1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef BLK_INTERNAL_H 3 #define BLK_INTERNAL_H 4 5 #include <linux/bio-integrity.h> 6 #include <linux/blk-crypto.h> 7 #include <linux/lockdep.h> 8 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */ 9 #include <linux/sched/sysctl.h> 10 #include <linux/timekeeping.h> 11 #include <xen/xen.h> 12 #include "blk-crypto-internal.h" 13 14 struct elevator_type; 15 16 #define BLK_DEV_MAX_SECTORS (LLONG_MAX >> 9) 17 #define BLK_MIN_SEGMENT_SIZE 4096 18 19 /* Max future timer expiry for timeouts */ 20 #define BLK_MAX_TIMEOUT (5 * HZ) 21 22 extern struct dentry *blk_debugfs_root; 23 24 struct blk_flush_queue { 25 spinlock_t mq_flush_lock; 26 unsigned int flush_pending_idx:1; 27 unsigned int flush_running_idx:1; 28 blk_status_t rq_status; 29 unsigned long flush_pending_since; 30 struct list_head flush_queue[2]; 31 unsigned long flush_data_in_flight; 32 struct request *flush_rq; 33 }; 34 35 bool is_flush_rq(struct request *req); 36 37 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 38 gfp_t flags); 39 void blk_free_flush_queue(struct blk_flush_queue *q); 40 41 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); 42 bool blk_queue_start_drain(struct request_queue *q); 43 bool __blk_freeze_queue_start(struct request_queue *q, 44 struct task_struct *owner); 45 int __bio_queue_enter(struct request_queue *q, struct bio *bio); 46 void submit_bio_noacct_nocheck(struct bio *bio); 47 void bio_await_chain(struct bio *bio); 48 49 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm) 50 { 51 rcu_read_lock(); 52 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter)) 53 goto fail; 54 55 /* 56 * The code that increments the pm_only counter must ensure that the 57 * counter is globally visible before the queue is unfrozen. 58 */ 59 if (blk_queue_pm_only(q) && 60 (!pm || queue_rpm_status(q) == RPM_SUSPENDED)) 61 goto fail_put; 62 63 rcu_read_unlock(); 64 return true; 65 66 fail_put: 67 blk_queue_exit(q); 68 fail: 69 rcu_read_unlock(); 70 return false; 71 } 72 73 static inline int bio_queue_enter(struct bio *bio) 74 { 75 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 76 77 if (blk_try_enter_queue(q, false)) { 78 rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_); 79 rwsem_release(&q->io_lockdep_map, _RET_IP_); 80 return 0; 81 } 82 return __bio_queue_enter(q, bio); 83 } 84 85 static inline void blk_wait_io(struct completion *done) 86 { 87 /* Prevent hang_check timer from firing at us during very long I/O */ 88 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 89 90 if (timeout) 91 while (!wait_for_completion_io_timeout(done, timeout)) 92 ; 93 else 94 wait_for_completion_io(done); 95 } 96 97 struct block_device *blkdev_get_no_open(dev_t dev, bool autoload); 98 void blkdev_put_no_open(struct block_device *bdev); 99 100 #define BIO_INLINE_VECS 4 101 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 102 gfp_t gfp_mask); 103 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); 104 105 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, 106 struct page *page, unsigned len, unsigned offset, 107 bool *same_page); 108 109 static inline bool biovec_phys_mergeable(struct request_queue *q, 110 struct bio_vec *vec1, struct bio_vec *vec2) 111 { 112 unsigned long mask = queue_segment_boundary(q); 113 phys_addr_t addr1 = bvec_phys(vec1); 114 phys_addr_t addr2 = bvec_phys(vec2); 115 116 /* 117 * Merging adjacent physical pages may not work correctly under KMSAN 118 * if their metadata pages aren't adjacent. Just disable merging. 119 */ 120 if (IS_ENABLED(CONFIG_KMSAN)) 121 return false; 122 123 if (addr1 + vec1->bv_len != addr2) 124 return false; 125 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) 126 return false; 127 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) 128 return false; 129 return true; 130 } 131 132 static inline bool __bvec_gap_to_prev(const struct queue_limits *lim, 133 struct bio_vec *bprv, unsigned int offset) 134 { 135 return (offset & lim->virt_boundary_mask) || 136 ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask); 137 } 138 139 /* 140 * Check if adding a bio_vec after bprv with offset would create a gap in 141 * the SG list. Most drivers don't care about this, but some do. 142 */ 143 static inline bool bvec_gap_to_prev(const struct queue_limits *lim, 144 struct bio_vec *bprv, unsigned int offset) 145 { 146 if (!lim->virt_boundary_mask) 147 return false; 148 return __bvec_gap_to_prev(lim, bprv, offset); 149 } 150 151 static inline bool rq_mergeable(struct request *rq) 152 { 153 if (blk_rq_is_passthrough(rq)) 154 return false; 155 156 if (req_op(rq) == REQ_OP_FLUSH) 157 return false; 158 159 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 160 return false; 161 162 if (req_op(rq) == REQ_OP_ZONE_APPEND) 163 return false; 164 165 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 166 return false; 167 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 168 return false; 169 170 return true; 171 } 172 173 /* 174 * There are two different ways to handle DISCARD merges: 175 * 1) If max_discard_segments > 1, the driver treats every bio as a range and 176 * send the bios to controller together. The ranges don't need to be 177 * contiguous. 178 * 2) Otherwise, the request will be normal read/write requests. The ranges 179 * need to be contiguous. 180 */ 181 static inline bool blk_discard_mergable(struct request *req) 182 { 183 if (req_op(req) == REQ_OP_DISCARD && 184 queue_max_discard_segments(req->q) > 1) 185 return true; 186 return false; 187 } 188 189 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 190 { 191 if (req_op(rq) == REQ_OP_DISCARD) 192 return queue_max_discard_segments(rq->q); 193 return queue_max_segments(rq->q); 194 } 195 196 static inline unsigned int blk_queue_get_max_sectors(struct request *rq) 197 { 198 struct request_queue *q = rq->q; 199 enum req_op op = req_op(rq); 200 201 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 202 return min(q->limits.max_discard_sectors, 203 UINT_MAX >> SECTOR_SHIFT); 204 205 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 206 return q->limits.max_write_zeroes_sectors; 207 208 if (rq->cmd_flags & REQ_ATOMIC) 209 return q->limits.atomic_write_max_sectors; 210 211 return q->limits.max_sectors; 212 } 213 214 #ifdef CONFIG_BLK_DEV_INTEGRITY 215 void blk_flush_integrity(void); 216 void bio_integrity_free(struct bio *bio); 217 218 /* 219 * Integrity payloads can either be owned by the submitter, in which case 220 * bio_uninit will free them, or owned and generated by the block layer, 221 * in which case we'll verify them here (for reads) and free them before 222 * the bio is handed back to the submitted. 223 */ 224 bool __bio_integrity_endio(struct bio *bio); 225 static inline bool bio_integrity_endio(struct bio *bio) 226 { 227 struct bio_integrity_payload *bip = bio_integrity(bio); 228 229 if (bip && (bip->bip_flags & BIP_BLOCK_INTEGRITY)) 230 return __bio_integrity_endio(bio); 231 return true; 232 } 233 234 bool blk_integrity_merge_rq(struct request_queue *, struct request *, 235 struct request *); 236 bool blk_integrity_merge_bio(struct request_queue *, struct request *, 237 struct bio *); 238 239 static inline bool integrity_req_gap_back_merge(struct request *req, 240 struct bio *next) 241 { 242 struct bio_integrity_payload *bip = bio_integrity(req->bio); 243 struct bio_integrity_payload *bip_next = bio_integrity(next); 244 245 return bvec_gap_to_prev(&req->q->limits, 246 &bip->bip_vec[bip->bip_vcnt - 1], 247 bip_next->bip_vec[0].bv_offset); 248 } 249 250 static inline bool integrity_req_gap_front_merge(struct request *req, 251 struct bio *bio) 252 { 253 struct bio_integrity_payload *bip = bio_integrity(bio); 254 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 255 256 return bvec_gap_to_prev(&req->q->limits, 257 &bip->bip_vec[bip->bip_vcnt - 1], 258 bip_next->bip_vec[0].bv_offset); 259 } 260 261 extern const struct attribute_group blk_integrity_attr_group; 262 #else /* CONFIG_BLK_DEV_INTEGRITY */ 263 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 264 struct request *r1, struct request *r2) 265 { 266 return true; 267 } 268 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 269 struct request *r, struct bio *b) 270 { 271 return true; 272 } 273 static inline bool integrity_req_gap_back_merge(struct request *req, 274 struct bio *next) 275 { 276 return false; 277 } 278 static inline bool integrity_req_gap_front_merge(struct request *req, 279 struct bio *bio) 280 { 281 return false; 282 } 283 284 static inline void blk_flush_integrity(void) 285 { 286 } 287 static inline bool bio_integrity_endio(struct bio *bio) 288 { 289 return true; 290 } 291 static inline void bio_integrity_free(struct bio *bio) 292 { 293 } 294 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 295 296 unsigned long blk_rq_timeout(unsigned long timeout); 297 void blk_add_timer(struct request *req); 298 299 enum bio_merge_status { 300 BIO_MERGE_OK, 301 BIO_MERGE_NONE, 302 BIO_MERGE_FAILED, 303 }; 304 305 enum bio_merge_status bio_attempt_back_merge(struct request *req, 306 struct bio *bio, unsigned int nr_segs); 307 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 308 unsigned int nr_segs); 309 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 310 struct bio *bio, unsigned int nr_segs); 311 312 /* 313 * Plug flush limits 314 */ 315 #define BLK_MAX_REQUEST_COUNT 32 316 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 317 318 /* 319 * Internal elevator interface 320 */ 321 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) 322 323 bool blk_insert_flush(struct request *rq); 324 325 int elevator_switch(struct request_queue *q, struct elevator_type *new_e); 326 void elevator_disable(struct request_queue *q); 327 void elevator_exit(struct request_queue *q); 328 int elv_register_queue(struct request_queue *q, bool uevent); 329 void elv_unregister_queue(struct request_queue *q); 330 331 ssize_t part_size_show(struct device *dev, struct device_attribute *attr, 332 char *buf); 333 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, 334 char *buf); 335 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 336 char *buf); 337 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, 338 char *buf); 339 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, 340 const char *buf, size_t count); 341 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); 342 ssize_t part_timeout_store(struct device *, struct device_attribute *, 343 const char *, size_t); 344 345 struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim, 346 unsigned *nsegs); 347 struct bio *bio_split_write_zeroes(struct bio *bio, 348 const struct queue_limits *lim, unsigned *nsegs); 349 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, 350 unsigned *nr_segs); 351 struct bio *bio_split_zone_append(struct bio *bio, 352 const struct queue_limits *lim, unsigned *nr_segs); 353 354 /* 355 * All drivers must accept single-segments bios that are smaller than PAGE_SIZE. 356 * 357 * This is a quick and dirty check that relies on the fact that bi_io_vec[0] is 358 * always valid if a bio has data. The check might lead to occasional false 359 * positives when bios are cloned, but compared to the performance impact of 360 * cloned bios themselves the loop below doesn't matter anyway. 361 */ 362 static inline bool bio_may_need_split(struct bio *bio, 363 const struct queue_limits *lim) 364 { 365 if (lim->chunk_sectors) 366 return true; 367 if (bio->bi_vcnt != 1) 368 return true; 369 return bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > 370 lim->min_segment_size; 371 } 372 373 /** 374 * __bio_split_to_limits - split a bio to fit the queue limits 375 * @bio: bio to be split 376 * @lim: queue limits to split based on 377 * @nr_segs: returns the number of segments in the returned bio 378 * 379 * Check if @bio needs splitting based on the queue limits, and if so split off 380 * a bio fitting the limits from the beginning of @bio and return it. @bio is 381 * shortened to the remainder and re-submitted. 382 * 383 * The split bio is allocated from @q->bio_split, which is provided by the 384 * block layer. 385 */ 386 static inline struct bio *__bio_split_to_limits(struct bio *bio, 387 const struct queue_limits *lim, unsigned int *nr_segs) 388 { 389 switch (bio_op(bio)) { 390 case REQ_OP_READ: 391 case REQ_OP_WRITE: 392 if (bio_may_need_split(bio, lim)) 393 return bio_split_rw(bio, lim, nr_segs); 394 *nr_segs = 1; 395 return bio; 396 case REQ_OP_ZONE_APPEND: 397 return bio_split_zone_append(bio, lim, nr_segs); 398 case REQ_OP_DISCARD: 399 case REQ_OP_SECURE_ERASE: 400 return bio_split_discard(bio, lim, nr_segs); 401 case REQ_OP_WRITE_ZEROES: 402 return bio_split_write_zeroes(bio, lim, nr_segs); 403 default: 404 /* other operations can't be split */ 405 *nr_segs = 0; 406 return bio; 407 } 408 } 409 410 int ll_back_merge_fn(struct request *req, struct bio *bio, 411 unsigned int nr_segs); 412 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 413 struct request *next); 414 unsigned int blk_recalc_rq_segments(struct request *rq); 415 bool blk_rq_merge_ok(struct request *rq, struct bio *bio); 416 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); 417 418 int blk_set_default_limits(struct queue_limits *lim); 419 void blk_apply_bdi_limits(struct backing_dev_info *bdi, 420 struct queue_limits *lim); 421 int blk_dev_init(void); 422 423 void update_io_ticks(struct block_device *part, unsigned long now, bool end); 424 unsigned int part_in_flight(struct block_device *part); 425 426 static inline void req_set_nomerge(struct request_queue *q, struct request *req) 427 { 428 req->cmd_flags |= REQ_NOMERGE; 429 if (req == q->last_merge) 430 q->last_merge = NULL; 431 } 432 433 /* 434 * Internal io_context interface 435 */ 436 struct io_cq *ioc_find_get_icq(struct request_queue *q); 437 struct io_cq *ioc_lookup_icq(struct request_queue *q); 438 #ifdef CONFIG_BLK_ICQ 439 void ioc_clear_queue(struct request_queue *q); 440 #else 441 static inline void ioc_clear_queue(struct request_queue *q) 442 { 443 } 444 #endif /* CONFIG_BLK_ICQ */ 445 446 struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q); 447 448 static inline bool blk_queue_may_bounce(struct request_queue *q) 449 { 450 return IS_ENABLED(CONFIG_BOUNCE) && 451 (q->limits.features & BLK_FEAT_BOUNCE_HIGH) && 452 max_low_pfn >= max_pfn; 453 } 454 455 static inline struct bio *blk_queue_bounce(struct bio *bio, 456 struct request_queue *q) 457 { 458 if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio))) 459 return __blk_queue_bounce(bio, q); 460 return bio; 461 } 462 463 #ifdef CONFIG_BLK_DEV_ZONED 464 void disk_init_zone_resources(struct gendisk *disk); 465 void disk_free_zone_resources(struct gendisk *disk); 466 static inline bool bio_zone_write_plugging(struct bio *bio) 467 { 468 return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING); 469 } 470 void blk_zone_write_plug_bio_merged(struct bio *bio); 471 void blk_zone_write_plug_init_request(struct request *rq); 472 static inline void blk_zone_update_request_bio(struct request *rq, 473 struct bio *bio) 474 { 475 /* 476 * For zone append requests, the request sector indicates the location 477 * at which the BIO data was written. Return this value to the BIO 478 * issuer through the BIO iter sector. 479 * For plugged zone writes, which include emulated zone append, we need 480 * the original BIO sector so that blk_zone_write_plug_bio_endio() can 481 * lookup the zone write plug. 482 */ 483 if (req_op(rq) == REQ_OP_ZONE_APPEND || bio_zone_write_plugging(bio)) 484 bio->bi_iter.bi_sector = rq->__sector; 485 } 486 void blk_zone_write_plug_bio_endio(struct bio *bio); 487 static inline void blk_zone_bio_endio(struct bio *bio) 488 { 489 /* 490 * For write BIOs to zoned devices, signal the completion of the BIO so 491 * that the next write BIO can be submitted by zone write plugging. 492 */ 493 if (bio_zone_write_plugging(bio)) 494 blk_zone_write_plug_bio_endio(bio); 495 } 496 497 void blk_zone_write_plug_finish_request(struct request *rq); 498 static inline void blk_zone_finish_request(struct request *rq) 499 { 500 if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING) 501 blk_zone_write_plug_finish_request(rq); 502 } 503 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, 504 unsigned long arg); 505 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, 506 unsigned int cmd, unsigned long arg); 507 #else /* CONFIG_BLK_DEV_ZONED */ 508 static inline void disk_init_zone_resources(struct gendisk *disk) 509 { 510 } 511 static inline void disk_free_zone_resources(struct gendisk *disk) 512 { 513 } 514 static inline bool bio_zone_write_plugging(struct bio *bio) 515 { 516 return false; 517 } 518 static inline void blk_zone_write_plug_bio_merged(struct bio *bio) 519 { 520 } 521 static inline void blk_zone_write_plug_init_request(struct request *rq) 522 { 523 } 524 static inline void blk_zone_update_request_bio(struct request *rq, 525 struct bio *bio) 526 { 527 } 528 static inline void blk_zone_bio_endio(struct bio *bio) 529 { 530 } 531 static inline void blk_zone_finish_request(struct request *rq) 532 { 533 } 534 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 535 unsigned int cmd, unsigned long arg) 536 { 537 return -ENOTTY; 538 } 539 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 540 blk_mode_t mode, unsigned int cmd, unsigned long arg) 541 { 542 return -ENOTTY; 543 } 544 #endif /* CONFIG_BLK_DEV_ZONED */ 545 546 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 547 void bdev_add(struct block_device *bdev, dev_t dev); 548 void bdev_unhash(struct block_device *bdev); 549 void bdev_drop(struct block_device *bdev); 550 551 int blk_alloc_ext_minor(void); 552 void blk_free_ext_minor(unsigned int minor); 553 #define ADDPART_FLAG_NONE 0 554 #define ADDPART_FLAG_RAID 1 555 #define ADDPART_FLAG_WHOLEDISK 2 556 #define ADDPART_FLAG_READONLY 4 557 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, 558 sector_t length); 559 int bdev_del_partition(struct gendisk *disk, int partno); 560 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, 561 sector_t length); 562 void drop_partition(struct block_device *part); 563 564 void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors); 565 566 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, 567 struct lock_class_key *lkclass); 568 569 /* 570 * Clean up a page appropriately, where the page may be pinned, may have a 571 * ref taken on it or neither. 572 */ 573 static inline void bio_release_page(struct bio *bio, struct page *page) 574 { 575 if (bio_flagged(bio, BIO_PAGE_PINNED)) 576 unpin_user_page(page); 577 } 578 579 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id); 580 581 int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode); 582 583 int disk_alloc_events(struct gendisk *disk); 584 void disk_add_events(struct gendisk *disk); 585 void disk_del_events(struct gendisk *disk); 586 void disk_release_events(struct gendisk *disk); 587 void disk_block_events(struct gendisk *disk); 588 void disk_unblock_events(struct gendisk *disk); 589 void disk_flush_events(struct gendisk *disk, unsigned int mask); 590 extern struct device_attribute dev_attr_events; 591 extern struct device_attribute dev_attr_events_async; 592 extern struct device_attribute dev_attr_events_poll_msecs; 593 594 extern struct attribute_group blk_trace_attr_group; 595 596 blk_mode_t file_to_blk_mode(struct file *file); 597 int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode, 598 loff_t lstart, loff_t lend); 599 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 600 int blkdev_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags); 601 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 602 603 extern const struct address_space_operations def_blk_aops; 604 605 int disk_register_independent_access_ranges(struct gendisk *disk); 606 void disk_unregister_independent_access_ranges(struct gendisk *disk); 607 608 #ifdef CONFIG_FAIL_MAKE_REQUEST 609 bool should_fail_request(struct block_device *part, unsigned int bytes); 610 #else /* CONFIG_FAIL_MAKE_REQUEST */ 611 static inline bool should_fail_request(struct block_device *part, 612 unsigned int bytes) 613 { 614 return false; 615 } 616 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 617 618 /* 619 * Optimized request reference counting. Ideally we'd make timeouts be more 620 * clever, as that's the only reason we need references at all... But until 621 * this happens, this is faster than using refcount_t. Also see: 622 * 623 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count") 624 */ 625 #define req_ref_zero_or_close_to_overflow(req) \ 626 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u) 627 628 static inline bool req_ref_inc_not_zero(struct request *req) 629 { 630 return atomic_inc_not_zero(&req->ref); 631 } 632 633 static inline bool req_ref_put_and_test(struct request *req) 634 { 635 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); 636 return atomic_dec_and_test(&req->ref); 637 } 638 639 static inline void req_ref_set(struct request *req, int value) 640 { 641 atomic_set(&req->ref, value); 642 } 643 644 static inline int req_ref_read(struct request *req) 645 { 646 return atomic_read(&req->ref); 647 } 648 649 static inline u64 blk_time_get_ns(void) 650 { 651 struct blk_plug *plug = current->plug; 652 653 if (!plug || !in_task()) 654 return ktime_get_ns(); 655 656 /* 657 * 0 could very well be a valid time, but rather than flag "this is 658 * a valid timestamp" separately, just accept that we'll do an extra 659 * ktime_get_ns() if we just happen to get 0 as the current time. 660 */ 661 if (!plug->cur_ktime) { 662 plug->cur_ktime = ktime_get_ns(); 663 current->flags |= PF_BLOCK_TS; 664 } 665 return plug->cur_ktime; 666 } 667 668 static inline ktime_t blk_time_get(void) 669 { 670 return ns_to_ktime(blk_time_get_ns()); 671 } 672 673 /* 674 * From most significant bit: 675 * 1 bit: reserved for other usage, see below 676 * 12 bits: original size of bio 677 * 51 bits: issue time of bio 678 */ 679 #define BIO_ISSUE_RES_BITS 1 680 #define BIO_ISSUE_SIZE_BITS 12 681 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) 682 #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) 683 #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) 684 #define BIO_ISSUE_SIZE_MASK \ 685 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) 686 #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) 687 688 /* Reserved bit for blk-throtl */ 689 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) 690 691 static inline u64 __bio_issue_time(u64 time) 692 { 693 return time & BIO_ISSUE_TIME_MASK; 694 } 695 696 static inline u64 bio_issue_time(struct bio_issue *issue) 697 { 698 return __bio_issue_time(issue->value); 699 } 700 701 static inline sector_t bio_issue_size(struct bio_issue *issue) 702 { 703 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); 704 } 705 706 static inline void bio_issue_init(struct bio_issue *issue, 707 sector_t size) 708 { 709 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; 710 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | 711 (blk_time_get_ns() & BIO_ISSUE_TIME_MASK) | 712 ((u64)size << BIO_ISSUE_SIZE_SHIFT)); 713 } 714 715 void bdev_release(struct file *bdev_file); 716 int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder, 717 const struct blk_holder_ops *hops, struct file *bdev_file); 718 int bdev_permission(dev_t dev, blk_mode_t mode, void *holder); 719 720 void blk_integrity_generate(struct bio *bio); 721 void blk_integrity_verify_iter(struct bio *bio, struct bvec_iter *saved_iter); 722 void blk_integrity_prepare(struct request *rq); 723 void blk_integrity_complete(struct request *rq, unsigned int nr_bytes); 724 725 #ifdef CONFIG_LOCKDEP 726 static inline void blk_freeze_acquire_lock(struct request_queue *q) 727 { 728 if (!q->mq_freeze_disk_dead) 729 rwsem_acquire(&q->io_lockdep_map, 0, 1, _RET_IP_); 730 if (!q->mq_freeze_queue_dying) 731 rwsem_acquire(&q->q_lockdep_map, 0, 1, _RET_IP_); 732 } 733 734 static inline void blk_unfreeze_release_lock(struct request_queue *q) 735 { 736 if (!q->mq_freeze_queue_dying) 737 rwsem_release(&q->q_lockdep_map, _RET_IP_); 738 if (!q->mq_freeze_disk_dead) 739 rwsem_release(&q->io_lockdep_map, _RET_IP_); 740 } 741 #else 742 static inline void blk_freeze_acquire_lock(struct request_queue *q) 743 { 744 } 745 static inline void blk_unfreeze_release_lock(struct request_queue *q) 746 { 747 } 748 #endif 749 750 #endif /* BLK_INTERNAL_H */ 751