1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef BLK_INTERNAL_H 3 #define BLK_INTERNAL_H 4 5 #include <linux/idr.h> 6 #include <linux/blk-mq.h> 7 #include <linux/part_stat.h> 8 #include <linux/blk-crypto.h> 9 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */ 10 #include <xen/xen.h> 11 #include "blk-crypto-internal.h" 12 #include "blk-mq.h" 13 #include "blk-mq-sched.h" 14 15 /* Max future timer expiry for timeouts */ 16 #define BLK_MAX_TIMEOUT (5 * HZ) 17 18 extern struct dentry *blk_debugfs_root; 19 20 struct blk_flush_queue { 21 unsigned int flush_pending_idx:1; 22 unsigned int flush_running_idx:1; 23 blk_status_t rq_status; 24 unsigned long flush_pending_since; 25 struct list_head flush_queue[2]; 26 struct list_head flush_data_in_flight; 27 struct request *flush_rq; 28 29 spinlock_t mq_flush_lock; 30 }; 31 32 extern struct kmem_cache *blk_requestq_cachep; 33 extern struct kobj_type blk_queue_ktype; 34 extern struct ida blk_queue_ida; 35 36 static inline struct blk_flush_queue * 37 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx) 38 { 39 return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq; 40 } 41 42 static inline void __blk_get_queue(struct request_queue *q) 43 { 44 kobject_get(&q->kobj); 45 } 46 47 bool is_flush_rq(struct request *req); 48 49 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 50 gfp_t flags); 51 void blk_free_flush_queue(struct blk_flush_queue *q); 52 53 void blk_freeze_queue(struct request_queue *q); 54 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); 55 void blk_queue_start_drain(struct request_queue *q); 56 57 #define BIO_INLINE_VECS 4 58 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 59 gfp_t gfp_mask); 60 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); 61 62 static inline bool biovec_phys_mergeable(struct request_queue *q, 63 struct bio_vec *vec1, struct bio_vec *vec2) 64 { 65 unsigned long mask = queue_segment_boundary(q); 66 phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; 67 phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; 68 69 if (addr1 + vec1->bv_len != addr2) 70 return false; 71 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) 72 return false; 73 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) 74 return false; 75 return true; 76 } 77 78 static inline bool __bvec_gap_to_prev(struct request_queue *q, 79 struct bio_vec *bprv, unsigned int offset) 80 { 81 return (offset & queue_virt_boundary(q)) || 82 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 83 } 84 85 /* 86 * Check if adding a bio_vec after bprv with offset would create a gap in 87 * the SG list. Most drivers don't care about this, but some do. 88 */ 89 static inline bool bvec_gap_to_prev(struct request_queue *q, 90 struct bio_vec *bprv, unsigned int offset) 91 { 92 if (!queue_virt_boundary(q)) 93 return false; 94 return __bvec_gap_to_prev(q, bprv, offset); 95 } 96 97 #ifdef CONFIG_BLK_DEV_INTEGRITY 98 void blk_flush_integrity(void); 99 bool __bio_integrity_endio(struct bio *); 100 void bio_integrity_free(struct bio *bio); 101 static inline bool bio_integrity_endio(struct bio *bio) 102 { 103 if (bio_integrity(bio)) 104 return __bio_integrity_endio(bio); 105 return true; 106 } 107 108 bool blk_integrity_merge_rq(struct request_queue *, struct request *, 109 struct request *); 110 bool blk_integrity_merge_bio(struct request_queue *, struct request *, 111 struct bio *); 112 113 static inline bool integrity_req_gap_back_merge(struct request *req, 114 struct bio *next) 115 { 116 struct bio_integrity_payload *bip = bio_integrity(req->bio); 117 struct bio_integrity_payload *bip_next = bio_integrity(next); 118 119 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 120 bip_next->bip_vec[0].bv_offset); 121 } 122 123 static inline bool integrity_req_gap_front_merge(struct request *req, 124 struct bio *bio) 125 { 126 struct bio_integrity_payload *bip = bio_integrity(bio); 127 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 128 129 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 130 bip_next->bip_vec[0].bv_offset); 131 } 132 133 int blk_integrity_add(struct gendisk *disk); 134 void blk_integrity_del(struct gendisk *); 135 #else /* CONFIG_BLK_DEV_INTEGRITY */ 136 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 137 struct request *r1, struct request *r2) 138 { 139 return true; 140 } 141 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 142 struct request *r, struct bio *b) 143 { 144 return true; 145 } 146 static inline bool integrity_req_gap_back_merge(struct request *req, 147 struct bio *next) 148 { 149 return false; 150 } 151 static inline bool integrity_req_gap_front_merge(struct request *req, 152 struct bio *bio) 153 { 154 return false; 155 } 156 157 static inline void blk_flush_integrity(void) 158 { 159 } 160 static inline bool bio_integrity_endio(struct bio *bio) 161 { 162 return true; 163 } 164 static inline void bio_integrity_free(struct bio *bio) 165 { 166 } 167 static inline int blk_integrity_add(struct gendisk *disk) 168 { 169 return 0; 170 } 171 static inline void blk_integrity_del(struct gendisk *disk) 172 { 173 } 174 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 175 176 unsigned long blk_rq_timeout(unsigned long timeout); 177 void blk_add_timer(struct request *req); 178 179 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 180 unsigned int nr_segs, struct request **same_queue_rq); 181 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 182 struct bio *bio, unsigned int nr_segs); 183 184 void blk_account_io_start(struct request *req); 185 void blk_account_io_done(struct request *req, u64 now); 186 187 /* 188 * Internal elevator interface 189 */ 190 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) 191 192 void blk_insert_flush(struct request *rq); 193 194 int elevator_switch_mq(struct request_queue *q, 195 struct elevator_type *new_e); 196 void __elevator_exit(struct request_queue *, struct elevator_queue *); 197 int elv_register_queue(struct request_queue *q, bool uevent); 198 void elv_unregister_queue(struct request_queue *q); 199 200 static inline void elevator_exit(struct request_queue *q, 201 struct elevator_queue *e) 202 { 203 lockdep_assert_held(&q->sysfs_lock); 204 205 blk_mq_sched_free_requests(q); 206 __elevator_exit(q, e); 207 } 208 209 ssize_t part_size_show(struct device *dev, struct device_attribute *attr, 210 char *buf); 211 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, 212 char *buf); 213 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 214 char *buf); 215 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, 216 char *buf); 217 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, 218 const char *buf, size_t count); 219 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); 220 ssize_t part_timeout_store(struct device *, struct device_attribute *, 221 const char *, size_t); 222 223 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs); 224 int ll_back_merge_fn(struct request *req, struct bio *bio, 225 unsigned int nr_segs); 226 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 227 struct request *next); 228 unsigned int blk_recalc_rq_segments(struct request *rq); 229 void blk_rq_set_mixed_merge(struct request *rq); 230 bool blk_rq_merge_ok(struct request *rq, struct bio *bio); 231 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); 232 233 int blk_dev_init(void); 234 235 /* 236 * Contribute to IO statistics IFF: 237 * 238 * a) it's attached to a gendisk, and 239 * b) the queue had IO stats enabled when this request was started 240 */ 241 static inline bool blk_do_io_stat(struct request *rq) 242 { 243 return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT); 244 } 245 246 static inline void req_set_nomerge(struct request_queue *q, struct request *req) 247 { 248 req->cmd_flags |= REQ_NOMERGE; 249 if (req == q->last_merge) 250 q->last_merge = NULL; 251 } 252 253 /* 254 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 255 * is defined as 'unsigned int', meantime it has to aligned to with logical 256 * block size which is the minimum accepted unit by hardware. 257 */ 258 static inline unsigned int bio_allowed_max_sectors(struct request_queue *q) 259 { 260 return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9; 261 } 262 263 /* 264 * The max bio size which is aligned to q->limits.discard_granularity. This 265 * is a hint to split large discard bio in generic block layer, then if device 266 * driver needs to split the discard bio into smaller ones, their bi_size can 267 * be very probably and easily aligned to discard_granularity of the device's 268 * queue. 269 */ 270 static inline unsigned int bio_aligned_discard_max_sectors( 271 struct request_queue *q) 272 { 273 return round_down(UINT_MAX, q->limits.discard_granularity) >> 274 SECTOR_SHIFT; 275 } 276 277 /* 278 * Internal io_context interface 279 */ 280 void get_io_context(struct io_context *ioc); 281 struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q); 282 struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q, 283 gfp_t gfp_mask); 284 void ioc_clear_queue(struct request_queue *q); 285 286 int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node); 287 288 /* 289 * Internal throttling interface 290 */ 291 #ifdef CONFIG_BLK_DEV_THROTTLING 292 extern int blk_throtl_init(struct request_queue *q); 293 extern void blk_throtl_exit(struct request_queue *q); 294 extern void blk_throtl_register_queue(struct request_queue *q); 295 extern void blk_throtl_charge_bio_split(struct bio *bio); 296 bool blk_throtl_bio(struct bio *bio); 297 #else /* CONFIG_BLK_DEV_THROTTLING */ 298 static inline int blk_throtl_init(struct request_queue *q) { return 0; } 299 static inline void blk_throtl_exit(struct request_queue *q) { } 300 static inline void blk_throtl_register_queue(struct request_queue *q) { } 301 static inline void blk_throtl_charge_bio_split(struct bio *bio) { } 302 static inline bool blk_throtl_bio(struct bio *bio) { return false; } 303 #endif /* CONFIG_BLK_DEV_THROTTLING */ 304 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 305 extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); 306 extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, 307 const char *page, size_t count); 308 extern void blk_throtl_bio_endio(struct bio *bio); 309 extern void blk_throtl_stat_add(struct request *rq, u64 time); 310 #else 311 static inline void blk_throtl_bio_endio(struct bio *bio) { } 312 static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } 313 #endif 314 315 void __blk_queue_bounce(struct request_queue *q, struct bio **bio); 316 317 static inline bool blk_queue_may_bounce(struct request_queue *q) 318 { 319 return IS_ENABLED(CONFIG_BOUNCE) && 320 q->limits.bounce == BLK_BOUNCE_HIGH && 321 max_low_pfn >= max_pfn; 322 } 323 324 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio) 325 { 326 if (unlikely(blk_queue_may_bounce(q) && bio_has_data(*bio))) 327 __blk_queue_bounce(q, bio); 328 } 329 330 #ifdef CONFIG_BLK_CGROUP_IOLATENCY 331 extern int blk_iolatency_init(struct request_queue *q); 332 #else 333 static inline int blk_iolatency_init(struct request_queue *q) { return 0; } 334 #endif 335 336 struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp); 337 338 #ifdef CONFIG_BLK_DEV_ZONED 339 void blk_queue_free_zone_bitmaps(struct request_queue *q); 340 void blk_queue_clear_zone_settings(struct request_queue *q); 341 #else 342 static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {} 343 static inline void blk_queue_clear_zone_settings(struct request_queue *q) {} 344 #endif 345 346 int blk_alloc_ext_minor(void); 347 void blk_free_ext_minor(unsigned int minor); 348 #define ADDPART_FLAG_NONE 0 349 #define ADDPART_FLAG_RAID 1 350 #define ADDPART_FLAG_WHOLEDISK 2 351 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, 352 sector_t length); 353 int bdev_del_partition(struct gendisk *disk, int partno); 354 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, 355 sector_t length); 356 357 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 358 struct page *page, unsigned int len, unsigned int offset, 359 unsigned int max_sectors, bool *same_page); 360 361 struct request_queue *blk_alloc_queue(int node_id); 362 363 int disk_alloc_events(struct gendisk *disk); 364 void disk_add_events(struct gendisk *disk); 365 void disk_del_events(struct gendisk *disk); 366 void disk_release_events(struct gendisk *disk); 367 extern struct device_attribute dev_attr_events; 368 extern struct device_attribute dev_attr_events_async; 369 extern struct device_attribute dev_attr_events_poll_msecs; 370 371 static inline void bio_clear_hipri(struct bio *bio) 372 { 373 /* can't support alloc cache if we turn off polling */ 374 bio_clear_flag(bio, BIO_PERCPU_CACHE); 375 bio->bi_opf &= ~REQ_HIPRI; 376 } 377 378 extern const struct address_space_operations def_blk_aops; 379 380 #endif /* BLK_INTERNAL_H */ 381