xref: /linux/block/blk.h (revision d8d2b1f81530988abe2e2bfaceec1c5d30b9a0b4)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_INTERNAL_H
3 #define BLK_INTERNAL_H
4 
5 #include <linux/bio-integrity.h>
6 #include <linux/blk-crypto.h>
7 #include <linux/lockdep.h>
8 #include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
9 #include <linux/sched/sysctl.h>
10 #include <linux/timekeeping.h>
11 #include <xen/xen.h>
12 #include "blk-crypto-internal.h"
13 
14 struct elevator_type;
15 struct elevator_tags;
16 
17 /*
18  * Default upper limit for the software max_sectors limit used for regular I/Os.
19  * This can be increased through sysfs.
20  *
21  * This should not be confused with the max_hw_sector limit that is entirely
22  * controlled by the block device driver, usually based on hardware limits.
23  */
24 #define BLK_DEF_MAX_SECTORS_CAP	(SZ_4M >> SECTOR_SHIFT)
25 
26 #define	BLK_DEV_MAX_SECTORS	(LLONG_MAX >> 9)
27 #define	BLK_MIN_SEGMENT_SIZE	4096
28 
29 /* Max future timer expiry for timeouts */
30 #define BLK_MAX_TIMEOUT		(5 * HZ)
31 
32 extern const struct kobj_type blk_queue_ktype;
33 extern struct dentry *blk_debugfs_root;
34 
35 struct blk_flush_queue {
36 	spinlock_t		mq_flush_lock;
37 	unsigned int		flush_pending_idx:1;
38 	unsigned int		flush_running_idx:1;
39 	blk_status_t 		rq_status;
40 	unsigned long		flush_pending_since;
41 	struct list_head	flush_queue[2];
42 	unsigned long		flush_data_in_flight;
43 	struct request		*flush_rq;
44 	struct rcu_head		rcu_head;
45 };
46 
47 bool is_flush_rq(struct request *req);
48 
49 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
50 					      gfp_t flags);
51 void blk_free_flush_queue(struct blk_flush_queue *q);
52 
53 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
54 bool blk_queue_start_drain(struct request_queue *q);
55 bool __blk_freeze_queue_start(struct request_queue *q,
56 			      struct task_struct *owner);
57 int __bio_queue_enter(struct request_queue *q, struct bio *bio);
58 void submit_bio_noacct_nocheck(struct bio *bio, bool split);
59 void bio_await_chain(struct bio *bio);
60 
61 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
62 {
63 	rcu_read_lock();
64 	if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
65 		goto fail;
66 
67 	/*
68 	 * The code that increments the pm_only counter must ensure that the
69 	 * counter is globally visible before the queue is unfrozen.
70 	 */
71 	if (blk_queue_pm_only(q) &&
72 	    (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
73 		goto fail_put;
74 
75 	rcu_read_unlock();
76 	return true;
77 
78 fail_put:
79 	blk_queue_exit(q);
80 fail:
81 	rcu_read_unlock();
82 	return false;
83 }
84 
85 static inline int bio_queue_enter(struct bio *bio)
86 {
87 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
88 
89 	if (blk_try_enter_queue(q, false)) {
90 		rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
91 		rwsem_release(&q->io_lockdep_map, _RET_IP_);
92 		return 0;
93 	}
94 	return __bio_queue_enter(q, bio);
95 }
96 
97 static inline void blk_wait_io(struct completion *done)
98 {
99 	/* Prevent hang_check timer from firing at us during very long I/O */
100 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
101 
102 	if (timeout)
103 		while (!wait_for_completion_io_timeout(done, timeout))
104 			;
105 	else
106 		wait_for_completion_io(done);
107 }
108 
109 struct block_device *blkdev_get_no_open(dev_t dev, bool autoload);
110 void blkdev_put_no_open(struct block_device *bdev);
111 
112 #define BIO_INLINE_VECS 4
113 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
114 		gfp_t gfp_mask);
115 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
116 
117 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
118 		struct page *page, unsigned len, unsigned offset);
119 
120 static inline bool biovec_phys_mergeable(struct request_queue *q,
121 		struct bio_vec *vec1, struct bio_vec *vec2)
122 {
123 	unsigned long mask = queue_segment_boundary(q);
124 	phys_addr_t addr1 = bvec_phys(vec1);
125 	phys_addr_t addr2 = bvec_phys(vec2);
126 
127 	/*
128 	 * Merging adjacent physical pages may not work correctly under KMSAN
129 	 * if their metadata pages aren't adjacent. Just disable merging.
130 	 */
131 	if (IS_ENABLED(CONFIG_KMSAN))
132 		return false;
133 
134 	if (addr1 + vec1->bv_len != addr2)
135 		return false;
136 	if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
137 		return false;
138 	if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
139 		return false;
140 	return true;
141 }
142 
143 static inline bool __bvec_gap_to_prev(const struct queue_limits *lim,
144 		struct bio_vec *bprv, unsigned int offset)
145 {
146 	return (offset & lim->virt_boundary_mask) ||
147 		((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask);
148 }
149 
150 /*
151  * Check if adding a bio_vec after bprv with offset would create a gap in
152  * the SG list. Most drivers don't care about this, but some do.
153  */
154 static inline bool bvec_gap_to_prev(const struct queue_limits *lim,
155 		struct bio_vec *bprv, unsigned int offset)
156 {
157 	if (!lim->virt_boundary_mask)
158 		return false;
159 	return __bvec_gap_to_prev(lim, bprv, offset);
160 }
161 
162 static inline bool rq_mergeable(struct request *rq)
163 {
164 	if (blk_rq_is_passthrough(rq))
165 		return false;
166 
167 	if (req_op(rq) == REQ_OP_FLUSH)
168 		return false;
169 
170 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
171 		return false;
172 
173 	if (req_op(rq) == REQ_OP_ZONE_APPEND)
174 		return false;
175 
176 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
177 		return false;
178 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
179 		return false;
180 
181 	return true;
182 }
183 
184 /*
185  * There are two different ways to handle DISCARD merges:
186  *  1) If max_discard_segments > 1, the driver treats every bio as a range and
187  *     send the bios to controller together. The ranges don't need to be
188  *     contiguous.
189  *  2) Otherwise, the request will be normal read/write requests.  The ranges
190  *     need to be contiguous.
191  */
192 static inline bool blk_discard_mergable(struct request *req)
193 {
194 	if (req_op(req) == REQ_OP_DISCARD &&
195 	    queue_max_discard_segments(req->q) > 1)
196 		return true;
197 	return false;
198 }
199 
200 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
201 {
202 	if (req_op(rq) == REQ_OP_DISCARD)
203 		return queue_max_discard_segments(rq->q);
204 	return queue_max_segments(rq->q);
205 }
206 
207 static inline unsigned int blk_queue_get_max_sectors(struct request *rq)
208 {
209 	struct request_queue *q = rq->q;
210 	enum req_op op = req_op(rq);
211 
212 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
213 		return min(q->limits.max_discard_sectors,
214 			   UINT_MAX >> SECTOR_SHIFT);
215 
216 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
217 		return q->limits.max_write_zeroes_sectors;
218 
219 	if (rq->cmd_flags & REQ_ATOMIC)
220 		return q->limits.atomic_write_max_sectors;
221 
222 	return q->limits.max_sectors;
223 }
224 
225 #ifdef CONFIG_BLK_DEV_INTEGRITY
226 void blk_flush_integrity(void);
227 void bio_integrity_free(struct bio *bio);
228 
229 /*
230  * Integrity payloads can either be owned by the submitter, in which case
231  * bio_uninit will free them, or owned and generated by the block layer,
232  * in which case we'll verify them here (for reads) and free them before
233  * the bio is handed back to the submitted.
234  */
235 bool __bio_integrity_endio(struct bio *bio);
236 static inline bool bio_integrity_endio(struct bio *bio)
237 {
238 	struct bio_integrity_payload *bip = bio_integrity(bio);
239 
240 	if (bip && (bip->bip_flags & BIP_BLOCK_INTEGRITY))
241 		return __bio_integrity_endio(bio);
242 	return true;
243 }
244 
245 bool blk_integrity_merge_rq(struct request_queue *, struct request *,
246 		struct request *);
247 bool blk_integrity_merge_bio(struct request_queue *, struct request *,
248 		struct bio *);
249 
250 static inline bool integrity_req_gap_back_merge(struct request *req,
251 		struct bio *next)
252 {
253 	struct bio_integrity_payload *bip = bio_integrity(req->bio);
254 	struct bio_integrity_payload *bip_next = bio_integrity(next);
255 
256 	return bvec_gap_to_prev(&req->q->limits,
257 				&bip->bip_vec[bip->bip_vcnt - 1],
258 				bip_next->bip_vec[0].bv_offset);
259 }
260 
261 static inline bool integrity_req_gap_front_merge(struct request *req,
262 		struct bio *bio)
263 {
264 	struct bio_integrity_payload *bip = bio_integrity(bio);
265 	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
266 
267 	return bvec_gap_to_prev(&req->q->limits,
268 				&bip->bip_vec[bip->bip_vcnt - 1],
269 				bip_next->bip_vec[0].bv_offset);
270 }
271 
272 extern const struct attribute_group blk_integrity_attr_group;
273 #else /* CONFIG_BLK_DEV_INTEGRITY */
274 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
275 		struct request *r1, struct request *r2)
276 {
277 	return true;
278 }
279 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
280 		struct request *r, struct bio *b)
281 {
282 	return true;
283 }
284 static inline bool integrity_req_gap_back_merge(struct request *req,
285 		struct bio *next)
286 {
287 	return false;
288 }
289 static inline bool integrity_req_gap_front_merge(struct request *req,
290 		struct bio *bio)
291 {
292 	return false;
293 }
294 
295 static inline void blk_flush_integrity(void)
296 {
297 }
298 static inline bool bio_integrity_endio(struct bio *bio)
299 {
300 	return true;
301 }
302 static inline void bio_integrity_free(struct bio *bio)
303 {
304 }
305 #endif /* CONFIG_BLK_DEV_INTEGRITY */
306 
307 unsigned long blk_rq_timeout(unsigned long timeout);
308 void blk_add_timer(struct request *req);
309 
310 enum bio_merge_status {
311 	BIO_MERGE_OK,
312 	BIO_MERGE_NONE,
313 	BIO_MERGE_FAILED,
314 };
315 
316 enum bio_merge_status bio_attempt_back_merge(struct request *req,
317 		struct bio *bio, unsigned int nr_segs);
318 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
319 		unsigned int nr_segs);
320 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
321 			struct bio *bio, unsigned int nr_segs);
322 
323 /*
324  * Plug flush limits
325  */
326 #define BLK_MAX_REQUEST_COUNT	32
327 #define BLK_PLUG_FLUSH_SIZE	(128 * 1024)
328 
329 /*
330  * Internal elevator interface
331  */
332 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
333 
334 bool blk_insert_flush(struct request *rq);
335 
336 void elv_update_nr_hw_queues(struct request_queue *q, struct elevator_type *e,
337 		struct elevator_tags *t);
338 void elevator_set_default(struct request_queue *q);
339 void elevator_set_none(struct request_queue *q);
340 
341 ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
342 		char *buf);
343 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
344 		char *buf);
345 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
346 		char *buf);
347 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
348 		char *buf);
349 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
350 		const char *buf, size_t count);
351 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
352 ssize_t part_timeout_store(struct device *, struct device_attribute *,
353 				const char *, size_t);
354 
355 struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
356 		unsigned *nsegs);
357 struct bio *bio_split_write_zeroes(struct bio *bio,
358 		const struct queue_limits *lim, unsigned *nsegs);
359 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
360 		unsigned *nr_segs);
361 struct bio *bio_split_zone_append(struct bio *bio,
362 		const struct queue_limits *lim, unsigned *nr_segs);
363 
364 /*
365  * All drivers must accept single-segments bios that are smaller than PAGE_SIZE.
366  *
367  * This is a quick and dirty check that relies on the fact that bi_io_vec[0] is
368  * always valid if a bio has data.  The check might lead to occasional false
369  * positives when bios are cloned, but compared to the performance impact of
370  * cloned bios themselves the loop below doesn't matter anyway.
371  */
372 static inline bool bio_may_need_split(struct bio *bio,
373 		const struct queue_limits *lim)
374 {
375 	if (lim->chunk_sectors)
376 		return true;
377 	if (bio->bi_vcnt != 1)
378 		return true;
379 	return bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset >
380 		lim->min_segment_size;
381 }
382 
383 /**
384  * __bio_split_to_limits - split a bio to fit the queue limits
385  * @bio:     bio to be split
386  * @lim:     queue limits to split based on
387  * @nr_segs: returns the number of segments in the returned bio
388  *
389  * Check if @bio needs splitting based on the queue limits, and if so split off
390  * a bio fitting the limits from the beginning of @bio and return it.  @bio is
391  * shortened to the remainder and re-submitted.
392  *
393  * The split bio is allocated from @q->bio_split, which is provided by the
394  * block layer.
395  */
396 static inline struct bio *__bio_split_to_limits(struct bio *bio,
397 		const struct queue_limits *lim, unsigned int *nr_segs)
398 {
399 	switch (bio_op(bio)) {
400 	case REQ_OP_READ:
401 	case REQ_OP_WRITE:
402 		if (bio_may_need_split(bio, lim))
403 			return bio_split_rw(bio, lim, nr_segs);
404 		*nr_segs = 1;
405 		return bio;
406 	case REQ_OP_ZONE_APPEND:
407 		return bio_split_zone_append(bio, lim, nr_segs);
408 	case REQ_OP_DISCARD:
409 	case REQ_OP_SECURE_ERASE:
410 		return bio_split_discard(bio, lim, nr_segs);
411 	case REQ_OP_WRITE_ZEROES:
412 		return bio_split_write_zeroes(bio, lim, nr_segs);
413 	default:
414 		/* other operations can't be split */
415 		*nr_segs = 0;
416 		return bio;
417 	}
418 }
419 
420 /**
421  * get_max_segment_size() - maximum number of bytes to add as a single segment
422  * @lim: Request queue limits.
423  * @paddr: address of the range to add
424  * @len: maximum length available to add at @paddr
425  *
426  * Returns the maximum number of bytes of the range starting at @paddr that can
427  * be added to a single segment.
428  */
429 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
430 		phys_addr_t paddr, unsigned int len)
431 {
432 	/*
433 	 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
434 	 * after having calculated the minimum.
435 	 */
436 	return min_t(unsigned long, len,
437 		min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr),
438 		    (unsigned long)lim->max_segment_size - 1) + 1);
439 }
440 
441 int ll_back_merge_fn(struct request *req, struct bio *bio,
442 		unsigned int nr_segs);
443 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
444 				struct request *next);
445 unsigned int blk_recalc_rq_segments(struct request *rq);
446 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
447 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
448 
449 int blk_set_default_limits(struct queue_limits *lim);
450 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
451 		struct queue_limits *lim);
452 int blk_dev_init(void);
453 
454 void update_io_ticks(struct block_device *part, unsigned long now, bool end);
455 
456 static inline void req_set_nomerge(struct request_queue *q, struct request *req)
457 {
458 	req->cmd_flags |= REQ_NOMERGE;
459 	if (req == q->last_merge)
460 		q->last_merge = NULL;
461 }
462 
463 /*
464  * Internal io_context interface
465  */
466 struct io_cq *ioc_find_get_icq(struct request_queue *q);
467 struct io_cq *ioc_lookup_icq(struct request_queue *q);
468 #ifdef CONFIG_BLK_ICQ
469 void ioc_clear_queue(struct request_queue *q);
470 #else
471 static inline void ioc_clear_queue(struct request_queue *q)
472 {
473 }
474 #endif /* CONFIG_BLK_ICQ */
475 
476 #ifdef CONFIG_BLK_DEV_ZONED
477 void disk_init_zone_resources(struct gendisk *disk);
478 void disk_free_zone_resources(struct gendisk *disk);
479 static inline bool bio_zone_write_plugging(struct bio *bio)
480 {
481 	return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
482 }
483 static inline bool blk_req_bio_is_zone_append(struct request *rq,
484 					      struct bio *bio)
485 {
486 	return req_op(rq) == REQ_OP_ZONE_APPEND ||
487 	       bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
488 }
489 void blk_zone_write_plug_bio_merged(struct bio *bio);
490 void blk_zone_write_plug_init_request(struct request *rq);
491 void blk_zone_append_update_request_bio(struct request *rq, struct bio *bio);
492 void blk_zone_write_plug_bio_endio(struct bio *bio);
493 static inline void blk_zone_bio_endio(struct bio *bio)
494 {
495 	/*
496 	 * For write BIOs to zoned devices, signal the completion of the BIO so
497 	 * that the next write BIO can be submitted by zone write plugging.
498 	 */
499 	if (bio_zone_write_plugging(bio))
500 		blk_zone_write_plug_bio_endio(bio);
501 }
502 
503 void blk_zone_write_plug_finish_request(struct request *rq);
504 static inline void blk_zone_finish_request(struct request *rq)
505 {
506 	if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING)
507 		blk_zone_write_plug_finish_request(rq);
508 }
509 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd,
510 		unsigned long arg);
511 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode,
512 		unsigned int cmd, unsigned long arg);
513 #else /* CONFIG_BLK_DEV_ZONED */
514 static inline void disk_init_zone_resources(struct gendisk *disk)
515 {
516 }
517 static inline void disk_free_zone_resources(struct gendisk *disk)
518 {
519 }
520 static inline bool bio_zone_write_plugging(struct bio *bio)
521 {
522 	return false;
523 }
524 static inline bool blk_req_bio_is_zone_append(struct request *req,
525 					      struct bio *bio)
526 {
527 	return false;
528 }
529 static inline void blk_zone_write_plug_bio_merged(struct bio *bio)
530 {
531 }
532 static inline void blk_zone_write_plug_init_request(struct request *rq)
533 {
534 }
535 static inline void blk_zone_append_update_request_bio(struct request *rq,
536 						      struct bio *bio)
537 {
538 }
539 static inline void blk_zone_bio_endio(struct bio *bio)
540 {
541 }
542 static inline void blk_zone_finish_request(struct request *rq)
543 {
544 }
545 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
546 		unsigned int cmd, unsigned long arg)
547 {
548 	return -ENOTTY;
549 }
550 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
551 		blk_mode_t mode, unsigned int cmd, unsigned long arg)
552 {
553 	return -ENOTTY;
554 }
555 #endif /* CONFIG_BLK_DEV_ZONED */
556 
557 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
558 void bdev_add(struct block_device *bdev, dev_t dev);
559 void bdev_unhash(struct block_device *bdev);
560 void bdev_drop(struct block_device *bdev);
561 
562 int blk_alloc_ext_minor(void);
563 void blk_free_ext_minor(unsigned int minor);
564 #define ADDPART_FLAG_NONE	0
565 #define ADDPART_FLAG_RAID	1
566 #define ADDPART_FLAG_WHOLEDISK	2
567 #define ADDPART_FLAG_READONLY	4
568 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
569 		sector_t length);
570 int bdev_del_partition(struct gendisk *disk, int partno);
571 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
572 		sector_t length);
573 void drop_partition(struct block_device *part);
574 
575 void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors);
576 
577 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
578 		struct lock_class_key *lkclass);
579 
580 /*
581  * Clean up a page appropriately, where the page may be pinned, may have a
582  * ref taken on it or neither.
583  */
584 static inline void bio_release_page(struct bio *bio, struct page *page)
585 {
586 	if (bio_flagged(bio, BIO_PAGE_PINNED))
587 		unpin_user_page(page);
588 }
589 
590 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id);
591 
592 int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode);
593 
594 int disk_alloc_events(struct gendisk *disk);
595 void disk_add_events(struct gendisk *disk);
596 void disk_del_events(struct gendisk *disk);
597 void disk_release_events(struct gendisk *disk);
598 void disk_block_events(struct gendisk *disk);
599 void disk_unblock_events(struct gendisk *disk);
600 void disk_flush_events(struct gendisk *disk, unsigned int mask);
601 extern struct device_attribute dev_attr_events;
602 extern struct device_attribute dev_attr_events_async;
603 extern struct device_attribute dev_attr_events_poll_msecs;
604 
605 extern struct attribute_group blk_trace_attr_group;
606 
607 blk_mode_t file_to_blk_mode(struct file *file);
608 int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode,
609 		loff_t lstart, loff_t lend);
610 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
611 int blkdev_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags);
612 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
613 
614 extern const struct address_space_operations def_blk_aops;
615 
616 int disk_register_independent_access_ranges(struct gendisk *disk);
617 void disk_unregister_independent_access_ranges(struct gendisk *disk);
618 
619 int should_fail_bio(struct bio *bio);
620 #ifdef CONFIG_FAIL_MAKE_REQUEST
621 bool should_fail_request(struct block_device *part, unsigned int bytes);
622 #else /* CONFIG_FAIL_MAKE_REQUEST */
623 static inline bool should_fail_request(struct block_device *part,
624 					unsigned int bytes)
625 {
626 	return false;
627 }
628 #endif /* CONFIG_FAIL_MAKE_REQUEST */
629 
630 /*
631  * Optimized request reference counting. Ideally we'd make timeouts be more
632  * clever, as that's the only reason we need references at all... But until
633  * this happens, this is faster than using refcount_t. Also see:
634  *
635  * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
636  */
637 #define req_ref_zero_or_close_to_overflow(req)	\
638 	((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
639 
640 static inline bool req_ref_inc_not_zero(struct request *req)
641 {
642 	return atomic_inc_not_zero(&req->ref);
643 }
644 
645 static inline bool req_ref_put_and_test(struct request *req)
646 {
647 	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
648 	return atomic_dec_and_test(&req->ref);
649 }
650 
651 static inline void req_ref_set(struct request *req, int value)
652 {
653 	atomic_set(&req->ref, value);
654 }
655 
656 static inline int req_ref_read(struct request *req)
657 {
658 	return atomic_read(&req->ref);
659 }
660 
661 static inline u64 blk_time_get_ns(void)
662 {
663 	struct blk_plug *plug = current->plug;
664 
665 	if (!plug || !in_task())
666 		return ktime_get_ns();
667 
668 	/*
669 	 * 0 could very well be a valid time, but rather than flag "this is
670 	 * a valid timestamp" separately, just accept that we'll do an extra
671 	 * ktime_get_ns() if we just happen to get 0 as the current time.
672 	 */
673 	if (!plug->cur_ktime) {
674 		plug->cur_ktime = ktime_get_ns();
675 		current->flags |= PF_BLOCK_TS;
676 	}
677 	return plug->cur_ktime;
678 }
679 
680 static inline ktime_t blk_time_get(void)
681 {
682 	return ns_to_ktime(blk_time_get_ns());
683 }
684 
685 void bdev_release(struct file *bdev_file);
686 int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder,
687 	      const struct blk_holder_ops *hops, struct file *bdev_file);
688 int bdev_permission(dev_t dev, blk_mode_t mode, void *holder);
689 
690 void blk_integrity_generate(struct bio *bio);
691 void blk_integrity_verify_iter(struct bio *bio, struct bvec_iter *saved_iter);
692 void blk_integrity_prepare(struct request *rq);
693 void blk_integrity_complete(struct request *rq, unsigned int nr_bytes);
694 
695 #ifdef CONFIG_LOCKDEP
696 static inline void blk_freeze_acquire_lock(struct request_queue *q)
697 {
698 	if (!q->mq_freeze_disk_dead)
699 		rwsem_acquire(&q->io_lockdep_map, 0, 1, _RET_IP_);
700 	if (!q->mq_freeze_queue_dying)
701 		rwsem_acquire(&q->q_lockdep_map, 0, 1, _RET_IP_);
702 }
703 
704 static inline void blk_unfreeze_release_lock(struct request_queue *q)
705 {
706 	if (!q->mq_freeze_queue_dying)
707 		rwsem_release(&q->q_lockdep_map, _RET_IP_);
708 	if (!q->mq_freeze_disk_dead)
709 		rwsem_release(&q->io_lockdep_map, _RET_IP_);
710 }
711 #else
712 static inline void blk_freeze_acquire_lock(struct request_queue *q)
713 {
714 }
715 static inline void blk_unfreeze_release_lock(struct request_queue *q)
716 {
717 }
718 #endif
719 
720 #endif /* BLK_INTERNAL_H */
721