the request sector indicates the location 477 * at which the BIO data was written. Return this value to the BIO 478 * issuer through the BIO iter sector. 479 * For plugged zone writes, which include emulated zone append, we need 480 * the original BIO sector so that blk_zone_write_plug_bio_endio() can 481 * lookup the zone write plug. 482 */ 483 if (req_op(rq) == REQ_OP_ZONE_APPEND || 484 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND)) 485 bio->bi_iter.bi_sector = rq->__sector; 486 } 487 void blk_zone_write_plug_bio_endio(struct bio *bio); 488 static inline void blk_zone_bio_endio(struct bio *bio) 489 { 490 /* 491 * For write BIOs to zoned devices, signal the completion of the BIO so 492 * that the next write BIO can be submitted by zone write plugging. 493 */ 494 if (bio_zone_write_plugging(bio)) 495 blk_zone_write_plug_bio_endio(bio); 496 } 497 498 void blk_zone_write_plug_finish_request(struct request *rq); 499 static inline void blk_zone_finish_request(struct request *rq) 500 { 501 if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING) 502 blk_zone_write_plug_finish_request(rq); 503 } 504 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, 505 unsigned long arg); 506 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, 507 unsigned int cmd, unsigned long arg); 508 #else /* CONFIG_BLK_DEV_ZONED */ 509 static inline void disk_init_zone_resources(struct gendisk *disk) 510 { 511 } 512 static inline void disk_free_zone_resources(struct gendisk *disk) 513 { 514 } 515 static inline bool bio_zone_write_plugging(struct bio *bio) 516 { 517 return false; 518 } 519 static inline void blk_zone_write_plug_bio_merged(struct bio *bio) 520 { 521 } 522 static inline void blk_zone_write_plug_init_request(struct request *rq) 523 { 524 } 525 static inline void blk_zone_update_request_bio(struct request *rq, 526 struct bio *bio) 527 { 528 } 529 static inline void blk_zone_bio_endio(struct bio *bio) 530 { 531 } 532 static inline void blk_zone_finish_request(struct request *rq) 533 { 534 } 535 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 536 unsigned int cmd, unsigned long arg) 537 { 538 return -ENOTTY; 539 } 540 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 541 blk_mode_t mode, unsigned int cmd, unsigned long arg) 542 { 543 return -ENOTTY; 544 } 545 #endif /* CONFIG_BLK_DEV_ZONED */ 546 547 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 548 void bdev_add(struct block_device *bdev, dev_t dev); 549 void bdev_unhash(struct block_device *bdev); 550 void bdev_drop(struct block_device *bdev); 551 552 int blk_alloc_ext_minor(void); 553 void blk_free_ext_minor(unsigned int minor); 554 #define ADDPART_FLAG_NONE 0 555 #define ADDPART_FLAG_RAID 1 556 #define ADDPART_FLAG_WHOLEDISK 2 557 #define ADDPART_FLAG_READONLY 4 558 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, 559 sector_t length); 560 int bdev_del_partition(struct gendisk *disk, int partno); 561 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, 562 sector_t length); 563 void drop_partition(struct block_device *part); 564 565 void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors); 566 567 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, 568 struct lock_class_key *lkclass); 569 570 /* 571 * Clean up a page appropriately, where the page may be pinned, may have a 572 * ref taken on it or neither. 573 */ 574 static inline void bio_release_page(struct bio *bio, struct page *page) 575 { 576 if (bio_flagged(bio, BIO_PAGE_PINNED)) 577 unpin_user_page(page); 578 } 579 580 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id); 581 582 int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode); 583 584 int disk_alloc_events(struct gendisk *disk); 585 void disk_add_events(struct gendisk *disk); 586 void disk_del_events(struct gendisk *disk); 587 void disk_release_events(struct gendisk *disk); 588 void disk_block_events(struct gendisk *disk); 589 void disk_unblock_events(struct gendisk *disk); 590 void disk_flush_events(struct gendisk *disk, unsigned int mask); 591 extern struct device_attribute dev_attr_events; 592 extern struct device_attribute dev_attr_events_async; 593 extern struct device_attribute dev_attr_events_poll_msecs; 594 595 extern struct attribute_group blk_trace_attr_group; 596 597 blk_mode_t file_to_blk_mode(struct file *file); 598 int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode, 599 loff_t lstart, loff_t lend); 600 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 601 int blkdev_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags); 602 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 603 604 extern const struct address_space_operations def_blk_aops; 605 606 int disk_register_independent_access_ranges(struct gendisk *disk); 607 void disk_unregister_independent_access_ranges(struct gendisk *disk); 608 609 #ifdef CONFIG_FAIL_MAKE_REQUEST 610 bool should_fail_request(struct block_device *part, unsigned int bytes); 611 #else /* CONFIG_FAIL_MAKE_REQUEST */ 612 static inline bool should_fail_request(struct block_device *part, 613 unsigned int bytes) 614 { 615 return false; 616 } 617 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 618 619 /* 620 * Optimized request reference counting. Ideally we'd make timeouts be more 621 * clever, as that's the only reason we need references at all... But until 622 * this happens, this is faster than using refcount_t. Also see: 623 * 624 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count") 625 */ 626 #define req_ref_zero_or_close_to_overflow(req) \ 627 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u) 628 629 static inline bool req_ref_inc_not_zero(struct request *req) 630 { 631 return atomic_inc_not_zero(&req->ref); 632 } 633 634 static inline bool req_ref_put_and_test(struct request *req) 635 { 636 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); 637 return atomic_dec_and_test(&req->ref); 638 } 639 640 static inline void req_ref_set(struct request *req, int value) 641 { 642 atomic_set(&req->ref, value); 643 } 644 645 static inline int req_ref_read(struct request *req) 646 { 647 return atomic_read(&req->ref); 648 } 649 650 static inline u64 blk_time_get_ns(void) 651 { 652 struct blk_plug *plug = current->plug; 653 654 if (!plug || !in_task()) 655 return ktime_get_ns(); 656 657 /* 658 * 0 could very well be a valid time, but rather than flag "this is 659 * a valid timestamp" separately, just accept that we'll do an extra 660 * ktime_get_ns() if we just happen to get 0 as the current time. 661 */ 662 if (!plug->cur_ktime) { 663 plug->cur_ktime = ktime_get_ns(); 664 current->flags |= PF_BLOCK_TS; 665 } 666 return plug->cur_ktime; 667 } 668 669 static inline ktime_t blk_time_get(void) 670 { 671 return ns_to_ktime(blk_time_get_ns()); 672 } 673 674 /* 675 * From most significant bit: 676 * 1 bit: reserved for other usage, see below 677 * 12 bits: original size of bio 678 * 51 bits: issue time of bio 679 */ 680 #define BIO_ISSUE_RES_BITS 1 681 #define BIO_ISSUE_SIZE_BITS 12 682 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) 683 #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) 684 #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) 685 #define BIO_ISSUE_SIZE_MASK \ 686 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) 687 #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) 688 689 /* Reserved bit for blk-throtl */ 690 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) 691 692 static inline u64 __bio_issue_time(u64 time) 693 { 694 return time & BIO_ISSUE_TIME_MASK; 695 } 696 697 static inline u64 bio_issue_time(struct bio_issue *issue) 698 { 699 return __bio_issue_time(issue->value); 700 } 701 702 static inline sector_t bio_issue_size(struct bio_issue *issue) 703 { 704 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); 705 } 706 707 static inline void bio_issue_init(struct bio_issue *issue, 708 sector_t size) 709 { 710 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; 711 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | 712 (blk_time_get_ns() & BIO_ISSUE_TIME_MASK) | 713 ((u64)size << BIO_ISSUE_SIZE_SHIFT)); 714 } 715 716 void bdev_release(struct file *bdev_file); 717 int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder, 718 const struct blk_holder_ops *hops, struct file *bdev_file); 719 int bdev_permission(dev_t dev, blk_mode_t mode, void *holder); 720 721 void blk_integrity_generate(struct bio *bio); 722 void blk_integrity_verify_iter(struct bio *bio, struct bvec_iter *saved_iter); 723 void blk_integrity_prepare(struct request *rq); 724 void blk_integrity_complete(struct request *rq, unsigned int nr_bytes); 725 726 #ifdef CONFIG_LOCKDEP 727 static inline void blk_freeze_acquire_lock(struct request_queue *q) 728 { 729 if (!q->mq_freeze_disk_dead) 730 rwsem_acquire(&q->io_lockdep_map, 0, 1, _RET_IP_); 731 if (!q->mq_freeze_queue_dying) 732 rwsem_acquire(&q->q_lockdep_map, 0, 1, _RET_IP_); 733 } 734 735 static inline void blk_unfreeze_release_lock(struct request_queue *q) 736 { 737 if (!q->mq_freeze_queue_dying) 738 rwsem_release(&q->q_lockdep_map, _RET_IP_); 739 if (!q->mq_freeze_disk_dead) 740 rwsem_release(&q->io_lockdep_map, _RET_IP_); 741 } 742 #else 743 static inline void blk_freeze_acquire_lock(struct request_queue *q) 744 { 745 } 746 static inline void blk_unfreeze_release_lock(struct request_queue *q) 747 { 748 } 749 #endif 750 751 #endif /* BLK_INTERNAL_H */ 752