xref: /linux/block/blk.h (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 #ifndef BLK_INTERNAL_H
2 #define BLK_INTERNAL_H
3 
4 #include <linux/idr.h>
5 
6 /* Amount of time in which a process may batch requests */
7 #define BLK_BATCH_TIME	(HZ/50UL)
8 
9 /* Number of requests a "batching" process may submit */
10 #define BLK_BATCH_REQ	32
11 
12 extern struct kmem_cache *blk_requestq_cachep;
13 extern struct kobj_type blk_queue_ktype;
14 extern struct ida blk_queue_ida;
15 
16 static inline void __blk_get_queue(struct request_queue *q)
17 {
18 	kobject_get(&q->kobj);
19 }
20 
21 int blk_init_rl(struct request_list *rl, struct request_queue *q,
22 		gfp_t gfp_mask);
23 void blk_exit_rl(struct request_list *rl);
24 void init_request_from_bio(struct request *req, struct bio *bio);
25 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
26 			struct bio *bio);
27 int blk_rq_append_bio(struct request_queue *q, struct request *rq,
28 		      struct bio *bio);
29 void blk_queue_bypass_start(struct request_queue *q);
30 void blk_queue_bypass_end(struct request_queue *q);
31 void blk_dequeue_request(struct request *rq);
32 void __blk_queue_free_tags(struct request_queue *q);
33 bool __blk_end_bidi_request(struct request *rq, int error,
34 			    unsigned int nr_bytes, unsigned int bidi_bytes);
35 
36 void blk_rq_timed_out_timer(unsigned long data);
37 void blk_delete_timer(struct request *);
38 void blk_add_timer(struct request *);
39 
40 /*
41  * Internal atomic flags for request handling
42  */
43 enum rq_atomic_flags {
44 	REQ_ATOM_COMPLETE = 0,
45 };
46 
47 /*
48  * EH timer and IO completion will both attempt to 'grab' the request, make
49  * sure that only one of them succeeds
50  */
51 static inline int blk_mark_rq_complete(struct request *rq)
52 {
53 	return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
54 }
55 
56 static inline void blk_clear_rq_complete(struct request *rq)
57 {
58 	clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
59 }
60 
61 /*
62  * Internal elevator interface
63  */
64 #define ELV_ON_HASH(rq)		(!hlist_unhashed(&(rq)->hash))
65 
66 void blk_insert_flush(struct request *rq);
67 void blk_abort_flushes(struct request_queue *q);
68 
69 static inline struct request *__elv_next_request(struct request_queue *q)
70 {
71 	struct request *rq;
72 
73 	while (1) {
74 		if (!list_empty(&q->queue_head)) {
75 			rq = list_entry_rq(q->queue_head.next);
76 			return rq;
77 		}
78 
79 		/*
80 		 * Flush request is running and flush request isn't queueable
81 		 * in the drive, we can hold the queue till flush request is
82 		 * finished. Even we don't do this, driver can't dispatch next
83 		 * requests and will requeue them. And this can improve
84 		 * throughput too. For example, we have request flush1, write1,
85 		 * flush 2. flush1 is dispatched, then queue is hold, write1
86 		 * isn't inserted to queue. After flush1 is finished, flush2
87 		 * will be dispatched. Since disk cache is already clean,
88 		 * flush2 will be finished very soon, so looks like flush2 is
89 		 * folded to flush1.
90 		 * Since the queue is hold, a flag is set to indicate the queue
91 		 * should be restarted later. Please see flush_end_io() for
92 		 * details.
93 		 */
94 		if (q->flush_pending_idx != q->flush_running_idx &&
95 				!queue_flush_queueable(q)) {
96 			q->flush_queue_delayed = 1;
97 			return NULL;
98 		}
99 		if (unlikely(blk_queue_dead(q)) ||
100 		    !q->elevator->type->ops.elevator_dispatch_fn(q, 0))
101 			return NULL;
102 	}
103 }
104 
105 static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
106 {
107 	struct elevator_queue *e = q->elevator;
108 
109 	if (e->type->ops.elevator_activate_req_fn)
110 		e->type->ops.elevator_activate_req_fn(q, rq);
111 }
112 
113 static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
114 {
115 	struct elevator_queue *e = q->elevator;
116 
117 	if (e->type->ops.elevator_deactivate_req_fn)
118 		e->type->ops.elevator_deactivate_req_fn(q, rq);
119 }
120 
121 #ifdef CONFIG_FAIL_IO_TIMEOUT
122 int blk_should_fake_timeout(struct request_queue *);
123 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
124 ssize_t part_timeout_store(struct device *, struct device_attribute *,
125 				const char *, size_t);
126 #else
127 static inline int blk_should_fake_timeout(struct request_queue *q)
128 {
129 	return 0;
130 }
131 #endif
132 
133 int ll_back_merge_fn(struct request_queue *q, struct request *req,
134 		     struct bio *bio);
135 int ll_front_merge_fn(struct request_queue *q, struct request *req,
136 		      struct bio *bio);
137 int attempt_back_merge(struct request_queue *q, struct request *rq);
138 int attempt_front_merge(struct request_queue *q, struct request *rq);
139 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
140 				struct request *next);
141 void blk_recalc_rq_segments(struct request *rq);
142 void blk_rq_set_mixed_merge(struct request *rq);
143 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
144 int blk_try_merge(struct request *rq, struct bio *bio);
145 
146 void blk_queue_congestion_threshold(struct request_queue *q);
147 
148 int blk_dev_init(void);
149 
150 
151 /*
152  * Return the threshold (number of used requests) at which the queue is
153  * considered to be congested.  It include a little hysteresis to keep the
154  * context switch rate down.
155  */
156 static inline int queue_congestion_on_threshold(struct request_queue *q)
157 {
158 	return q->nr_congestion_on;
159 }
160 
161 /*
162  * The threshold at which a queue is considered to be uncongested
163  */
164 static inline int queue_congestion_off_threshold(struct request_queue *q)
165 {
166 	return q->nr_congestion_off;
167 }
168 
169 /*
170  * Contribute to IO statistics IFF:
171  *
172  *	a) it's attached to a gendisk, and
173  *	b) the queue had IO stats enabled when this request was started, and
174  *	c) it's a file system request
175  */
176 static inline int blk_do_io_stat(struct request *rq)
177 {
178 	return rq->rq_disk &&
179 	       (rq->cmd_flags & REQ_IO_STAT) &&
180 		(rq->cmd_type == REQ_TYPE_FS);
181 }
182 
183 /*
184  * Internal io_context interface
185  */
186 void get_io_context(struct io_context *ioc);
187 struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
188 struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
189 			     gfp_t gfp_mask);
190 void ioc_clear_queue(struct request_queue *q);
191 
192 int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
193 
194 /**
195  * create_io_context - try to create task->io_context
196  * @gfp_mask: allocation mask
197  * @node: allocation node
198  *
199  * If %current->io_context is %NULL, allocate a new io_context and install
200  * it.  Returns the current %current->io_context which may be %NULL if
201  * allocation failed.
202  *
203  * Note that this function can't be called with IRQ disabled because
204  * task_lock which protects %current->io_context is IRQ-unsafe.
205  */
206 static inline struct io_context *create_io_context(gfp_t gfp_mask, int node)
207 {
208 	WARN_ON_ONCE(irqs_disabled());
209 	if (unlikely(!current->io_context))
210 		create_task_io_context(current, gfp_mask, node);
211 	return current->io_context;
212 }
213 
214 /*
215  * Internal throttling interface
216  */
217 #ifdef CONFIG_BLK_DEV_THROTTLING
218 extern bool blk_throtl_bio(struct request_queue *q, struct bio *bio);
219 extern void blk_throtl_drain(struct request_queue *q);
220 extern int blk_throtl_init(struct request_queue *q);
221 extern void blk_throtl_exit(struct request_queue *q);
222 #else /* CONFIG_BLK_DEV_THROTTLING */
223 static inline bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
224 {
225 	return false;
226 }
227 static inline void blk_throtl_drain(struct request_queue *q) { }
228 static inline int blk_throtl_init(struct request_queue *q) { return 0; }
229 static inline void blk_throtl_exit(struct request_queue *q) { }
230 #endif /* CONFIG_BLK_DEV_THROTTLING */
231 
232 #endif /* BLK_INTERNAL_H */
233