xref: /linux/block/blk.h (revision 2c9b3512402ed192d1f43f4531fb5da947e72bd0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_INTERNAL_H
3 #define BLK_INTERNAL_H
4 
5 #include <linux/blk-crypto.h>
6 #include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
7 #include <linux/sched/sysctl.h>
8 #include <linux/timekeeping.h>
9 #include <xen/xen.h>
10 #include "blk-crypto-internal.h"
11 
12 struct elevator_type;
13 
14 /* Max future timer expiry for timeouts */
15 #define BLK_MAX_TIMEOUT		(5 * HZ)
16 
17 extern struct dentry *blk_debugfs_root;
18 
19 struct blk_flush_queue {
20 	spinlock_t		mq_flush_lock;
21 	unsigned int		flush_pending_idx:1;
22 	unsigned int		flush_running_idx:1;
23 	blk_status_t 		rq_status;
24 	unsigned long		flush_pending_since;
25 	struct list_head	flush_queue[2];
26 	unsigned long		flush_data_in_flight;
27 	struct request		*flush_rq;
28 };
29 
30 bool is_flush_rq(struct request *req);
31 
32 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
33 					      gfp_t flags);
34 void blk_free_flush_queue(struct blk_flush_queue *q);
35 
36 void blk_freeze_queue(struct request_queue *q);
37 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
38 void blk_queue_start_drain(struct request_queue *q);
39 int __bio_queue_enter(struct request_queue *q, struct bio *bio);
40 void submit_bio_noacct_nocheck(struct bio *bio);
41 void bio_await_chain(struct bio *bio);
42 
43 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
44 {
45 	rcu_read_lock();
46 	if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
47 		goto fail;
48 
49 	/*
50 	 * The code that increments the pm_only counter must ensure that the
51 	 * counter is globally visible before the queue is unfrozen.
52 	 */
53 	if (blk_queue_pm_only(q) &&
54 	    (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
55 		goto fail_put;
56 
57 	rcu_read_unlock();
58 	return true;
59 
60 fail_put:
61 	blk_queue_exit(q);
62 fail:
63 	rcu_read_unlock();
64 	return false;
65 }
66 
67 static inline int bio_queue_enter(struct bio *bio)
68 {
69 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
70 
71 	if (blk_try_enter_queue(q, false))
72 		return 0;
73 	return __bio_queue_enter(q, bio);
74 }
75 
76 static inline void blk_wait_io(struct completion *done)
77 {
78 	/* Prevent hang_check timer from firing at us during very long I/O */
79 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
80 
81 	if (timeout)
82 		while (!wait_for_completion_io_timeout(done, timeout))
83 			;
84 	else
85 		wait_for_completion_io(done);
86 }
87 
88 #define BIO_INLINE_VECS 4
89 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
90 		gfp_t gfp_mask);
91 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
92 
93 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
94 		struct page *page, unsigned len, unsigned offset,
95 		bool *same_page);
96 
97 static inline bool biovec_phys_mergeable(struct request_queue *q,
98 		struct bio_vec *vec1, struct bio_vec *vec2)
99 {
100 	unsigned long mask = queue_segment_boundary(q);
101 	phys_addr_t addr1 = bvec_phys(vec1);
102 	phys_addr_t addr2 = bvec_phys(vec2);
103 
104 	/*
105 	 * Merging adjacent physical pages may not work correctly under KMSAN
106 	 * if their metadata pages aren't adjacent. Just disable merging.
107 	 */
108 	if (IS_ENABLED(CONFIG_KMSAN))
109 		return false;
110 
111 	if (addr1 + vec1->bv_len != addr2)
112 		return false;
113 	if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
114 		return false;
115 	if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
116 		return false;
117 	return true;
118 }
119 
120 static inline bool __bvec_gap_to_prev(const struct queue_limits *lim,
121 		struct bio_vec *bprv, unsigned int offset)
122 {
123 	return (offset & lim->virt_boundary_mask) ||
124 		((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask);
125 }
126 
127 /*
128  * Check if adding a bio_vec after bprv with offset would create a gap in
129  * the SG list. Most drivers don't care about this, but some do.
130  */
131 static inline bool bvec_gap_to_prev(const struct queue_limits *lim,
132 		struct bio_vec *bprv, unsigned int offset)
133 {
134 	if (!lim->virt_boundary_mask)
135 		return false;
136 	return __bvec_gap_to_prev(lim, bprv, offset);
137 }
138 
139 static inline bool rq_mergeable(struct request *rq)
140 {
141 	if (blk_rq_is_passthrough(rq))
142 		return false;
143 
144 	if (req_op(rq) == REQ_OP_FLUSH)
145 		return false;
146 
147 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
148 		return false;
149 
150 	if (req_op(rq) == REQ_OP_ZONE_APPEND)
151 		return false;
152 
153 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
154 		return false;
155 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
156 		return false;
157 
158 	return true;
159 }
160 
161 /*
162  * There are two different ways to handle DISCARD merges:
163  *  1) If max_discard_segments > 1, the driver treats every bio as a range and
164  *     send the bios to controller together. The ranges don't need to be
165  *     contiguous.
166  *  2) Otherwise, the request will be normal read/write requests.  The ranges
167  *     need to be contiguous.
168  */
169 static inline bool blk_discard_mergable(struct request *req)
170 {
171 	if (req_op(req) == REQ_OP_DISCARD &&
172 	    queue_max_discard_segments(req->q) > 1)
173 		return true;
174 	return false;
175 }
176 
177 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
178 {
179 	if (req_op(rq) == REQ_OP_DISCARD)
180 		return queue_max_discard_segments(rq->q);
181 	return queue_max_segments(rq->q);
182 }
183 
184 static inline unsigned int blk_queue_get_max_sectors(struct request *rq)
185 {
186 	struct request_queue *q = rq->q;
187 	enum req_op op = req_op(rq);
188 
189 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
190 		return min(q->limits.max_discard_sectors,
191 			   UINT_MAX >> SECTOR_SHIFT);
192 
193 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
194 		return q->limits.max_write_zeroes_sectors;
195 
196 	if (rq->cmd_flags & REQ_ATOMIC)
197 		return q->limits.atomic_write_max_sectors;
198 
199 	return q->limits.max_sectors;
200 }
201 
202 #ifdef CONFIG_BLK_DEV_INTEGRITY
203 void blk_flush_integrity(void);
204 bool __bio_integrity_endio(struct bio *);
205 void bio_integrity_free(struct bio *bio);
206 static inline bool bio_integrity_endio(struct bio *bio)
207 {
208 	if (bio_integrity(bio))
209 		return __bio_integrity_endio(bio);
210 	return true;
211 }
212 
213 bool blk_integrity_merge_rq(struct request_queue *, struct request *,
214 		struct request *);
215 bool blk_integrity_merge_bio(struct request_queue *, struct request *,
216 		struct bio *);
217 
218 static inline bool integrity_req_gap_back_merge(struct request *req,
219 		struct bio *next)
220 {
221 	struct bio_integrity_payload *bip = bio_integrity(req->bio);
222 	struct bio_integrity_payload *bip_next = bio_integrity(next);
223 
224 	return bvec_gap_to_prev(&req->q->limits,
225 				&bip->bip_vec[bip->bip_vcnt - 1],
226 				bip_next->bip_vec[0].bv_offset);
227 }
228 
229 static inline bool integrity_req_gap_front_merge(struct request *req,
230 		struct bio *bio)
231 {
232 	struct bio_integrity_payload *bip = bio_integrity(bio);
233 	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
234 
235 	return bvec_gap_to_prev(&req->q->limits,
236 				&bip->bip_vec[bip->bip_vcnt - 1],
237 				bip_next->bip_vec[0].bv_offset);
238 }
239 
240 extern const struct attribute_group blk_integrity_attr_group;
241 #else /* CONFIG_BLK_DEV_INTEGRITY */
242 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
243 		struct request *r1, struct request *r2)
244 {
245 	return true;
246 }
247 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
248 		struct request *r, struct bio *b)
249 {
250 	return true;
251 }
252 static inline bool integrity_req_gap_back_merge(struct request *req,
253 		struct bio *next)
254 {
255 	return false;
256 }
257 static inline bool integrity_req_gap_front_merge(struct request *req,
258 		struct bio *bio)
259 {
260 	return false;
261 }
262 
263 static inline void blk_flush_integrity(void)
264 {
265 }
266 static inline bool bio_integrity_endio(struct bio *bio)
267 {
268 	return true;
269 }
270 static inline void bio_integrity_free(struct bio *bio)
271 {
272 }
273 #endif /* CONFIG_BLK_DEV_INTEGRITY */
274 
275 unsigned long blk_rq_timeout(unsigned long timeout);
276 void blk_add_timer(struct request *req);
277 
278 enum bio_merge_status {
279 	BIO_MERGE_OK,
280 	BIO_MERGE_NONE,
281 	BIO_MERGE_FAILED,
282 };
283 
284 enum bio_merge_status bio_attempt_back_merge(struct request *req,
285 		struct bio *bio, unsigned int nr_segs);
286 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
287 		unsigned int nr_segs);
288 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
289 			struct bio *bio, unsigned int nr_segs);
290 
291 /*
292  * Plug flush limits
293  */
294 #define BLK_MAX_REQUEST_COUNT	32
295 #define BLK_PLUG_FLUSH_SIZE	(128 * 1024)
296 
297 /*
298  * Internal elevator interface
299  */
300 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
301 
302 bool blk_insert_flush(struct request *rq);
303 
304 int elevator_switch(struct request_queue *q, struct elevator_type *new_e);
305 void elevator_disable(struct request_queue *q);
306 void elevator_exit(struct request_queue *q);
307 int elv_register_queue(struct request_queue *q, bool uevent);
308 void elv_unregister_queue(struct request_queue *q);
309 
310 ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
311 		char *buf);
312 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
313 		char *buf);
314 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
315 		char *buf);
316 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
317 		char *buf);
318 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
319 		const char *buf, size_t count);
320 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
321 ssize_t part_timeout_store(struct device *, struct device_attribute *,
322 				const char *, size_t);
323 
324 static inline bool bio_may_exceed_limits(struct bio *bio,
325 					 const struct queue_limits *lim)
326 {
327 	switch (bio_op(bio)) {
328 	case REQ_OP_DISCARD:
329 	case REQ_OP_SECURE_ERASE:
330 	case REQ_OP_WRITE_ZEROES:
331 		return true; /* non-trivial splitting decisions */
332 	default:
333 		break;
334 	}
335 
336 	/*
337 	 * All drivers must accept single-segments bios that are <= PAGE_SIZE.
338 	 * This is a quick and dirty check that relies on the fact that
339 	 * bi_io_vec[0] is always valid if a bio has data.  The check might
340 	 * lead to occasional false negatives when bios are cloned, but compared
341 	 * to the performance impact of cloned bios themselves the loop below
342 	 * doesn't matter anyway.
343 	 */
344 	return lim->chunk_sectors || bio->bi_vcnt != 1 ||
345 		bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE;
346 }
347 
348 struct bio *__bio_split_to_limits(struct bio *bio,
349 				  const struct queue_limits *lim,
350 				  unsigned int *nr_segs);
351 int ll_back_merge_fn(struct request *req, struct bio *bio,
352 		unsigned int nr_segs);
353 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
354 				struct request *next);
355 unsigned int blk_recalc_rq_segments(struct request *rq);
356 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
357 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
358 
359 int blk_set_default_limits(struct queue_limits *lim);
360 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
361 		struct queue_limits *lim);
362 int blk_dev_init(void);
363 
364 /*
365  * Contribute to IO statistics IFF:
366  *
367  *	a) it's attached to a gendisk, and
368  *	b) the queue had IO stats enabled when this request was started
369  */
370 static inline bool blk_do_io_stat(struct request *rq)
371 {
372 	return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq);
373 }
374 
375 void update_io_ticks(struct block_device *part, unsigned long now, bool end);
376 unsigned int part_in_flight(struct block_device *part);
377 
378 static inline void req_set_nomerge(struct request_queue *q, struct request *req)
379 {
380 	req->cmd_flags |= REQ_NOMERGE;
381 	if (req == q->last_merge)
382 		q->last_merge = NULL;
383 }
384 
385 /*
386  * Internal io_context interface
387  */
388 struct io_cq *ioc_find_get_icq(struct request_queue *q);
389 struct io_cq *ioc_lookup_icq(struct request_queue *q);
390 #ifdef CONFIG_BLK_ICQ
391 void ioc_clear_queue(struct request_queue *q);
392 #else
393 static inline void ioc_clear_queue(struct request_queue *q)
394 {
395 }
396 #endif /* CONFIG_BLK_ICQ */
397 
398 struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q);
399 
400 static inline bool blk_queue_may_bounce(struct request_queue *q)
401 {
402 	return IS_ENABLED(CONFIG_BOUNCE) &&
403 		(q->limits.features & BLK_FEAT_BOUNCE_HIGH) &&
404 		max_low_pfn >= max_pfn;
405 }
406 
407 static inline struct bio *blk_queue_bounce(struct bio *bio,
408 		struct request_queue *q)
409 {
410 	if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio)))
411 		return __blk_queue_bounce(bio, q);
412 	return bio;
413 }
414 
415 #ifdef CONFIG_BLK_DEV_ZONED
416 void disk_init_zone_resources(struct gendisk *disk);
417 void disk_free_zone_resources(struct gendisk *disk);
418 static inline bool bio_zone_write_plugging(struct bio *bio)
419 {
420 	return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
421 }
422 static inline bool bio_is_zone_append(struct bio *bio)
423 {
424 	return bio_op(bio) == REQ_OP_ZONE_APPEND ||
425 		bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
426 }
427 void blk_zone_write_plug_bio_merged(struct bio *bio);
428 void blk_zone_write_plug_init_request(struct request *rq);
429 static inline void blk_zone_update_request_bio(struct request *rq,
430 					       struct bio *bio)
431 {
432 	/*
433 	 * For zone append requests, the request sector indicates the location
434 	 * at which the BIO data was written. Return this value to the BIO
435 	 * issuer through the BIO iter sector.
436 	 * For plugged zone writes, which include emulated zone append, we need
437 	 * the original BIO sector so that blk_zone_write_plug_bio_endio() can
438 	 * lookup the zone write plug.
439 	 */
440 	if (req_op(rq) == REQ_OP_ZONE_APPEND || bio_zone_write_plugging(bio))
441 		bio->bi_iter.bi_sector = rq->__sector;
442 }
443 void blk_zone_write_plug_bio_endio(struct bio *bio);
444 static inline void blk_zone_bio_endio(struct bio *bio)
445 {
446 	/*
447 	 * For write BIOs to zoned devices, signal the completion of the BIO so
448 	 * that the next write BIO can be submitted by zone write plugging.
449 	 */
450 	if (bio_zone_write_plugging(bio))
451 		blk_zone_write_plug_bio_endio(bio);
452 }
453 
454 void blk_zone_write_plug_finish_request(struct request *rq);
455 static inline void blk_zone_finish_request(struct request *rq)
456 {
457 	if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING)
458 		blk_zone_write_plug_finish_request(rq);
459 }
460 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd,
461 		unsigned long arg);
462 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode,
463 		unsigned int cmd, unsigned long arg);
464 #else /* CONFIG_BLK_DEV_ZONED */
465 static inline void disk_init_zone_resources(struct gendisk *disk)
466 {
467 }
468 static inline void disk_free_zone_resources(struct gendisk *disk)
469 {
470 }
471 static inline bool bio_zone_write_plugging(struct bio *bio)
472 {
473 	return false;
474 }
475 static inline bool bio_is_zone_append(struct bio *bio)
476 {
477 	return false;
478 }
479 static inline void blk_zone_write_plug_bio_merged(struct bio *bio)
480 {
481 }
482 static inline void blk_zone_write_plug_init_request(struct request *rq)
483 {
484 }
485 static inline void blk_zone_update_request_bio(struct request *rq,
486 					       struct bio *bio)
487 {
488 }
489 static inline void blk_zone_bio_endio(struct bio *bio)
490 {
491 }
492 static inline void blk_zone_finish_request(struct request *rq)
493 {
494 }
495 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
496 		unsigned int cmd, unsigned long arg)
497 {
498 	return -ENOTTY;
499 }
500 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
501 		blk_mode_t mode, unsigned int cmd, unsigned long arg)
502 {
503 	return -ENOTTY;
504 }
505 #endif /* CONFIG_BLK_DEV_ZONED */
506 
507 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
508 void bdev_add(struct block_device *bdev, dev_t dev);
509 void bdev_unhash(struct block_device *bdev);
510 void bdev_drop(struct block_device *bdev);
511 
512 int blk_alloc_ext_minor(void);
513 void blk_free_ext_minor(unsigned int minor);
514 #define ADDPART_FLAG_NONE	0
515 #define ADDPART_FLAG_RAID	1
516 #define ADDPART_FLAG_WHOLEDISK	2
517 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
518 		sector_t length);
519 int bdev_del_partition(struct gendisk *disk, int partno);
520 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
521 		sector_t length);
522 void drop_partition(struct block_device *part);
523 
524 void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors);
525 
526 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
527 		struct lock_class_key *lkclass);
528 
529 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
530 		struct page *page, unsigned int len, unsigned int offset,
531 		unsigned int max_sectors, bool *same_page);
532 
533 /*
534  * Clean up a page appropriately, where the page may be pinned, may have a
535  * ref taken on it or neither.
536  */
537 static inline void bio_release_page(struct bio *bio, struct page *page)
538 {
539 	if (bio_flagged(bio, BIO_PAGE_PINNED))
540 		unpin_user_page(page);
541 }
542 
543 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id);
544 
545 int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode);
546 
547 int disk_alloc_events(struct gendisk *disk);
548 void disk_add_events(struct gendisk *disk);
549 void disk_del_events(struct gendisk *disk);
550 void disk_release_events(struct gendisk *disk);
551 void disk_block_events(struct gendisk *disk);
552 void disk_unblock_events(struct gendisk *disk);
553 void disk_flush_events(struct gendisk *disk, unsigned int mask);
554 extern struct device_attribute dev_attr_events;
555 extern struct device_attribute dev_attr_events_async;
556 extern struct device_attribute dev_attr_events_poll_msecs;
557 
558 extern struct attribute_group blk_trace_attr_group;
559 
560 blk_mode_t file_to_blk_mode(struct file *file);
561 int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode,
562 		loff_t lstart, loff_t lend);
563 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
564 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
565 
566 extern const struct address_space_operations def_blk_aops;
567 
568 int disk_register_independent_access_ranges(struct gendisk *disk);
569 void disk_unregister_independent_access_ranges(struct gendisk *disk);
570 
571 #ifdef CONFIG_FAIL_MAKE_REQUEST
572 bool should_fail_request(struct block_device *part, unsigned int bytes);
573 #else /* CONFIG_FAIL_MAKE_REQUEST */
574 static inline bool should_fail_request(struct block_device *part,
575 					unsigned int bytes)
576 {
577 	return false;
578 }
579 #endif /* CONFIG_FAIL_MAKE_REQUEST */
580 
581 /*
582  * Optimized request reference counting. Ideally we'd make timeouts be more
583  * clever, as that's the only reason we need references at all... But until
584  * this happens, this is faster than using refcount_t. Also see:
585  *
586  * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
587  */
588 #define req_ref_zero_or_close_to_overflow(req)	\
589 	((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
590 
591 static inline bool req_ref_inc_not_zero(struct request *req)
592 {
593 	return atomic_inc_not_zero(&req->ref);
594 }
595 
596 static inline bool req_ref_put_and_test(struct request *req)
597 {
598 	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
599 	return atomic_dec_and_test(&req->ref);
600 }
601 
602 static inline void req_ref_set(struct request *req, int value)
603 {
604 	atomic_set(&req->ref, value);
605 }
606 
607 static inline int req_ref_read(struct request *req)
608 {
609 	return atomic_read(&req->ref);
610 }
611 
612 static inline u64 blk_time_get_ns(void)
613 {
614 	struct blk_plug *plug = current->plug;
615 
616 	if (!plug || !in_task())
617 		return ktime_get_ns();
618 
619 	/*
620 	 * 0 could very well be a valid time, but rather than flag "this is
621 	 * a valid timestamp" separately, just accept that we'll do an extra
622 	 * ktime_get_ns() if we just happen to get 0 as the current time.
623 	 */
624 	if (!plug->cur_ktime) {
625 		plug->cur_ktime = ktime_get_ns();
626 		current->flags |= PF_BLOCK_TS;
627 	}
628 	return plug->cur_ktime;
629 }
630 
631 static inline ktime_t blk_time_get(void)
632 {
633 	return ns_to_ktime(blk_time_get_ns());
634 }
635 
636 /*
637  * From most significant bit:
638  * 1 bit: reserved for other usage, see below
639  * 12 bits: original size of bio
640  * 51 bits: issue time of bio
641  */
642 #define BIO_ISSUE_RES_BITS      1
643 #define BIO_ISSUE_SIZE_BITS     12
644 #define BIO_ISSUE_RES_SHIFT     (64 - BIO_ISSUE_RES_BITS)
645 #define BIO_ISSUE_SIZE_SHIFT    (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
646 #define BIO_ISSUE_TIME_MASK     ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
647 #define BIO_ISSUE_SIZE_MASK     \
648 	(((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
649 #define BIO_ISSUE_RES_MASK      (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
650 
651 /* Reserved bit for blk-throtl */
652 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
653 
654 static inline u64 __bio_issue_time(u64 time)
655 {
656 	return time & BIO_ISSUE_TIME_MASK;
657 }
658 
659 static inline u64 bio_issue_time(struct bio_issue *issue)
660 {
661 	return __bio_issue_time(issue->value);
662 }
663 
664 static inline sector_t bio_issue_size(struct bio_issue *issue)
665 {
666 	return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
667 }
668 
669 static inline void bio_issue_init(struct bio_issue *issue,
670 				       sector_t size)
671 {
672 	size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
673 	issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
674 			(blk_time_get_ns() & BIO_ISSUE_TIME_MASK) |
675 			((u64)size << BIO_ISSUE_SIZE_SHIFT));
676 }
677 
678 void bdev_release(struct file *bdev_file);
679 int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder,
680 	      const struct blk_holder_ops *hops, struct file *bdev_file);
681 int bdev_permission(dev_t dev, blk_mode_t mode, void *holder);
682 
683 void blk_integrity_generate(struct bio *bio);
684 void blk_integrity_verify(struct bio *bio);
685 void blk_integrity_prepare(struct request *rq);
686 void blk_integrity_complete(struct request *rq, unsigned int nr_bytes);
687 
688 #endif /* BLK_INTERNAL_H */
689