1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef BLK_INTERNAL_H 3 #define BLK_INTERNAL_H 4 5 #include <linux/blk-crypto.h> 6 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */ 7 #include <linux/sched/sysctl.h> 8 #include <linux/timekeeping.h> 9 #include <xen/xen.h> 10 #include "blk-crypto-internal.h" 11 12 struct elevator_type; 13 14 /* Max future timer expiry for timeouts */ 15 #define BLK_MAX_TIMEOUT (5 * HZ) 16 17 extern struct dentry *blk_debugfs_root; 18 19 struct blk_flush_queue { 20 spinlock_t mq_flush_lock; 21 unsigned int flush_pending_idx:1; 22 unsigned int flush_running_idx:1; 23 blk_status_t rq_status; 24 unsigned long flush_pending_since; 25 struct list_head flush_queue[2]; 26 unsigned long flush_data_in_flight; 27 struct request *flush_rq; 28 }; 29 30 bool is_flush_rq(struct request *req); 31 32 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 33 gfp_t flags); 34 void blk_free_flush_queue(struct blk_flush_queue *q); 35 36 void blk_freeze_queue(struct request_queue *q); 37 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); 38 void blk_queue_start_drain(struct request_queue *q); 39 int __bio_queue_enter(struct request_queue *q, struct bio *bio); 40 void submit_bio_noacct_nocheck(struct bio *bio); 41 void bio_await_chain(struct bio *bio); 42 43 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm) 44 { 45 rcu_read_lock(); 46 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter)) 47 goto fail; 48 49 /* 50 * The code that increments the pm_only counter must ensure that the 51 * counter is globally visible before the queue is unfrozen. 52 */ 53 if (blk_queue_pm_only(q) && 54 (!pm || queue_rpm_status(q) == RPM_SUSPENDED)) 55 goto fail_put; 56 57 rcu_read_unlock(); 58 return true; 59 60 fail_put: 61 blk_queue_exit(q); 62 fail: 63 rcu_read_unlock(); 64 return false; 65 } 66 67 static inline int bio_queue_enter(struct bio *bio) 68 { 69 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 70 71 if (blk_try_enter_queue(q, false)) 72 return 0; 73 return __bio_queue_enter(q, bio); 74 } 75 76 static inline void blk_wait_io(struct completion *done) 77 { 78 /* Prevent hang_check timer from firing at us during very long I/O */ 79 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 80 81 if (timeout) 82 while (!wait_for_completion_io_timeout(done, timeout)) 83 ; 84 else 85 wait_for_completion_io(done); 86 } 87 88 #define BIO_INLINE_VECS 4 89 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 90 gfp_t gfp_mask); 91 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); 92 93 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, 94 struct page *page, unsigned len, unsigned offset, 95 bool *same_page); 96 97 static inline bool biovec_phys_mergeable(struct request_queue *q, 98 struct bio_vec *vec1, struct bio_vec *vec2) 99 { 100 unsigned long mask = queue_segment_boundary(q); 101 phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; 102 phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; 103 104 /* 105 * Merging adjacent physical pages may not work correctly under KMSAN 106 * if their metadata pages aren't adjacent. Just disable merging. 107 */ 108 if (IS_ENABLED(CONFIG_KMSAN)) 109 return false; 110 111 if (addr1 + vec1->bv_len != addr2) 112 return false; 113 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) 114 return false; 115 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) 116 return false; 117 return true; 118 } 119 120 static inline bool __bvec_gap_to_prev(const struct queue_limits *lim, 121 struct bio_vec *bprv, unsigned int offset) 122 { 123 return (offset & lim->virt_boundary_mask) || 124 ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask); 125 } 126 127 /* 128 * Check if adding a bio_vec after bprv with offset would create a gap in 129 * the SG list. Most drivers don't care about this, but some do. 130 */ 131 static inline bool bvec_gap_to_prev(const struct queue_limits *lim, 132 struct bio_vec *bprv, unsigned int offset) 133 { 134 if (!lim->virt_boundary_mask) 135 return false; 136 return __bvec_gap_to_prev(lim, bprv, offset); 137 } 138 139 static inline bool rq_mergeable(struct request *rq) 140 { 141 if (blk_rq_is_passthrough(rq)) 142 return false; 143 144 if (req_op(rq) == REQ_OP_FLUSH) 145 return false; 146 147 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 148 return false; 149 150 if (req_op(rq) == REQ_OP_ZONE_APPEND) 151 return false; 152 153 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 154 return false; 155 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 156 return false; 157 158 return true; 159 } 160 161 /* 162 * There are two different ways to handle DISCARD merges: 163 * 1) If max_discard_segments > 1, the driver treats every bio as a range and 164 * send the bios to controller together. The ranges don't need to be 165 * contiguous. 166 * 2) Otherwise, the request will be normal read/write requests. The ranges 167 * need to be contiguous. 168 */ 169 static inline bool blk_discard_mergable(struct request *req) 170 { 171 if (req_op(req) == REQ_OP_DISCARD && 172 queue_max_discard_segments(req->q) > 1) 173 return true; 174 return false; 175 } 176 177 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 178 { 179 if (req_op(rq) == REQ_OP_DISCARD) 180 return queue_max_discard_segments(rq->q); 181 return queue_max_segments(rq->q); 182 } 183 184 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 185 enum req_op op) 186 { 187 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 188 return min(q->limits.max_discard_sectors, 189 UINT_MAX >> SECTOR_SHIFT); 190 191 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 192 return q->limits.max_write_zeroes_sectors; 193 194 return q->limits.max_sectors; 195 } 196 197 #ifdef CONFIG_BLK_DEV_INTEGRITY 198 void blk_flush_integrity(void); 199 bool __bio_integrity_endio(struct bio *); 200 void bio_integrity_free(struct bio *bio); 201 static inline bool bio_integrity_endio(struct bio *bio) 202 { 203 if (bio_integrity(bio)) 204 return __bio_integrity_endio(bio); 205 return true; 206 } 207 208 bool blk_integrity_merge_rq(struct request_queue *, struct request *, 209 struct request *); 210 bool blk_integrity_merge_bio(struct request_queue *, struct request *, 211 struct bio *); 212 213 static inline bool integrity_req_gap_back_merge(struct request *req, 214 struct bio *next) 215 { 216 struct bio_integrity_payload *bip = bio_integrity(req->bio); 217 struct bio_integrity_payload *bip_next = bio_integrity(next); 218 219 return bvec_gap_to_prev(&req->q->limits, 220 &bip->bip_vec[bip->bip_vcnt - 1], 221 bip_next->bip_vec[0].bv_offset); 222 } 223 224 static inline bool integrity_req_gap_front_merge(struct request *req, 225 struct bio *bio) 226 { 227 struct bio_integrity_payload *bip = bio_integrity(bio); 228 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 229 230 return bvec_gap_to_prev(&req->q->limits, 231 &bip->bip_vec[bip->bip_vcnt - 1], 232 bip_next->bip_vec[0].bv_offset); 233 } 234 235 extern const struct attribute_group blk_integrity_attr_group; 236 #else /* CONFIG_BLK_DEV_INTEGRITY */ 237 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 238 struct request *r1, struct request *r2) 239 { 240 return true; 241 } 242 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 243 struct request *r, struct bio *b) 244 { 245 return true; 246 } 247 static inline bool integrity_req_gap_back_merge(struct request *req, 248 struct bio *next) 249 { 250 return false; 251 } 252 static inline bool integrity_req_gap_front_merge(struct request *req, 253 struct bio *bio) 254 { 255 return false; 256 } 257 258 static inline void blk_flush_integrity(void) 259 { 260 } 261 static inline bool bio_integrity_endio(struct bio *bio) 262 { 263 return true; 264 } 265 static inline void bio_integrity_free(struct bio *bio) 266 { 267 } 268 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 269 270 unsigned long blk_rq_timeout(unsigned long timeout); 271 void blk_add_timer(struct request *req); 272 273 enum bio_merge_status { 274 BIO_MERGE_OK, 275 BIO_MERGE_NONE, 276 BIO_MERGE_FAILED, 277 }; 278 279 enum bio_merge_status bio_attempt_back_merge(struct request *req, 280 struct bio *bio, unsigned int nr_segs); 281 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 282 unsigned int nr_segs); 283 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 284 struct bio *bio, unsigned int nr_segs); 285 286 /* 287 * Plug flush limits 288 */ 289 #define BLK_MAX_REQUEST_COUNT 32 290 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 291 292 /* 293 * Internal elevator interface 294 */ 295 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) 296 297 bool blk_insert_flush(struct request *rq); 298 299 int elevator_switch(struct request_queue *q, struct elevator_type *new_e); 300 void elevator_disable(struct request_queue *q); 301 void elevator_exit(struct request_queue *q); 302 int elv_register_queue(struct request_queue *q, bool uevent); 303 void elv_unregister_queue(struct request_queue *q); 304 305 ssize_t part_size_show(struct device *dev, struct device_attribute *attr, 306 char *buf); 307 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, 308 char *buf); 309 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 310 char *buf); 311 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, 312 char *buf); 313 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, 314 const char *buf, size_t count); 315 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); 316 ssize_t part_timeout_store(struct device *, struct device_attribute *, 317 const char *, size_t); 318 319 static inline bool bio_may_exceed_limits(struct bio *bio, 320 const struct queue_limits *lim) 321 { 322 switch (bio_op(bio)) { 323 case REQ_OP_DISCARD: 324 case REQ_OP_SECURE_ERASE: 325 case REQ_OP_WRITE_ZEROES: 326 return true; /* non-trivial splitting decisions */ 327 default: 328 break; 329 } 330 331 /* 332 * All drivers must accept single-segments bios that are <= PAGE_SIZE. 333 * This is a quick and dirty check that relies on the fact that 334 * bi_io_vec[0] is always valid if a bio has data. The check might 335 * lead to occasional false negatives when bios are cloned, but compared 336 * to the performance impact of cloned bios themselves the loop below 337 * doesn't matter anyway. 338 */ 339 return lim->chunk_sectors || bio->bi_vcnt != 1 || 340 bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE; 341 } 342 343 struct bio *__bio_split_to_limits(struct bio *bio, 344 const struct queue_limits *lim, 345 unsigned int *nr_segs); 346 int ll_back_merge_fn(struct request *req, struct bio *bio, 347 unsigned int nr_segs); 348 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 349 struct request *next); 350 unsigned int blk_recalc_rq_segments(struct request *rq); 351 bool blk_rq_merge_ok(struct request *rq, struct bio *bio); 352 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); 353 354 int blk_set_default_limits(struct queue_limits *lim); 355 int blk_dev_init(void); 356 357 /* 358 * Contribute to IO statistics IFF: 359 * 360 * a) it's attached to a gendisk, and 361 * b) the queue had IO stats enabled when this request was started 362 */ 363 static inline bool blk_do_io_stat(struct request *rq) 364 { 365 return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq); 366 } 367 368 void update_io_ticks(struct block_device *part, unsigned long now, bool end); 369 unsigned int part_in_flight(struct block_device *part); 370 371 static inline void req_set_nomerge(struct request_queue *q, struct request *req) 372 { 373 req->cmd_flags |= REQ_NOMERGE; 374 if (req == q->last_merge) 375 q->last_merge = NULL; 376 } 377 378 /* 379 * Internal io_context interface 380 */ 381 struct io_cq *ioc_find_get_icq(struct request_queue *q); 382 struct io_cq *ioc_lookup_icq(struct request_queue *q); 383 #ifdef CONFIG_BLK_ICQ 384 void ioc_clear_queue(struct request_queue *q); 385 #else 386 static inline void ioc_clear_queue(struct request_queue *q) 387 { 388 } 389 #endif /* CONFIG_BLK_ICQ */ 390 391 struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q); 392 393 static inline bool blk_queue_may_bounce(struct request_queue *q) 394 { 395 return IS_ENABLED(CONFIG_BOUNCE) && 396 q->limits.bounce == BLK_BOUNCE_HIGH && 397 max_low_pfn >= max_pfn; 398 } 399 400 static inline struct bio *blk_queue_bounce(struct bio *bio, 401 struct request_queue *q) 402 { 403 if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio))) 404 return __blk_queue_bounce(bio, q); 405 return bio; 406 } 407 408 #ifdef CONFIG_BLK_DEV_ZONED 409 void disk_init_zone_resources(struct gendisk *disk); 410 void disk_free_zone_resources(struct gendisk *disk); 411 static inline bool bio_zone_write_plugging(struct bio *bio) 412 { 413 return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING); 414 } 415 static inline bool bio_is_zone_append(struct bio *bio) 416 { 417 return bio_op(bio) == REQ_OP_ZONE_APPEND || 418 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND); 419 } 420 void blk_zone_write_plug_bio_merged(struct bio *bio); 421 void blk_zone_write_plug_init_request(struct request *rq); 422 static inline void blk_zone_update_request_bio(struct request *rq, 423 struct bio *bio) 424 { 425 /* 426 * For zone append requests, the request sector indicates the location 427 * at which the BIO data was written. Return this value to the BIO 428 * issuer through the BIO iter sector. 429 * For plugged zone writes, which include emulated zone append, we need 430 * the original BIO sector so that blk_zone_write_plug_bio_endio() can 431 * lookup the zone write plug. 432 */ 433 if (req_op(rq) == REQ_OP_ZONE_APPEND || bio_zone_write_plugging(bio)) 434 bio->bi_iter.bi_sector = rq->__sector; 435 } 436 void blk_zone_write_plug_bio_endio(struct bio *bio); 437 static inline void blk_zone_bio_endio(struct bio *bio) 438 { 439 /* 440 * For write BIOs to zoned devices, signal the completion of the BIO so 441 * that the next write BIO can be submitted by zone write plugging. 442 */ 443 if (bio_zone_write_plugging(bio)) 444 blk_zone_write_plug_bio_endio(bio); 445 } 446 447 void blk_zone_write_plug_finish_request(struct request *rq); 448 static inline void blk_zone_finish_request(struct request *rq) 449 { 450 if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING) 451 blk_zone_write_plug_finish_request(rq); 452 } 453 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, 454 unsigned long arg); 455 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, 456 unsigned int cmd, unsigned long arg); 457 #else /* CONFIG_BLK_DEV_ZONED */ 458 static inline void disk_init_zone_resources(struct gendisk *disk) 459 { 460 } 461 static inline void disk_free_zone_resources(struct gendisk *disk) 462 { 463 } 464 static inline bool bio_zone_write_plugging(struct bio *bio) 465 { 466 return false; 467 } 468 static inline bool bio_is_zone_append(struct bio *bio) 469 { 470 return false; 471 } 472 static inline void blk_zone_write_plug_bio_merged(struct bio *bio) 473 { 474 } 475 static inline void blk_zone_write_plug_init_request(struct request *rq) 476 { 477 } 478 static inline void blk_zone_update_request_bio(struct request *rq, 479 struct bio *bio) 480 { 481 } 482 static inline void blk_zone_bio_endio(struct bio *bio) 483 { 484 } 485 static inline void blk_zone_finish_request(struct request *rq) 486 { 487 } 488 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 489 unsigned int cmd, unsigned long arg) 490 { 491 return -ENOTTY; 492 } 493 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 494 blk_mode_t mode, unsigned int cmd, unsigned long arg) 495 { 496 return -ENOTTY; 497 } 498 #endif /* CONFIG_BLK_DEV_ZONED */ 499 500 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 501 void bdev_add(struct block_device *bdev, dev_t dev); 502 void bdev_unhash(struct block_device *bdev); 503 void bdev_drop(struct block_device *bdev); 504 505 int blk_alloc_ext_minor(void); 506 void blk_free_ext_minor(unsigned int minor); 507 #define ADDPART_FLAG_NONE 0 508 #define ADDPART_FLAG_RAID 1 509 #define ADDPART_FLAG_WHOLEDISK 2 510 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, 511 sector_t length); 512 int bdev_del_partition(struct gendisk *disk, int partno); 513 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, 514 sector_t length); 515 void drop_partition(struct block_device *part); 516 517 void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors); 518 519 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, 520 struct lock_class_key *lkclass); 521 522 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 523 struct page *page, unsigned int len, unsigned int offset, 524 unsigned int max_sectors, bool *same_page); 525 526 /* 527 * Clean up a page appropriately, where the page may be pinned, may have a 528 * ref taken on it or neither. 529 */ 530 static inline void bio_release_page(struct bio *bio, struct page *page) 531 { 532 if (bio_flagged(bio, BIO_PAGE_PINNED)) 533 unpin_user_page(page); 534 } 535 536 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id); 537 538 int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode); 539 540 int disk_alloc_events(struct gendisk *disk); 541 void disk_add_events(struct gendisk *disk); 542 void disk_del_events(struct gendisk *disk); 543 void disk_release_events(struct gendisk *disk); 544 void disk_block_events(struct gendisk *disk); 545 void disk_unblock_events(struct gendisk *disk); 546 void disk_flush_events(struct gendisk *disk, unsigned int mask); 547 extern struct device_attribute dev_attr_events; 548 extern struct device_attribute dev_attr_events_async; 549 extern struct device_attribute dev_attr_events_poll_msecs; 550 551 extern struct attribute_group blk_trace_attr_group; 552 553 blk_mode_t file_to_blk_mode(struct file *file); 554 int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode, 555 loff_t lstart, loff_t lend); 556 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 557 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 558 559 extern const struct address_space_operations def_blk_aops; 560 561 int disk_register_independent_access_ranges(struct gendisk *disk); 562 void disk_unregister_independent_access_ranges(struct gendisk *disk); 563 564 #ifdef CONFIG_FAIL_MAKE_REQUEST 565 bool should_fail_request(struct block_device *part, unsigned int bytes); 566 #else /* CONFIG_FAIL_MAKE_REQUEST */ 567 static inline bool should_fail_request(struct block_device *part, 568 unsigned int bytes) 569 { 570 return false; 571 } 572 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 573 574 /* 575 * Optimized request reference counting. Ideally we'd make timeouts be more 576 * clever, as that's the only reason we need references at all... But until 577 * this happens, this is faster than using refcount_t. Also see: 578 * 579 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count") 580 */ 581 #define req_ref_zero_or_close_to_overflow(req) \ 582 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u) 583 584 static inline bool req_ref_inc_not_zero(struct request *req) 585 { 586 return atomic_inc_not_zero(&req->ref); 587 } 588 589 static inline bool req_ref_put_and_test(struct request *req) 590 { 591 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); 592 return atomic_dec_and_test(&req->ref); 593 } 594 595 static inline void req_ref_set(struct request *req, int value) 596 { 597 atomic_set(&req->ref, value); 598 } 599 600 static inline int req_ref_read(struct request *req) 601 { 602 return atomic_read(&req->ref); 603 } 604 605 static inline u64 blk_time_get_ns(void) 606 { 607 struct blk_plug *plug = current->plug; 608 609 if (!plug || !in_task()) 610 return ktime_get_ns(); 611 612 /* 613 * 0 could very well be a valid time, but rather than flag "this is 614 * a valid timestamp" separately, just accept that we'll do an extra 615 * ktime_get_ns() if we just happen to get 0 as the current time. 616 */ 617 if (!plug->cur_ktime) { 618 plug->cur_ktime = ktime_get_ns(); 619 current->flags |= PF_BLOCK_TS; 620 } 621 return plug->cur_ktime; 622 } 623 624 static inline ktime_t blk_time_get(void) 625 { 626 return ns_to_ktime(blk_time_get_ns()); 627 } 628 629 /* 630 * From most significant bit: 631 * 1 bit: reserved for other usage, see below 632 * 12 bits: original size of bio 633 * 51 bits: issue time of bio 634 */ 635 #define BIO_ISSUE_RES_BITS 1 636 #define BIO_ISSUE_SIZE_BITS 12 637 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) 638 #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) 639 #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) 640 #define BIO_ISSUE_SIZE_MASK \ 641 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) 642 #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) 643 644 /* Reserved bit for blk-throtl */ 645 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) 646 647 static inline u64 __bio_issue_time(u64 time) 648 { 649 return time & BIO_ISSUE_TIME_MASK; 650 } 651 652 static inline u64 bio_issue_time(struct bio_issue *issue) 653 { 654 return __bio_issue_time(issue->value); 655 } 656 657 static inline sector_t bio_issue_size(struct bio_issue *issue) 658 { 659 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); 660 } 661 662 static inline void bio_issue_init(struct bio_issue *issue, 663 sector_t size) 664 { 665 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; 666 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | 667 (blk_time_get_ns() & BIO_ISSUE_TIME_MASK) | 668 ((u64)size << BIO_ISSUE_SIZE_SHIFT)); 669 } 670 671 void bdev_release(struct file *bdev_file); 672 int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder, 673 const struct blk_holder_ops *hops, struct file *bdev_file); 674 int bdev_permission(dev_t dev, blk_mode_t mode, void *holder); 675 676 #endif /* BLK_INTERNAL_H */ 677