1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef BLK_INTERNAL_H 3 #define BLK_INTERNAL_H 4 5 #include <linux/idr.h> 6 #include <linux/blk-mq.h> 7 #include <linux/part_stat.h> 8 #include <linux/blk-crypto.h> 9 #include <xen/xen.h> 10 #include "blk-crypto-internal.h" 11 #include "blk-mq.h" 12 #include "blk-mq-sched.h" 13 14 /* Max future timer expiry for timeouts */ 15 #define BLK_MAX_TIMEOUT (5 * HZ) 16 17 extern struct dentry *blk_debugfs_root; 18 19 struct blk_flush_queue { 20 unsigned int flush_pending_idx:1; 21 unsigned int flush_running_idx:1; 22 blk_status_t rq_status; 23 unsigned long flush_pending_since; 24 struct list_head flush_queue[2]; 25 struct list_head flush_data_in_flight; 26 struct request *flush_rq; 27 28 struct lock_class_key key; 29 spinlock_t mq_flush_lock; 30 }; 31 32 extern struct kmem_cache *blk_requestq_cachep; 33 extern struct kobj_type blk_queue_ktype; 34 extern struct ida blk_queue_ida; 35 36 static inline struct blk_flush_queue * 37 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx) 38 { 39 return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq; 40 } 41 42 static inline void __blk_get_queue(struct request_queue *q) 43 { 44 kobject_get(&q->kobj); 45 } 46 47 static inline bool 48 is_flush_rq(struct request *req, struct blk_mq_hw_ctx *hctx) 49 { 50 return hctx->fq->flush_rq == req; 51 } 52 53 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 54 gfp_t flags); 55 void blk_free_flush_queue(struct blk_flush_queue *q); 56 57 void blk_freeze_queue(struct request_queue *q); 58 59 static inline bool biovec_phys_mergeable(struct request_queue *q, 60 struct bio_vec *vec1, struct bio_vec *vec2) 61 { 62 unsigned long mask = queue_segment_boundary(q); 63 phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; 64 phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; 65 66 if (addr1 + vec1->bv_len != addr2) 67 return false; 68 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) 69 return false; 70 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) 71 return false; 72 return true; 73 } 74 75 static inline bool __bvec_gap_to_prev(struct request_queue *q, 76 struct bio_vec *bprv, unsigned int offset) 77 { 78 return (offset & queue_virt_boundary(q)) || 79 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 80 } 81 82 /* 83 * Check if adding a bio_vec after bprv with offset would create a gap in 84 * the SG list. Most drivers don't care about this, but some do. 85 */ 86 static inline bool bvec_gap_to_prev(struct request_queue *q, 87 struct bio_vec *bprv, unsigned int offset) 88 { 89 if (!queue_virt_boundary(q)) 90 return false; 91 return __bvec_gap_to_prev(q, bprv, offset); 92 } 93 94 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio, 95 unsigned int nr_segs) 96 { 97 rq->nr_phys_segments = nr_segs; 98 rq->__data_len = bio->bi_iter.bi_size; 99 rq->bio = rq->biotail = bio; 100 rq->ioprio = bio_prio(bio); 101 102 if (bio->bi_disk) 103 rq->rq_disk = bio->bi_disk; 104 } 105 106 #ifdef CONFIG_BLK_DEV_INTEGRITY 107 void blk_flush_integrity(void); 108 bool __bio_integrity_endio(struct bio *); 109 void bio_integrity_free(struct bio *bio); 110 static inline bool bio_integrity_endio(struct bio *bio) 111 { 112 if (bio_integrity(bio)) 113 return __bio_integrity_endio(bio); 114 return true; 115 } 116 117 static inline bool integrity_req_gap_back_merge(struct request *req, 118 struct bio *next) 119 { 120 struct bio_integrity_payload *bip = bio_integrity(req->bio); 121 struct bio_integrity_payload *bip_next = bio_integrity(next); 122 123 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 124 bip_next->bip_vec[0].bv_offset); 125 } 126 127 static inline bool integrity_req_gap_front_merge(struct request *req, 128 struct bio *bio) 129 { 130 struct bio_integrity_payload *bip = bio_integrity(bio); 131 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 132 133 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 134 bip_next->bip_vec[0].bv_offset); 135 } 136 137 void blk_integrity_add(struct gendisk *); 138 void blk_integrity_del(struct gendisk *); 139 #else /* CONFIG_BLK_DEV_INTEGRITY */ 140 static inline bool integrity_req_gap_back_merge(struct request *req, 141 struct bio *next) 142 { 143 return false; 144 } 145 static inline bool integrity_req_gap_front_merge(struct request *req, 146 struct bio *bio) 147 { 148 return false; 149 } 150 151 static inline void blk_flush_integrity(void) 152 { 153 } 154 static inline bool bio_integrity_endio(struct bio *bio) 155 { 156 return true; 157 } 158 static inline void bio_integrity_free(struct bio *bio) 159 { 160 } 161 static inline void blk_integrity_add(struct gendisk *disk) 162 { 163 } 164 static inline void blk_integrity_del(struct gendisk *disk) 165 { 166 } 167 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 168 169 unsigned long blk_rq_timeout(unsigned long timeout); 170 void blk_add_timer(struct request *req); 171 172 bool bio_attempt_front_merge(struct request *req, struct bio *bio, 173 unsigned int nr_segs); 174 bool bio_attempt_back_merge(struct request *req, struct bio *bio, 175 unsigned int nr_segs); 176 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 177 struct bio *bio); 178 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 179 unsigned int nr_segs, struct request **same_queue_rq); 180 181 void blk_account_io_start(struct request *req); 182 void blk_account_io_done(struct request *req, u64 now); 183 184 /* 185 * Internal elevator interface 186 */ 187 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) 188 189 void blk_insert_flush(struct request *rq); 190 191 void elevator_init_mq(struct request_queue *q); 192 int elevator_switch_mq(struct request_queue *q, 193 struct elevator_type *new_e); 194 void __elevator_exit(struct request_queue *, struct elevator_queue *); 195 int elv_register_queue(struct request_queue *q, bool uevent); 196 void elv_unregister_queue(struct request_queue *q); 197 198 static inline void elevator_exit(struct request_queue *q, 199 struct elevator_queue *e) 200 { 201 lockdep_assert_held(&q->sysfs_lock); 202 203 blk_mq_sched_free_requests(q); 204 __elevator_exit(q, e); 205 } 206 207 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno); 208 209 ssize_t part_size_show(struct device *dev, struct device_attribute *attr, 210 char *buf); 211 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, 212 char *buf); 213 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 214 char *buf); 215 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, 216 char *buf); 217 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, 218 const char *buf, size_t count); 219 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); 220 ssize_t part_timeout_store(struct device *, struct device_attribute *, 221 const char *, size_t); 222 223 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs); 224 int ll_back_merge_fn(struct request *req, struct bio *bio, 225 unsigned int nr_segs); 226 int ll_front_merge_fn(struct request *req, struct bio *bio, 227 unsigned int nr_segs); 228 struct request *attempt_back_merge(struct request_queue *q, struct request *rq); 229 struct request *attempt_front_merge(struct request_queue *q, struct request *rq); 230 int blk_attempt_req_merge(struct request_queue *q, struct request *rq, 231 struct request *next); 232 unsigned int blk_recalc_rq_segments(struct request *rq); 233 void blk_rq_set_mixed_merge(struct request *rq); 234 bool blk_rq_merge_ok(struct request *rq, struct bio *bio); 235 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); 236 237 int blk_dev_init(void); 238 239 /* 240 * Contribute to IO statistics IFF: 241 * 242 * a) it's attached to a gendisk, and 243 * b) the queue had IO stats enabled when this request was started 244 */ 245 static inline bool blk_do_io_stat(struct request *rq) 246 { 247 return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT); 248 } 249 250 static inline void req_set_nomerge(struct request_queue *q, struct request *req) 251 { 252 req->cmd_flags |= REQ_NOMERGE; 253 if (req == q->last_merge) 254 q->last_merge = NULL; 255 } 256 257 /* 258 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 259 * is defined as 'unsigned int', meantime it has to aligned to with logical 260 * block size which is the minimum accepted unit by hardware. 261 */ 262 static inline unsigned int bio_allowed_max_sectors(struct request_queue *q) 263 { 264 return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9; 265 } 266 267 /* 268 * The max bio size which is aligned to q->limits.discard_granularity. This 269 * is a hint to split large discard bio in generic block layer, then if device 270 * driver needs to split the discard bio into smaller ones, their bi_size can 271 * be very probably and easily aligned to discard_granularity of the device's 272 * queue. 273 */ 274 static inline unsigned int bio_aligned_discard_max_sectors( 275 struct request_queue *q) 276 { 277 return round_down(UINT_MAX, q->limits.discard_granularity) >> 278 SECTOR_SHIFT; 279 } 280 281 /* 282 * Internal io_context interface 283 */ 284 void get_io_context(struct io_context *ioc); 285 struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q); 286 struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q, 287 gfp_t gfp_mask); 288 void ioc_clear_queue(struct request_queue *q); 289 290 int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node); 291 292 /* 293 * Internal throttling interface 294 */ 295 #ifdef CONFIG_BLK_DEV_THROTTLING 296 extern int blk_throtl_init(struct request_queue *q); 297 extern void blk_throtl_exit(struct request_queue *q); 298 extern void blk_throtl_register_queue(struct request_queue *q); 299 bool blk_throtl_bio(struct bio *bio); 300 #else /* CONFIG_BLK_DEV_THROTTLING */ 301 static inline int blk_throtl_init(struct request_queue *q) { return 0; } 302 static inline void blk_throtl_exit(struct request_queue *q) { } 303 static inline void blk_throtl_register_queue(struct request_queue *q) { } 304 static inline bool blk_throtl_bio(struct bio *bio) { return false; } 305 #endif /* CONFIG_BLK_DEV_THROTTLING */ 306 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 307 extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); 308 extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, 309 const char *page, size_t count); 310 extern void blk_throtl_bio_endio(struct bio *bio); 311 extern void blk_throtl_stat_add(struct request *rq, u64 time); 312 #else 313 static inline void blk_throtl_bio_endio(struct bio *bio) { } 314 static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } 315 #endif 316 317 #ifdef CONFIG_BOUNCE 318 extern int init_emergency_isa_pool(void); 319 extern void blk_queue_bounce(struct request_queue *q, struct bio **bio); 320 #else 321 static inline int init_emergency_isa_pool(void) 322 { 323 return 0; 324 } 325 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio) 326 { 327 } 328 #endif /* CONFIG_BOUNCE */ 329 330 #ifdef CONFIG_BLK_CGROUP_IOLATENCY 331 extern int blk_iolatency_init(struct request_queue *q); 332 #else 333 static inline int blk_iolatency_init(struct request_queue *q) { return 0; } 334 #endif 335 336 struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp); 337 338 #ifdef CONFIG_BLK_DEV_ZONED 339 void blk_queue_free_zone_bitmaps(struct request_queue *q); 340 #else 341 static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {} 342 #endif 343 344 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector); 345 346 int blk_alloc_devt(struct hd_struct *part, dev_t *devt); 347 void blk_free_devt(dev_t devt); 348 void blk_invalidate_devt(dev_t devt); 349 char *disk_name(struct gendisk *hd, int partno, char *buf); 350 #define ADDPART_FLAG_NONE 0 351 #define ADDPART_FLAG_RAID 1 352 #define ADDPART_FLAG_WHOLEDISK 2 353 void delete_partition(struct gendisk *disk, struct hd_struct *part); 354 int bdev_add_partition(struct block_device *bdev, int partno, 355 sector_t start, sector_t length); 356 int bdev_del_partition(struct block_device *bdev, int partno); 357 int bdev_resize_partition(struct block_device *bdev, int partno, 358 sector_t start, sector_t length); 359 int disk_expand_part_tbl(struct gendisk *disk, int target); 360 int hd_ref_init(struct hd_struct *part); 361 362 /* no need to get/put refcount of part0 */ 363 static inline int hd_struct_try_get(struct hd_struct *part) 364 { 365 if (part->partno) 366 return percpu_ref_tryget_live(&part->ref); 367 return 1; 368 } 369 370 static inline void hd_struct_put(struct hd_struct *part) 371 { 372 if (part->partno) 373 percpu_ref_put(&part->ref); 374 } 375 376 static inline void hd_free_part(struct hd_struct *part) 377 { 378 free_percpu(part->dkstats); 379 kfree(part->info); 380 percpu_ref_exit(&part->ref); 381 } 382 383 /* 384 * Any access of part->nr_sects which is not protected by partition 385 * bd_mutex or gendisk bdev bd_mutex, should be done using this 386 * accessor function. 387 * 388 * Code written along the lines of i_size_read() and i_size_write(). 389 * CONFIG_PREEMPTION case optimizes the case of UP kernel with preemption 390 * on. 391 */ 392 static inline sector_t part_nr_sects_read(struct hd_struct *part) 393 { 394 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 395 sector_t nr_sects; 396 unsigned seq; 397 do { 398 seq = read_seqcount_begin(&part->nr_sects_seq); 399 nr_sects = part->nr_sects; 400 } while (read_seqcount_retry(&part->nr_sects_seq, seq)); 401 return nr_sects; 402 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 403 sector_t nr_sects; 404 405 preempt_disable(); 406 nr_sects = part->nr_sects; 407 preempt_enable(); 408 return nr_sects; 409 #else 410 return part->nr_sects; 411 #endif 412 } 413 414 /* 415 * Should be called with mutex lock held (typically bd_mutex) of partition 416 * to provide mutual exlusion among writers otherwise seqcount might be 417 * left in wrong state leaving the readers spinning infinitely. 418 */ 419 static inline void part_nr_sects_write(struct hd_struct *part, sector_t size) 420 { 421 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 422 preempt_disable(); 423 write_seqcount_begin(&part->nr_sects_seq); 424 part->nr_sects = size; 425 write_seqcount_end(&part->nr_sects_seq); 426 preempt_enable(); 427 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 428 preempt_disable(); 429 part->nr_sects = size; 430 preempt_enable(); 431 #else 432 part->nr_sects = size; 433 #endif 434 } 435 436 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 437 struct page *page, unsigned int len, unsigned int offset, 438 unsigned int max_sectors, bool *same_page); 439 440 #endif /* BLK_INTERNAL_H */ 441