1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef BLK_INTERNAL_H 3 #define BLK_INTERNAL_H 4 5 #include <linux/blk-crypto.h> 6 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */ 7 #include <linux/sched/sysctl.h> 8 #include <linux/timekeeping.h> 9 #include <xen/xen.h> 10 #include "blk-crypto-internal.h" 11 12 struct elevator_type; 13 14 /* Max future timer expiry for timeouts */ 15 #define BLK_MAX_TIMEOUT (5 * HZ) 16 17 extern struct dentry *blk_debugfs_root; 18 19 struct blk_flush_queue { 20 spinlock_t mq_flush_lock; 21 unsigned int flush_pending_idx:1; 22 unsigned int flush_running_idx:1; 23 blk_status_t rq_status; 24 unsigned long flush_pending_since; 25 struct list_head flush_queue[2]; 26 unsigned long flush_data_in_flight; 27 struct request *flush_rq; 28 }; 29 30 bool is_flush_rq(struct request *req); 31 32 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 33 gfp_t flags); 34 void blk_free_flush_queue(struct blk_flush_queue *q); 35 36 void blk_freeze_queue(struct request_queue *q); 37 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); 38 void blk_queue_start_drain(struct request_queue *q); 39 int __bio_queue_enter(struct request_queue *q, struct bio *bio); 40 void submit_bio_noacct_nocheck(struct bio *bio); 41 void bio_await_chain(struct bio *bio); 42 43 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm) 44 { 45 rcu_read_lock(); 46 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter)) 47 goto fail; 48 49 /* 50 * The code that increments the pm_only counter must ensure that the 51 * counter is globally visible before the queue is unfrozen. 52 */ 53 if (blk_queue_pm_only(q) && 54 (!pm || queue_rpm_status(q) == RPM_SUSPENDED)) 55 goto fail_put; 56 57 rcu_read_unlock(); 58 return true; 59 60 fail_put: 61 blk_queue_exit(q); 62 fail: 63 rcu_read_unlock(); 64 return false; 65 } 66 67 static inline int bio_queue_enter(struct bio *bio) 68 { 69 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 70 71 if (blk_try_enter_queue(q, false)) 72 return 0; 73 return __bio_queue_enter(q, bio); 74 } 75 76 static inline void blk_wait_io(struct completion *done) 77 { 78 /* Prevent hang_check timer from firing at us during very long I/O */ 79 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 80 81 if (timeout) 82 while (!wait_for_completion_io_timeout(done, timeout)) 83 ; 84 else 85 wait_for_completion_io(done); 86 } 87 88 #define BIO_INLINE_VECS 4 89 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 90 gfp_t gfp_mask); 91 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); 92 93 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, 94 struct page *page, unsigned len, unsigned offset, 95 bool *same_page); 96 97 static inline bool biovec_phys_mergeable(struct request_queue *q, 98 struct bio_vec *vec1, struct bio_vec *vec2) 99 { 100 unsigned long mask = queue_segment_boundary(q); 101 phys_addr_t addr1 = bvec_phys(vec1); 102 phys_addr_t addr2 = bvec_phys(vec2); 103 104 /* 105 * Merging adjacent physical pages may not work correctly under KMSAN 106 * if their metadata pages aren't adjacent. Just disable merging. 107 */ 108 if (IS_ENABLED(CONFIG_KMSAN)) 109 return false; 110 111 if (addr1 + vec1->bv_len != addr2) 112 return false; 113 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) 114 return false; 115 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) 116 return false; 117 return true; 118 } 119 120 static inline bool __bvec_gap_to_prev(const struct queue_limits *lim, 121 struct bio_vec *bprv, unsigned int offset) 122 { 123 return (offset & lim->virt_boundary_mask) || 124 ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask); 125 } 126 127 /* 128 * Check if adding a bio_vec after bprv with offset would create a gap in 129 * the SG list. Most drivers don't care about this, but some do. 130 */ 131 static inline bool bvec_gap_to_prev(const struct queue_limits *lim, 132 struct bio_vec *bprv, unsigned int offset) 133 { 134 if (!lim->virt_boundary_mask) 135 return false; 136 return __bvec_gap_to_prev(lim, bprv, offset); 137 } 138 139 static inline bool rq_mergeable(struct request *rq) 140 { 141 if (blk_rq_is_passthrough(rq)) 142 return false; 143 144 if (req_op(rq) == REQ_OP_FLUSH) 145 return false; 146 147 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 148 return false; 149 150 if (req_op(rq) == REQ_OP_ZONE_APPEND) 151 return false; 152 153 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 154 return false; 155 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 156 return false; 157 158 return true; 159 } 160 161 /* 162 * There are two different ways to handle DISCARD merges: 163 * 1) If max_discard_segments > 1, the driver treats every bio as a range and 164 * send the bios to controller together. The ranges don't need to be 165 * contiguous. 166 * 2) Otherwise, the request will be normal read/write requests. The ranges 167 * need to be contiguous. 168 */ 169 static inline bool blk_discard_mergable(struct request *req) 170 { 171 if (req_op(req) == REQ_OP_DISCARD && 172 queue_max_discard_segments(req->q) > 1) 173 return true; 174 return false; 175 } 176 177 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 178 { 179 if (req_op(rq) == REQ_OP_DISCARD) 180 return queue_max_discard_segments(rq->q); 181 return queue_max_segments(rq->q); 182 } 183 184 static inline unsigned int blk_queue_get_max_sectors(struct request *rq) 185 { 186 struct request_queue *q = rq->q; 187 enum req_op op = req_op(rq); 188 189 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 190 return min(q->limits.max_discard_sectors, 191 UINT_MAX >> SECTOR_SHIFT); 192 193 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 194 return q->limits.max_write_zeroes_sectors; 195 196 if (rq->cmd_flags & REQ_ATOMIC) 197 return q->limits.atomic_write_max_sectors; 198 199 return q->limits.max_sectors; 200 } 201 202 #ifdef CONFIG_BLK_DEV_INTEGRITY 203 void blk_flush_integrity(void); 204 bool __bio_integrity_endio(struct bio *); 205 void bio_integrity_free(struct bio *bio); 206 static inline bool bio_integrity_endio(struct bio *bio) 207 { 208 if (bio_integrity(bio)) 209 return __bio_integrity_endio(bio); 210 return true; 211 } 212 213 bool blk_integrity_merge_rq(struct request_queue *, struct request *, 214 struct request *); 215 bool blk_integrity_merge_bio(struct request_queue *, struct request *, 216 struct bio *); 217 218 static inline bool integrity_req_gap_back_merge(struct request *req, 219 struct bio *next) 220 { 221 struct bio_integrity_payload *bip = bio_integrity(req->bio); 222 struct bio_integrity_payload *bip_next = bio_integrity(next); 223 224 return bvec_gap_to_prev(&req->q->limits, 225 &bip->bip_vec[bip->bip_vcnt - 1], 226 bip_next->bip_vec[0].bv_offset); 227 } 228 229 static inline bool integrity_req_gap_front_merge(struct request *req, 230 struct bio *bio) 231 { 232 struct bio_integrity_payload *bip = bio_integrity(bio); 233 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 234 235 return bvec_gap_to_prev(&req->q->limits, 236 &bip->bip_vec[bip->bip_vcnt - 1], 237 bip_next->bip_vec[0].bv_offset); 238 } 239 240 extern const struct attribute_group blk_integrity_attr_group; 241 #else /* CONFIG_BLK_DEV_INTEGRITY */ 242 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 243 struct request *r1, struct request *r2) 244 { 245 return true; 246 } 247 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 248 struct request *r, struct bio *b) 249 { 250 return true; 251 } 252 static inline bool integrity_req_gap_back_merge(struct request *req, 253 struct bio *next) 254 { 255 return false; 256 } 257 static inline bool integrity_req_gap_front_merge(struct request *req, 258 struct bio *bio) 259 { 260 return false; 261 } 262 263 static inline void blk_flush_integrity(void) 264 { 265 } 266 static inline bool bio_integrity_endio(struct bio *bio) 267 { 268 return true; 269 } 270 static inline void bio_integrity_free(struct bio *bio) 271 { 272 } 273 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 274 275 unsigned long blk_rq_timeout(unsigned long timeout); 276 void blk_add_timer(struct request *req); 277 278 enum bio_merge_status { 279 BIO_MERGE_OK, 280 BIO_MERGE_NONE, 281 BIO_MERGE_FAILED, 282 }; 283 284 enum bio_merge_status bio_attempt_back_merge(struct request *req, 285 struct bio *bio, unsigned int nr_segs); 286 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 287 unsigned int nr_segs); 288 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 289 struct bio *bio, unsigned int nr_segs); 290 291 /* 292 * Plug flush limits 293 */ 294 #define BLK_MAX_REQUEST_COUNT 32 295 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 296 297 /* 298 * Internal elevator interface 299 */ 300 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) 301 302 bool blk_insert_flush(struct request *rq); 303 304 int elevator_switch(struct request_queue *q, struct elevator_type *new_e); 305 void elevator_disable(struct request_queue *q); 306 void elevator_exit(struct request_queue *q); 307 int elv_register_queue(struct request_queue *q, bool uevent); 308 void elv_unregister_queue(struct request_queue *q); 309 310 ssize_t part_size_show(struct device *dev, struct device_attribute *attr, 311 char *buf); 312 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, 313 char *buf); 314 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 315 char *buf); 316 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, 317 char *buf); 318 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, 319 const char *buf, size_t count); 320 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); 321 ssize_t part_timeout_store(struct device *, struct device_attribute *, 322 const char *, size_t); 323 324 static inline bool bio_may_exceed_limits(struct bio *bio, 325 const struct queue_limits *lim) 326 { 327 switch (bio_op(bio)) { 328 case REQ_OP_DISCARD: 329 case REQ_OP_SECURE_ERASE: 330 case REQ_OP_WRITE_ZEROES: 331 return true; /* non-trivial splitting decisions */ 332 default: 333 break; 334 } 335 336 /* 337 * All drivers must accept single-segments bios that are <= PAGE_SIZE. 338 * This is a quick and dirty check that relies on the fact that 339 * bi_io_vec[0] is always valid if a bio has data. The check might 340 * lead to occasional false negatives when bios are cloned, but compared 341 * to the performance impact of cloned bios themselves the loop below 342 * doesn't matter anyway. 343 */ 344 return lim->chunk_sectors || bio->bi_vcnt != 1 || 345 bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE; 346 } 347 348 struct bio *__bio_split_to_limits(struct bio *bio, 349 const struct queue_limits *lim, 350 unsigned int *nr_segs); 351 int ll_back_merge_fn(struct request *req, struct bio *bio, 352 unsigned int nr_segs); 353 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 354 struct request *next); 355 unsigned int blk_recalc_rq_segments(struct request *rq); 356 bool blk_rq_merge_ok(struct request *rq, struct bio *bio); 357 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); 358 359 int blk_set_default_limits(struct queue_limits *lim); 360 void blk_apply_bdi_limits(struct backing_dev_info *bdi, 361 struct queue_limits *lim); 362 int blk_dev_init(void); 363 364 /* 365 * Contribute to IO statistics IFF: 366 * 367 * a) it's attached to a gendisk, and 368 * b) the queue had IO stats enabled when this request was started 369 */ 370 static inline bool blk_do_io_stat(struct request *rq) 371 { 372 return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq); 373 } 374 375 void update_io_ticks(struct block_device *part, unsigned long now, bool end); 376 unsigned int part_in_flight(struct block_device *part); 377 378 static inline void req_set_nomerge(struct request_queue *q, struct request *req) 379 { 380 req->cmd_flags |= REQ_NOMERGE; 381 if (req == q->last_merge) 382 q->last_merge = NULL; 383 } 384 385 /* 386 * Internal io_context interface 387 */ 388 struct io_cq *ioc_find_get_icq(struct request_queue *q); 389 struct io_cq *ioc_lookup_icq(struct request_queue *q); 390 #ifdef CONFIG_BLK_ICQ 391 void ioc_clear_queue(struct request_queue *q); 392 #else 393 static inline void ioc_clear_queue(struct request_queue *q) 394 { 395 } 396 #endif /* CONFIG_BLK_ICQ */ 397 398 struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q); 399 400 static inline bool blk_queue_may_bounce(struct request_queue *q) 401 { 402 return IS_ENABLED(CONFIG_BOUNCE) && 403 (q->limits.features & BLK_FEAT_BOUNCE_HIGH) && 404 max_low_pfn >= max_pfn; 405 } 406 407 static inline struct bio *blk_queue_bounce(struct bio *bio, 408 struct request_queue *q) 409 { 410 if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio))) 411 return __blk_queue_bounce(bio, q); 412 return bio; 413 } 414 415 #ifdef CONFIG_BLK_DEV_ZONED 416 void disk_init_zone_resources(struct gendisk *disk); 417 void disk_free_zone_resources(struct gendisk *disk); 418 static inline bool bio_zone_write_plugging(struct bio *bio) 419 { 420 return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING); 421 } 422 static inline bool bio_is_zone_append(struct bio *bio) 423 { 424 return bio_op(bio) == REQ_OP_ZONE_APPEND || 425 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND); 426 } 427 void blk_zone_write_plug_bio_merged(struct bio *bio); 428 void blk_zone_write_plug_init_request(struct request *rq); 429 static inline void blk_zone_update_request_bio(struct request *rq, 430 struct bio *bio) 431 { 432 /* 433 * For zone append requests, the request sector indicates the location 434 * at which the BIO data was written. Return this value to the BIO 435 * issuer through the BIO iter sector. 436 * For plugged zone writes, which include emulated zone append, we need 437 * the original BIO sector so that blk_zone_write_plug_bio_endio() can 438 * lookup the zone write plug. 439 */ 440 if (req_op(rq) == REQ_OP_ZONE_APPEND || bio_zone_write_plugging(bio)) 441 bio->bi_iter.bi_sector = rq->__sector; 442 } 443 void blk_zone_write_plug_bio_endio(struct bio *bio); 444 static inline void blk_zone_bio_endio(struct bio *bio) 445 { 446 /* 447 * For write BIOs to zoned devices, signal the completion of the BIO so 448 * that the next write BIO can be submitted by zone write plugging. 449 */ 450 if (bio_zone_write_plugging(bio)) 451 blk_zone_write_plug_bio_endio(bio); 452 } 453 454 void blk_zone_write_plug_finish_request(struct request *rq); 455 static inline void blk_zone_finish_request(struct request *rq) 456 { 457 if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING) 458 blk_zone_write_plug_finish_request(rq); 459 } 460 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, 461 unsigned long arg); 462 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, 463 unsigned int cmd, unsigned long arg); 464 #else /* CONFIG_BLK_DEV_ZONED */ 465 static inline void disk_init_zone_resources(struct gendisk *disk) 466 { 467 } 468 static inline void disk_free_zone_resources(struct gendisk *disk) 469 { 470 } 471 static inline bool bio_zone_write_plugging(struct bio *bio) 472 { 473 return false; 474 } 475 static inline bool bio_is_zone_append(struct bio *bio) 476 { 477 return false; 478 } 479 static inline void blk_zone_write_plug_bio_merged(struct bio *bio) 480 { 481 } 482 static inline void blk_zone_write_plug_init_request(struct request *rq) 483 { 484 } 485 static inline void blk_zone_update_request_bio(struct request *rq, 486 struct bio *bio) 487 { 488 } 489 static inline void blk_zone_bio_endio(struct bio *bio) 490 { 491 } 492 static inline void blk_zone_finish_request(struct request *rq) 493 { 494 } 495 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 496 unsigned int cmd, unsigned long arg) 497 { 498 return -ENOTTY; 499 } 500 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 501 blk_mode_t mode, unsigned int cmd, unsigned long arg) 502 { 503 return -ENOTTY; 504 } 505 #endif /* CONFIG_BLK_DEV_ZONED */ 506 507 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 508 void bdev_add(struct block_device *bdev, dev_t dev); 509 void bdev_unhash(struct block_device *bdev); 510 void bdev_drop(struct block_device *bdev); 511 512 int blk_alloc_ext_minor(void); 513 void blk_free_ext_minor(unsigned int minor); 514 #define ADDPART_FLAG_NONE 0 515 #define ADDPART_FLAG_RAID 1 516 #define ADDPART_FLAG_WHOLEDISK 2 517 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, 518 sector_t length); 519 int bdev_del_partition(struct gendisk *disk, int partno); 520 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, 521 sector_t length); 522 void drop_partition(struct block_device *part); 523 524 void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors); 525 526 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, 527 struct lock_class_key *lkclass); 528 529 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 530 struct page *page, unsigned int len, unsigned int offset, 531 unsigned int max_sectors, bool *same_page); 532 533 /* 534 * Clean up a page appropriately, where the page may be pinned, may have a 535 * ref taken on it or neither. 536 */ 537 static inline void bio_release_page(struct bio *bio, struct page *page) 538 { 539 if (bio_flagged(bio, BIO_PAGE_PINNED)) 540 unpin_user_page(page); 541 } 542 543 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id); 544 545 int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode); 546 547 int disk_alloc_events(struct gendisk *disk); 548 void disk_add_events(struct gendisk *disk); 549 void disk_del_events(struct gendisk *disk); 550 void disk_release_events(struct gendisk *disk); 551 void disk_block_events(struct gendisk *disk); 552 void disk_unblock_events(struct gendisk *disk); 553 void disk_flush_events(struct gendisk *disk, unsigned int mask); 554 extern struct device_attribute dev_attr_events; 555 extern struct device_attribute dev_attr_events_async; 556 extern struct device_attribute dev_attr_events_poll_msecs; 557 558 extern struct attribute_group blk_trace_attr_group; 559 560 blk_mode_t file_to_blk_mode(struct file *file); 561 int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode, 562 loff_t lstart, loff_t lend); 563 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 564 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 565 566 extern const struct address_space_operations def_blk_aops; 567 568 int disk_register_independent_access_ranges(struct gendisk *disk); 569 void disk_unregister_independent_access_ranges(struct gendisk *disk); 570 571 #ifdef CONFIG_FAIL_MAKE_REQUEST 572 bool should_fail_request(struct block_device *part, unsigned int bytes); 573 #else /* CONFIG_FAIL_MAKE_REQUEST */ 574 static inline bool should_fail_request(struct block_device *part, 575 unsigned int bytes) 576 { 577 return false; 578 } 579 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 580 581 /* 582 * Optimized request reference counting. Ideally we'd make timeouts be more 583 * clever, as that's the only reason we need references at all... But until 584 * this happens, this is faster than using refcount_t. Also see: 585 * 586 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count") 587 */ 588 #define req_ref_zero_or_close_to_overflow(req) \ 589 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u) 590 591 static inline bool req_ref_inc_not_zero(struct request *req) 592 { 593 return atomic_inc_not_zero(&req->ref); 594 } 595 596 static inline bool req_ref_put_and_test(struct request *req) 597 { 598 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); 599 return atomic_dec_and_test(&req->ref); 600 } 601 602 static inline void req_ref_set(struct request *req, int value) 603 { 604 atomic_set(&req->ref, value); 605 } 606 607 static inline int req_ref_read(struct request *req) 608 { 609 return atomic_read(&req->ref); 610 } 611 612 static inline u64 blk_time_get_ns(void) 613 { 614 struct blk_plug *plug = current->plug; 615 616 if (!plug || !in_task()) 617 return ktime_get_ns(); 618 619 /* 620 * 0 could very well be a valid time, but rather than flag "this is 621 * a valid timestamp" separately, just accept that we'll do an extra 622 * ktime_get_ns() if we just happen to get 0 as the current time. 623 */ 624 if (!plug->cur_ktime) { 625 plug->cur_ktime = ktime_get_ns(); 626 current->flags |= PF_BLOCK_TS; 627 } 628 return plug->cur_ktime; 629 } 630 631 static inline ktime_t blk_time_get(void) 632 { 633 return ns_to_ktime(blk_time_get_ns()); 634 } 635 636 /* 637 * From most significant bit: 638 * 1 bit: reserved for other usage, see below 639 * 12 bits: original size of bio 640 * 51 bits: issue time of bio 641 */ 642 #define BIO_ISSUE_RES_BITS 1 643 #define BIO_ISSUE_SIZE_BITS 12 644 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) 645 #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) 646 #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) 647 #define BIO_ISSUE_SIZE_MASK \ 648 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) 649 #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) 650 651 /* Reserved bit for blk-throtl */ 652 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) 653 654 static inline u64 __bio_issue_time(u64 time) 655 { 656 return time & BIO_ISSUE_TIME_MASK; 657 } 658 659 static inline u64 bio_issue_time(struct bio_issue *issue) 660 { 661 return __bio_issue_time(issue->value); 662 } 663 664 static inline sector_t bio_issue_size(struct bio_issue *issue) 665 { 666 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); 667 } 668 669 static inline void bio_issue_init(struct bio_issue *issue, 670 sector_t size) 671 { 672 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; 673 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | 674 (blk_time_get_ns() & BIO_ISSUE_TIME_MASK) | 675 ((u64)size << BIO_ISSUE_SIZE_SHIFT)); 676 } 677 678 void bdev_release(struct file *bdev_file); 679 int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder, 680 const struct blk_holder_ops *hops, struct file *bdev_file); 681 int bdev_permission(dev_t dev, blk_mode_t mode, void *holder); 682 683 void blk_integrity_generate(struct bio *bio); 684 void blk_integrity_verify(struct bio *bio); 685 void blk_integrity_prepare(struct request *rq); 686 void blk_integrity_complete(struct request *rq, unsigned int nr_bytes); 687 688 #endif /* BLK_INTERNAL_H */ 689