1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Zoned block device handling 4 * 5 * Copyright (c) 2015, Hannes Reinecke 6 * Copyright (c) 2015, SUSE Linux GmbH 7 * 8 * Copyright (c) 2016, Damien Le Moal 9 * Copyright (c) 2016, Western Digital 10 * Copyright (c) 2024, Western Digital Corporation or its affiliates. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/mm.h> 18 #include <linux/vmalloc.h> 19 #include <linux/sched/mm.h> 20 #include <linux/spinlock.h> 21 #include <linux/atomic.h> 22 #include <linux/mempool.h> 23 24 #include "blk.h" 25 #include "blk-mq-sched.h" 26 #include "blk-mq-debugfs.h" 27 28 #define ZONE_COND_NAME(name) [BLK_ZONE_COND_##name] = #name 29 static const char *const zone_cond_name[] = { 30 ZONE_COND_NAME(NOT_WP), 31 ZONE_COND_NAME(EMPTY), 32 ZONE_COND_NAME(IMP_OPEN), 33 ZONE_COND_NAME(EXP_OPEN), 34 ZONE_COND_NAME(CLOSED), 35 ZONE_COND_NAME(READONLY), 36 ZONE_COND_NAME(FULL), 37 ZONE_COND_NAME(OFFLINE), 38 }; 39 #undef ZONE_COND_NAME 40 41 /* 42 * Per-zone write plug. 43 * @node: hlist_node structure for managing the plug using a hash table. 44 * @link: To list the plug in the zone write plug error list of the disk. 45 * @ref: Zone write plug reference counter. A zone write plug reference is 46 * always at least 1 when the plug is hashed in the disk plug hash table. 47 * The reference is incremented whenever a new BIO needing plugging is 48 * submitted and when a function needs to manipulate a plug. The 49 * reference count is decremented whenever a plugged BIO completes and 50 * when a function that referenced the plug returns. The initial 51 * reference is dropped whenever the zone of the zone write plug is reset, 52 * finished and when the zone becomes full (last write BIO to the zone 53 * completes). 54 * @lock: Spinlock to atomically manipulate the plug. 55 * @flags: Flags indicating the plug state. 56 * @zone_no: The number of the zone the plug is managing. 57 * @wp_offset: The zone write pointer location relative to the start of the zone 58 * as a number of 512B sectors. 59 * @bio_list: The list of BIOs that are currently plugged. 60 * @bio_work: Work struct to handle issuing of plugged BIOs 61 * @rcu_head: RCU head to free zone write plugs with an RCU grace period. 62 * @disk: The gendisk the plug belongs to. 63 */ 64 struct blk_zone_wplug { 65 struct hlist_node node; 66 struct list_head link; 67 atomic_t ref; 68 spinlock_t lock; 69 unsigned int flags; 70 unsigned int zone_no; 71 unsigned int wp_offset; 72 struct bio_list bio_list; 73 struct work_struct bio_work; 74 struct rcu_head rcu_head; 75 struct gendisk *disk; 76 }; 77 78 /* 79 * Zone write plug flags bits: 80 * - BLK_ZONE_WPLUG_PLUGGED: Indicates that the zone write plug is plugged, 81 * that is, that write BIOs are being throttled due to a write BIO already 82 * being executed or the zone write plug bio list is not empty. 83 * - BLK_ZONE_WPLUG_ERROR: Indicates that a write error happened which will be 84 * recovered with a report zone to update the zone write pointer offset. 85 * - BLK_ZONE_WPLUG_UNHASHED: Indicates that the zone write plug was removed 86 * from the disk hash table and that the initial reference to the zone 87 * write plug set when the plug was first added to the hash table has been 88 * dropped. This flag is set when a zone is reset, finished or become full, 89 * to prevent new references to the zone write plug to be taken for 90 * newly incoming BIOs. A zone write plug flagged with this flag will be 91 * freed once all remaining references from BIOs or functions are dropped. 92 */ 93 #define BLK_ZONE_WPLUG_PLUGGED (1U << 0) 94 #define BLK_ZONE_WPLUG_ERROR (1U << 1) 95 #define BLK_ZONE_WPLUG_UNHASHED (1U << 2) 96 97 #define BLK_ZONE_WPLUG_BUSY (BLK_ZONE_WPLUG_PLUGGED | BLK_ZONE_WPLUG_ERROR) 98 99 /** 100 * blk_zone_cond_str - Return string XXX in BLK_ZONE_COND_XXX. 101 * @zone_cond: BLK_ZONE_COND_XXX. 102 * 103 * Description: Centralize block layer function to convert BLK_ZONE_COND_XXX 104 * into string format. Useful in the debugging and tracing zone conditions. For 105 * invalid BLK_ZONE_COND_XXX it returns string "UNKNOWN". 106 */ 107 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond) 108 { 109 static const char *zone_cond_str = "UNKNOWN"; 110 111 if (zone_cond < ARRAY_SIZE(zone_cond_name) && zone_cond_name[zone_cond]) 112 zone_cond_str = zone_cond_name[zone_cond]; 113 114 return zone_cond_str; 115 } 116 EXPORT_SYMBOL_GPL(blk_zone_cond_str); 117 118 /** 119 * bdev_nr_zones - Get number of zones 120 * @bdev: Target device 121 * 122 * Return the total number of zones of a zoned block device. For a block 123 * device without zone capabilities, the number of zones is always 0. 124 */ 125 unsigned int bdev_nr_zones(struct block_device *bdev) 126 { 127 sector_t zone_sectors = bdev_zone_sectors(bdev); 128 129 if (!bdev_is_zoned(bdev)) 130 return 0; 131 return (bdev_nr_sectors(bdev) + zone_sectors - 1) >> 132 ilog2(zone_sectors); 133 } 134 EXPORT_SYMBOL_GPL(bdev_nr_zones); 135 136 /** 137 * blkdev_report_zones - Get zones information 138 * @bdev: Target block device 139 * @sector: Sector from which to report zones 140 * @nr_zones: Maximum number of zones to report 141 * @cb: Callback function called for each reported zone 142 * @data: Private data for the callback 143 * 144 * Description: 145 * Get zone information starting from the zone containing @sector for at most 146 * @nr_zones, and call @cb for each zone reported by the device. 147 * To report all zones in a device starting from @sector, the BLK_ALL_ZONES 148 * constant can be passed to @nr_zones. 149 * Returns the number of zones reported by the device, or a negative errno 150 * value in case of failure. 151 * 152 * Note: The caller must use memalloc_noXX_save/restore() calls to control 153 * memory allocations done within this function. 154 */ 155 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 156 unsigned int nr_zones, report_zones_cb cb, void *data) 157 { 158 struct gendisk *disk = bdev->bd_disk; 159 sector_t capacity = get_capacity(disk); 160 161 if (!bdev_is_zoned(bdev) || WARN_ON_ONCE(!disk->fops->report_zones)) 162 return -EOPNOTSUPP; 163 164 if (!nr_zones || sector >= capacity) 165 return 0; 166 167 return disk->fops->report_zones(disk, sector, nr_zones, cb, data); 168 } 169 EXPORT_SYMBOL_GPL(blkdev_report_zones); 170 171 static inline unsigned long *blk_alloc_zone_bitmap(int node, 172 unsigned int nr_zones) 173 { 174 return kcalloc_node(BITS_TO_LONGS(nr_zones), sizeof(unsigned long), 175 GFP_NOIO, node); 176 } 177 178 static int blk_zone_need_reset_cb(struct blk_zone *zone, unsigned int idx, 179 void *data) 180 { 181 /* 182 * For an all-zones reset, ignore conventional, empty, read-only 183 * and offline zones. 184 */ 185 switch (zone->cond) { 186 case BLK_ZONE_COND_NOT_WP: 187 case BLK_ZONE_COND_EMPTY: 188 case BLK_ZONE_COND_READONLY: 189 case BLK_ZONE_COND_OFFLINE: 190 return 0; 191 default: 192 set_bit(idx, (unsigned long *)data); 193 return 0; 194 } 195 } 196 197 static int blkdev_zone_reset_all_emulated(struct block_device *bdev) 198 { 199 struct gendisk *disk = bdev->bd_disk; 200 sector_t capacity = bdev_nr_sectors(bdev); 201 sector_t zone_sectors = bdev_zone_sectors(bdev); 202 unsigned long *need_reset; 203 struct bio *bio = NULL; 204 sector_t sector = 0; 205 int ret; 206 207 need_reset = blk_alloc_zone_bitmap(disk->queue->node, disk->nr_zones); 208 if (!need_reset) 209 return -ENOMEM; 210 211 ret = disk->fops->report_zones(disk, 0, disk->nr_zones, 212 blk_zone_need_reset_cb, need_reset); 213 if (ret < 0) 214 goto out_free_need_reset; 215 216 ret = 0; 217 while (sector < capacity) { 218 if (!test_bit(disk_zone_no(disk, sector), need_reset)) { 219 sector += zone_sectors; 220 continue; 221 } 222 223 bio = blk_next_bio(bio, bdev, 0, REQ_OP_ZONE_RESET | REQ_SYNC, 224 GFP_KERNEL); 225 bio->bi_iter.bi_sector = sector; 226 sector += zone_sectors; 227 228 /* This may take a while, so be nice to others */ 229 cond_resched(); 230 } 231 232 if (bio) { 233 ret = submit_bio_wait(bio); 234 bio_put(bio); 235 } 236 237 out_free_need_reset: 238 kfree(need_reset); 239 return ret; 240 } 241 242 static int blkdev_zone_reset_all(struct block_device *bdev) 243 { 244 struct bio bio; 245 246 bio_init(&bio, bdev, NULL, 0, REQ_OP_ZONE_RESET_ALL | REQ_SYNC); 247 return submit_bio_wait(&bio); 248 } 249 250 /** 251 * blkdev_zone_mgmt - Execute a zone management operation on a range of zones 252 * @bdev: Target block device 253 * @op: Operation to be performed on the zones 254 * @sector: Start sector of the first zone to operate on 255 * @nr_sectors: Number of sectors, should be at least the length of one zone and 256 * must be zone size aligned. 257 * 258 * Description: 259 * Perform the specified operation on the range of zones specified by 260 * @sector..@sector+@nr_sectors. Specifying the entire disk sector range 261 * is valid, but the specified range should not contain conventional zones. 262 * The operation to execute on each zone can be a zone reset, open, close 263 * or finish request. 264 */ 265 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, 266 sector_t sector, sector_t nr_sectors) 267 { 268 struct request_queue *q = bdev_get_queue(bdev); 269 sector_t zone_sectors = bdev_zone_sectors(bdev); 270 sector_t capacity = bdev_nr_sectors(bdev); 271 sector_t end_sector = sector + nr_sectors; 272 struct bio *bio = NULL; 273 int ret = 0; 274 275 if (!bdev_is_zoned(bdev)) 276 return -EOPNOTSUPP; 277 278 if (bdev_read_only(bdev)) 279 return -EPERM; 280 281 if (!op_is_zone_mgmt(op)) 282 return -EOPNOTSUPP; 283 284 if (end_sector <= sector || end_sector > capacity) 285 /* Out of range */ 286 return -EINVAL; 287 288 /* Check alignment (handle eventual smaller last zone) */ 289 if (!bdev_is_zone_start(bdev, sector)) 290 return -EINVAL; 291 292 if (!bdev_is_zone_start(bdev, nr_sectors) && end_sector != capacity) 293 return -EINVAL; 294 295 /* 296 * In the case of a zone reset operation over all zones, 297 * REQ_OP_ZONE_RESET_ALL can be used with devices supporting this 298 * command. For other devices, we emulate this command behavior by 299 * identifying the zones needing a reset. 300 */ 301 if (op == REQ_OP_ZONE_RESET && sector == 0 && nr_sectors == capacity) { 302 if (!blk_queue_zone_resetall(q)) 303 return blkdev_zone_reset_all_emulated(bdev); 304 return blkdev_zone_reset_all(bdev); 305 } 306 307 while (sector < end_sector) { 308 bio = blk_next_bio(bio, bdev, 0, op | REQ_SYNC, GFP_KERNEL); 309 bio->bi_iter.bi_sector = sector; 310 sector += zone_sectors; 311 312 /* This may take a while, so be nice to others */ 313 cond_resched(); 314 } 315 316 ret = submit_bio_wait(bio); 317 bio_put(bio); 318 319 return ret; 320 } 321 EXPORT_SYMBOL_GPL(blkdev_zone_mgmt); 322 323 struct zone_report_args { 324 struct blk_zone __user *zones; 325 }; 326 327 static int blkdev_copy_zone_to_user(struct blk_zone *zone, unsigned int idx, 328 void *data) 329 { 330 struct zone_report_args *args = data; 331 332 if (copy_to_user(&args->zones[idx], zone, sizeof(struct blk_zone))) 333 return -EFAULT; 334 return 0; 335 } 336 337 /* 338 * BLKREPORTZONE ioctl processing. 339 * Called from blkdev_ioctl. 340 */ 341 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, 342 unsigned long arg) 343 { 344 void __user *argp = (void __user *)arg; 345 struct zone_report_args args; 346 struct blk_zone_report rep; 347 int ret; 348 349 if (!argp) 350 return -EINVAL; 351 352 if (!bdev_is_zoned(bdev)) 353 return -ENOTTY; 354 355 if (copy_from_user(&rep, argp, sizeof(struct blk_zone_report))) 356 return -EFAULT; 357 358 if (!rep.nr_zones) 359 return -EINVAL; 360 361 args.zones = argp + sizeof(struct blk_zone_report); 362 ret = blkdev_report_zones(bdev, rep.sector, rep.nr_zones, 363 blkdev_copy_zone_to_user, &args); 364 if (ret < 0) 365 return ret; 366 367 rep.nr_zones = ret; 368 rep.flags = BLK_ZONE_REP_CAPACITY; 369 if (copy_to_user(argp, &rep, sizeof(struct blk_zone_report))) 370 return -EFAULT; 371 return 0; 372 } 373 374 static int blkdev_truncate_zone_range(struct block_device *bdev, 375 blk_mode_t mode, const struct blk_zone_range *zrange) 376 { 377 loff_t start, end; 378 379 if (zrange->sector + zrange->nr_sectors <= zrange->sector || 380 zrange->sector + zrange->nr_sectors > get_capacity(bdev->bd_disk)) 381 /* Out of range */ 382 return -EINVAL; 383 384 start = zrange->sector << SECTOR_SHIFT; 385 end = ((zrange->sector + zrange->nr_sectors) << SECTOR_SHIFT) - 1; 386 387 return truncate_bdev_range(bdev, mode, start, end); 388 } 389 390 /* 391 * BLKRESETZONE, BLKOPENZONE, BLKCLOSEZONE and BLKFINISHZONE ioctl processing. 392 * Called from blkdev_ioctl. 393 */ 394 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, 395 unsigned int cmd, unsigned long arg) 396 { 397 void __user *argp = (void __user *)arg; 398 struct blk_zone_range zrange; 399 enum req_op op; 400 int ret; 401 402 if (!argp) 403 return -EINVAL; 404 405 if (!bdev_is_zoned(bdev)) 406 return -ENOTTY; 407 408 if (!(mode & BLK_OPEN_WRITE)) 409 return -EBADF; 410 411 if (copy_from_user(&zrange, argp, sizeof(struct blk_zone_range))) 412 return -EFAULT; 413 414 switch (cmd) { 415 case BLKRESETZONE: 416 op = REQ_OP_ZONE_RESET; 417 418 /* Invalidate the page cache, including dirty pages. */ 419 filemap_invalidate_lock(bdev->bd_mapping); 420 ret = blkdev_truncate_zone_range(bdev, mode, &zrange); 421 if (ret) 422 goto fail; 423 break; 424 case BLKOPENZONE: 425 op = REQ_OP_ZONE_OPEN; 426 break; 427 case BLKCLOSEZONE: 428 op = REQ_OP_ZONE_CLOSE; 429 break; 430 case BLKFINISHZONE: 431 op = REQ_OP_ZONE_FINISH; 432 break; 433 default: 434 return -ENOTTY; 435 } 436 437 ret = blkdev_zone_mgmt(bdev, op, zrange.sector, zrange.nr_sectors); 438 439 fail: 440 if (cmd == BLKRESETZONE) 441 filemap_invalidate_unlock(bdev->bd_mapping); 442 443 return ret; 444 } 445 446 static inline bool disk_zone_is_conv(struct gendisk *disk, sector_t sector) 447 { 448 if (!disk->conv_zones_bitmap) 449 return false; 450 return test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap); 451 } 452 453 static bool disk_zone_is_last(struct gendisk *disk, struct blk_zone *zone) 454 { 455 return zone->start + zone->len >= get_capacity(disk); 456 } 457 458 static bool disk_zone_is_full(struct gendisk *disk, 459 unsigned int zno, unsigned int offset_in_zone) 460 { 461 if (zno < disk->nr_zones - 1) 462 return offset_in_zone >= disk->zone_capacity; 463 return offset_in_zone >= disk->last_zone_capacity; 464 } 465 466 static bool disk_zone_wplug_is_full(struct gendisk *disk, 467 struct blk_zone_wplug *zwplug) 468 { 469 return disk_zone_is_full(disk, zwplug->zone_no, zwplug->wp_offset); 470 } 471 472 static bool disk_insert_zone_wplug(struct gendisk *disk, 473 struct blk_zone_wplug *zwplug) 474 { 475 struct blk_zone_wplug *zwplg; 476 unsigned long flags; 477 unsigned int idx = 478 hash_32(zwplug->zone_no, disk->zone_wplugs_hash_bits); 479 480 /* 481 * Add the new zone write plug to the hash table, but carefully as we 482 * are racing with other submission context, so we may already have a 483 * zone write plug for the same zone. 484 */ 485 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 486 hlist_for_each_entry_rcu(zwplg, &disk->zone_wplugs_hash[idx], node) { 487 if (zwplg->zone_no == zwplug->zone_no) { 488 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 489 return false; 490 } 491 } 492 hlist_add_head_rcu(&zwplug->node, &disk->zone_wplugs_hash[idx]); 493 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 494 495 return true; 496 } 497 498 static struct blk_zone_wplug *disk_get_zone_wplug(struct gendisk *disk, 499 sector_t sector) 500 { 501 unsigned int zno = disk_zone_no(disk, sector); 502 unsigned int idx = hash_32(zno, disk->zone_wplugs_hash_bits); 503 struct blk_zone_wplug *zwplug; 504 505 rcu_read_lock(); 506 507 hlist_for_each_entry_rcu(zwplug, &disk->zone_wplugs_hash[idx], node) { 508 if (zwplug->zone_no == zno && 509 atomic_inc_not_zero(&zwplug->ref)) { 510 rcu_read_unlock(); 511 return zwplug; 512 } 513 } 514 515 rcu_read_unlock(); 516 517 return NULL; 518 } 519 520 static void disk_free_zone_wplug_rcu(struct rcu_head *rcu_head) 521 { 522 struct blk_zone_wplug *zwplug = 523 container_of(rcu_head, struct blk_zone_wplug, rcu_head); 524 525 mempool_free(zwplug, zwplug->disk->zone_wplugs_pool); 526 } 527 528 static inline void disk_put_zone_wplug(struct blk_zone_wplug *zwplug) 529 { 530 if (atomic_dec_and_test(&zwplug->ref)) { 531 WARN_ON_ONCE(!bio_list_empty(&zwplug->bio_list)); 532 WARN_ON_ONCE(!list_empty(&zwplug->link)); 533 WARN_ON_ONCE(!(zwplug->flags & BLK_ZONE_WPLUG_UNHASHED)); 534 535 call_rcu(&zwplug->rcu_head, disk_free_zone_wplug_rcu); 536 } 537 } 538 539 static inline bool disk_should_remove_zone_wplug(struct gendisk *disk, 540 struct blk_zone_wplug *zwplug) 541 { 542 /* If the zone write plug was already removed, we are done. */ 543 if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) 544 return false; 545 546 /* If the zone write plug is still busy, it cannot be removed. */ 547 if (zwplug->flags & BLK_ZONE_WPLUG_BUSY) 548 return false; 549 550 /* 551 * Completions of BIOs with blk_zone_write_plug_bio_endio() may 552 * happen after handling a request completion with 553 * blk_zone_write_plug_finish_request() (e.g. with split BIOs 554 * that are chained). In such case, disk_zone_wplug_unplug_bio() 555 * should not attempt to remove the zone write plug until all BIO 556 * completions are seen. Check by looking at the zone write plug 557 * reference count, which is 2 when the plug is unused (one reference 558 * taken when the plug was allocated and another reference taken by the 559 * caller context). 560 */ 561 if (atomic_read(&zwplug->ref) > 2) 562 return false; 563 564 /* We can remove zone write plugs for zones that are empty or full. */ 565 return !zwplug->wp_offset || disk_zone_wplug_is_full(disk, zwplug); 566 } 567 568 static void disk_remove_zone_wplug(struct gendisk *disk, 569 struct blk_zone_wplug *zwplug) 570 { 571 unsigned long flags; 572 573 /* If the zone write plug was already removed, we have nothing to do. */ 574 if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) 575 return; 576 577 /* 578 * Mark the zone write plug as unhashed and drop the extra reference we 579 * took when the plug was inserted in the hash table. 580 */ 581 zwplug->flags |= BLK_ZONE_WPLUG_UNHASHED; 582 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 583 hlist_del_init_rcu(&zwplug->node); 584 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 585 disk_put_zone_wplug(zwplug); 586 } 587 588 static void blk_zone_wplug_bio_work(struct work_struct *work); 589 590 /* 591 * Get a reference on the write plug for the zone containing @sector. 592 * If the plug does not exist, it is allocated and hashed. 593 * Return a pointer to the zone write plug with the plug spinlock held. 594 */ 595 static struct blk_zone_wplug *disk_get_and_lock_zone_wplug(struct gendisk *disk, 596 sector_t sector, gfp_t gfp_mask, 597 unsigned long *flags) 598 { 599 unsigned int zno = disk_zone_no(disk, sector); 600 struct blk_zone_wplug *zwplug; 601 602 again: 603 zwplug = disk_get_zone_wplug(disk, sector); 604 if (zwplug) { 605 /* 606 * Check that a BIO completion or a zone reset or finish 607 * operation has not already removed the zone write plug from 608 * the hash table and dropped its reference count. In such case, 609 * we need to get a new plug so start over from the beginning. 610 */ 611 spin_lock_irqsave(&zwplug->lock, *flags); 612 if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) { 613 spin_unlock_irqrestore(&zwplug->lock, *flags); 614 disk_put_zone_wplug(zwplug); 615 goto again; 616 } 617 return zwplug; 618 } 619 620 /* 621 * Allocate and initialize a zone write plug with an extra reference 622 * so that it is not freed when the zone write plug becomes idle without 623 * the zone being full. 624 */ 625 zwplug = mempool_alloc(disk->zone_wplugs_pool, gfp_mask); 626 if (!zwplug) 627 return NULL; 628 629 INIT_HLIST_NODE(&zwplug->node); 630 INIT_LIST_HEAD(&zwplug->link); 631 atomic_set(&zwplug->ref, 2); 632 spin_lock_init(&zwplug->lock); 633 zwplug->flags = 0; 634 zwplug->zone_no = zno; 635 zwplug->wp_offset = sector & (disk->queue->limits.chunk_sectors - 1); 636 bio_list_init(&zwplug->bio_list); 637 INIT_WORK(&zwplug->bio_work, blk_zone_wplug_bio_work); 638 zwplug->disk = disk; 639 640 spin_lock_irqsave(&zwplug->lock, *flags); 641 642 /* 643 * Insert the new zone write plug in the hash table. This can fail only 644 * if another context already inserted a plug. Retry from the beginning 645 * in such case. 646 */ 647 if (!disk_insert_zone_wplug(disk, zwplug)) { 648 spin_unlock_irqrestore(&zwplug->lock, *flags); 649 mempool_free(zwplug, disk->zone_wplugs_pool); 650 goto again; 651 } 652 653 return zwplug; 654 } 655 656 static inline void blk_zone_wplug_bio_io_error(struct blk_zone_wplug *zwplug, 657 struct bio *bio) 658 { 659 struct request_queue *q = zwplug->disk->queue; 660 661 bio_clear_flag(bio, BIO_ZONE_WRITE_PLUGGING); 662 bio_io_error(bio); 663 disk_put_zone_wplug(zwplug); 664 blk_queue_exit(q); 665 } 666 667 /* 668 * Abort (fail) all plugged BIOs of a zone write plug. 669 */ 670 static void disk_zone_wplug_abort(struct blk_zone_wplug *zwplug) 671 { 672 struct bio *bio; 673 674 while ((bio = bio_list_pop(&zwplug->bio_list))) 675 blk_zone_wplug_bio_io_error(zwplug, bio); 676 } 677 678 /* 679 * Abort (fail) all plugged BIOs of a zone write plug that are not aligned 680 * with the assumed write pointer location of the zone when the BIO will 681 * be unplugged. 682 */ 683 static void disk_zone_wplug_abort_unaligned(struct gendisk *disk, 684 struct blk_zone_wplug *zwplug) 685 { 686 unsigned int wp_offset = zwplug->wp_offset; 687 struct bio_list bl = BIO_EMPTY_LIST; 688 struct bio *bio; 689 690 while ((bio = bio_list_pop(&zwplug->bio_list))) { 691 if (disk_zone_is_full(disk, zwplug->zone_no, wp_offset) || 692 (bio_op(bio) != REQ_OP_ZONE_APPEND && 693 bio_offset_from_zone_start(bio) != wp_offset)) { 694 blk_zone_wplug_bio_io_error(zwplug, bio); 695 continue; 696 } 697 698 wp_offset += bio_sectors(bio); 699 bio_list_add(&bl, bio); 700 } 701 702 bio_list_merge(&zwplug->bio_list, &bl); 703 } 704 705 static inline void disk_zone_wplug_set_error(struct gendisk *disk, 706 struct blk_zone_wplug *zwplug) 707 { 708 unsigned long flags; 709 710 if (zwplug->flags & BLK_ZONE_WPLUG_ERROR) 711 return; 712 713 /* 714 * At this point, we already have a reference on the zone write plug. 715 * However, since we are going to add the plug to the disk zone write 716 * plugs work list, increase its reference count. This reference will 717 * be dropped in disk_zone_wplugs_work() once the error state is 718 * handled, or in disk_zone_wplug_clear_error() if the zone is reset or 719 * finished. 720 */ 721 zwplug->flags |= BLK_ZONE_WPLUG_ERROR; 722 atomic_inc(&zwplug->ref); 723 724 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 725 list_add_tail(&zwplug->link, &disk->zone_wplugs_err_list); 726 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 727 } 728 729 static inline void disk_zone_wplug_clear_error(struct gendisk *disk, 730 struct blk_zone_wplug *zwplug) 731 { 732 unsigned long flags; 733 734 if (!(zwplug->flags & BLK_ZONE_WPLUG_ERROR)) 735 return; 736 737 /* 738 * We are racing with the error handling work which drops the reference 739 * on the zone write plug after handling the error state. So remove the 740 * plug from the error list and drop its reference count only if the 741 * error handling has not yet started, that is, if the zone write plug 742 * is still listed. 743 */ 744 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 745 if (!list_empty(&zwplug->link)) { 746 list_del_init(&zwplug->link); 747 zwplug->flags &= ~BLK_ZONE_WPLUG_ERROR; 748 disk_put_zone_wplug(zwplug); 749 } 750 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 751 } 752 753 /* 754 * Set a zone write plug write pointer offset to either 0 (zone reset case) 755 * or to the zone size (zone finish case). This aborts all plugged BIOs, which 756 * is fine to do as doing a zone reset or zone finish while writes are in-flight 757 * is a mistake from the user which will most likely cause all plugged BIOs to 758 * fail anyway. 759 */ 760 static void disk_zone_wplug_set_wp_offset(struct gendisk *disk, 761 struct blk_zone_wplug *zwplug, 762 unsigned int wp_offset) 763 { 764 unsigned long flags; 765 766 spin_lock_irqsave(&zwplug->lock, flags); 767 768 /* 769 * Make sure that a BIO completion or another zone reset or finish 770 * operation has not already removed the plug from the hash table. 771 */ 772 if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) { 773 spin_unlock_irqrestore(&zwplug->lock, flags); 774 return; 775 } 776 777 /* Update the zone write pointer and abort all plugged BIOs. */ 778 zwplug->wp_offset = wp_offset; 779 disk_zone_wplug_abort(zwplug); 780 781 /* 782 * Updating the write pointer offset puts back the zone 783 * in a good state. So clear the error flag and decrement the 784 * error count if we were in error state. 785 */ 786 disk_zone_wplug_clear_error(disk, zwplug); 787 788 /* 789 * The zone write plug now has no BIO plugged: remove it from the 790 * hash table so that it cannot be seen. The plug will be freed 791 * when the last reference is dropped. 792 */ 793 if (disk_should_remove_zone_wplug(disk, zwplug)) 794 disk_remove_zone_wplug(disk, zwplug); 795 796 spin_unlock_irqrestore(&zwplug->lock, flags); 797 } 798 799 static bool blk_zone_wplug_handle_reset_or_finish(struct bio *bio, 800 unsigned int wp_offset) 801 { 802 struct gendisk *disk = bio->bi_bdev->bd_disk; 803 sector_t sector = bio->bi_iter.bi_sector; 804 struct blk_zone_wplug *zwplug; 805 806 /* Conventional zones cannot be reset nor finished. */ 807 if (disk_zone_is_conv(disk, sector)) { 808 bio_io_error(bio); 809 return true; 810 } 811 812 /* 813 * If we have a zone write plug, set its write pointer offset to 0 814 * (reset case) or to the zone size (finish case). This will abort all 815 * BIOs plugged for the target zone. It is fine as resetting or 816 * finishing zones while writes are still in-flight will result in the 817 * writes failing anyway. 818 */ 819 zwplug = disk_get_zone_wplug(disk, sector); 820 if (zwplug) { 821 disk_zone_wplug_set_wp_offset(disk, zwplug, wp_offset); 822 disk_put_zone_wplug(zwplug); 823 } 824 825 return false; 826 } 827 828 static bool blk_zone_wplug_handle_reset_all(struct bio *bio) 829 { 830 struct gendisk *disk = bio->bi_bdev->bd_disk; 831 struct blk_zone_wplug *zwplug; 832 sector_t sector; 833 834 /* 835 * Set the write pointer offset of all zone write plugs to 0. This will 836 * abort all plugged BIOs. It is fine as resetting zones while writes 837 * are still in-flight will result in the writes failing anyway. 838 */ 839 for (sector = 0; sector < get_capacity(disk); 840 sector += disk->queue->limits.chunk_sectors) { 841 zwplug = disk_get_zone_wplug(disk, sector); 842 if (zwplug) { 843 disk_zone_wplug_set_wp_offset(disk, zwplug, 0); 844 disk_put_zone_wplug(zwplug); 845 } 846 } 847 848 return false; 849 } 850 851 static inline void blk_zone_wplug_add_bio(struct blk_zone_wplug *zwplug, 852 struct bio *bio, unsigned int nr_segs) 853 { 854 /* 855 * Grab an extra reference on the BIO request queue usage counter. 856 * This reference will be reused to submit a request for the BIO for 857 * blk-mq devices and dropped when the BIO is failed and after 858 * it is issued in the case of BIO-based devices. 859 */ 860 percpu_ref_get(&bio->bi_bdev->bd_disk->queue->q_usage_counter); 861 862 /* 863 * The BIO is being plugged and thus will have to wait for the on-going 864 * write and for all other writes already plugged. So polling makes 865 * no sense. 866 */ 867 bio_clear_polled(bio); 868 869 /* 870 * Reuse the poll cookie field to store the number of segments when 871 * split to the hardware limits. 872 */ 873 bio->__bi_nr_segments = nr_segs; 874 875 /* 876 * We always receive BIOs after they are split and ready to be issued. 877 * The block layer passes the parts of a split BIO in order, and the 878 * user must also issue write sequentially. So simply add the new BIO 879 * at the tail of the list to preserve the sequential write order. 880 */ 881 bio_list_add(&zwplug->bio_list, bio); 882 } 883 884 /* 885 * Called from bio_attempt_back_merge() when a BIO was merged with a request. 886 */ 887 void blk_zone_write_plug_bio_merged(struct bio *bio) 888 { 889 struct blk_zone_wplug *zwplug; 890 unsigned long flags; 891 892 /* 893 * If the BIO was already plugged, then we were called through 894 * blk_zone_write_plug_init_request() -> blk_attempt_bio_merge(). 895 * For this case, we already hold a reference on the zone write plug for 896 * the BIO and blk_zone_write_plug_init_request() will handle the 897 * zone write pointer offset update. 898 */ 899 if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING)) 900 return; 901 902 bio_set_flag(bio, BIO_ZONE_WRITE_PLUGGING); 903 904 /* 905 * Get a reference on the zone write plug of the target zone and advance 906 * the zone write pointer offset. Given that this is a merge, we already 907 * have at least one request and one BIO referencing the zone write 908 * plug. So this should not fail. 909 */ 910 zwplug = disk_get_zone_wplug(bio->bi_bdev->bd_disk, 911 bio->bi_iter.bi_sector); 912 if (WARN_ON_ONCE(!zwplug)) 913 return; 914 915 spin_lock_irqsave(&zwplug->lock, flags); 916 zwplug->wp_offset += bio_sectors(bio); 917 spin_unlock_irqrestore(&zwplug->lock, flags); 918 } 919 920 /* 921 * Attempt to merge plugged BIOs with a newly prepared request for a BIO that 922 * already went through zone write plugging (either a new BIO or one that was 923 * unplugged). 924 */ 925 void blk_zone_write_plug_init_request(struct request *req) 926 { 927 sector_t req_back_sector = blk_rq_pos(req) + blk_rq_sectors(req); 928 struct request_queue *q = req->q; 929 struct gendisk *disk = q->disk; 930 struct blk_zone_wplug *zwplug = 931 disk_get_zone_wplug(disk, blk_rq_pos(req)); 932 unsigned long flags; 933 struct bio *bio; 934 935 if (WARN_ON_ONCE(!zwplug)) 936 return; 937 938 /* 939 * Indicate that completion of this request needs to be handled with 940 * blk_zone_write_plug_finish_request(), which will drop the reference 941 * on the zone write plug we took above on entry to this function. 942 */ 943 req->rq_flags |= RQF_ZONE_WRITE_PLUGGING; 944 945 if (blk_queue_nomerges(q)) 946 return; 947 948 /* 949 * Walk through the list of plugged BIOs to check if they can be merged 950 * into the back of the request. 951 */ 952 spin_lock_irqsave(&zwplug->lock, flags); 953 while (!disk_zone_wplug_is_full(disk, zwplug)) { 954 bio = bio_list_peek(&zwplug->bio_list); 955 if (!bio) 956 break; 957 958 if (bio->bi_iter.bi_sector != req_back_sector || 959 !blk_rq_merge_ok(req, bio)) 960 break; 961 962 WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE_ZEROES && 963 !bio->__bi_nr_segments); 964 965 bio_list_pop(&zwplug->bio_list); 966 if (bio_attempt_back_merge(req, bio, bio->__bi_nr_segments) != 967 BIO_MERGE_OK) { 968 bio_list_add_head(&zwplug->bio_list, bio); 969 break; 970 } 971 972 /* 973 * Drop the extra reference on the queue usage we got when 974 * plugging the BIO and advance the write pointer offset. 975 */ 976 blk_queue_exit(q); 977 zwplug->wp_offset += bio_sectors(bio); 978 979 req_back_sector += bio_sectors(bio); 980 } 981 spin_unlock_irqrestore(&zwplug->lock, flags); 982 } 983 984 /* 985 * Check and prepare a BIO for submission by incrementing the write pointer 986 * offset of its zone write plug and changing zone append operations into 987 * regular write when zone append emulation is needed. 988 */ 989 static bool blk_zone_wplug_prepare_bio(struct blk_zone_wplug *zwplug, 990 struct bio *bio) 991 { 992 struct gendisk *disk = bio->bi_bdev->bd_disk; 993 994 /* 995 * Check that the user is not attempting to write to a full zone. 996 * We know such BIO will fail, and that would potentially overflow our 997 * write pointer offset beyond the end of the zone. 998 */ 999 if (disk_zone_wplug_is_full(disk, zwplug)) 1000 goto err; 1001 1002 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1003 /* 1004 * Use a regular write starting at the current write pointer. 1005 * Similarly to native zone append operations, do not allow 1006 * merging. 1007 */ 1008 bio->bi_opf &= ~REQ_OP_MASK; 1009 bio->bi_opf |= REQ_OP_WRITE | REQ_NOMERGE; 1010 bio->bi_iter.bi_sector += zwplug->wp_offset; 1011 1012 /* 1013 * Remember that this BIO is in fact a zone append operation 1014 * so that we can restore its operation code on completion. 1015 */ 1016 bio_set_flag(bio, BIO_EMULATES_ZONE_APPEND); 1017 } else { 1018 /* 1019 * Check for non-sequential writes early because we avoid a 1020 * whole lot of error handling trouble if we don't send it off 1021 * to the driver. 1022 */ 1023 if (bio_offset_from_zone_start(bio) != zwplug->wp_offset) 1024 goto err; 1025 } 1026 1027 /* Advance the zone write pointer offset. */ 1028 zwplug->wp_offset += bio_sectors(bio); 1029 1030 return true; 1031 1032 err: 1033 /* We detected an invalid write BIO: schedule error recovery. */ 1034 disk_zone_wplug_set_error(disk, zwplug); 1035 kblockd_schedule_work(&disk->zone_wplugs_work); 1036 return false; 1037 } 1038 1039 static bool blk_zone_wplug_handle_write(struct bio *bio, unsigned int nr_segs) 1040 { 1041 struct gendisk *disk = bio->bi_bdev->bd_disk; 1042 sector_t sector = bio->bi_iter.bi_sector; 1043 struct blk_zone_wplug *zwplug; 1044 gfp_t gfp_mask = GFP_NOIO; 1045 unsigned long flags; 1046 1047 /* 1048 * BIOs must be fully contained within a zone so that we use the correct 1049 * zone write plug for the entire BIO. For blk-mq devices, the block 1050 * layer should already have done any splitting required to ensure this 1051 * and this BIO should thus not be straddling zone boundaries. For 1052 * BIO-based devices, it is the responsibility of the driver to split 1053 * the bio before submitting it. 1054 */ 1055 if (WARN_ON_ONCE(bio_straddles_zones(bio))) { 1056 bio_io_error(bio); 1057 return true; 1058 } 1059 1060 /* Conventional zones do not need write plugging. */ 1061 if (disk_zone_is_conv(disk, sector)) { 1062 /* Zone append to conventional zones is not allowed. */ 1063 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1064 bio_io_error(bio); 1065 return true; 1066 } 1067 return false; 1068 } 1069 1070 if (bio->bi_opf & REQ_NOWAIT) 1071 gfp_mask = GFP_NOWAIT; 1072 1073 zwplug = disk_get_and_lock_zone_wplug(disk, sector, gfp_mask, &flags); 1074 if (!zwplug) { 1075 bio_io_error(bio); 1076 return true; 1077 } 1078 1079 /* Indicate that this BIO is being handled using zone write plugging. */ 1080 bio_set_flag(bio, BIO_ZONE_WRITE_PLUGGING); 1081 1082 /* 1083 * If the zone is already plugged or has a pending error, add the BIO 1084 * to the plug BIO list. Otherwise, plug and let the BIO execute. 1085 */ 1086 if (zwplug->flags & BLK_ZONE_WPLUG_BUSY) 1087 goto plug; 1088 1089 /* 1090 * If an error is detected when preparing the BIO, add it to the BIO 1091 * list so that error recovery can deal with it. 1092 */ 1093 if (!blk_zone_wplug_prepare_bio(zwplug, bio)) 1094 goto plug; 1095 1096 zwplug->flags |= BLK_ZONE_WPLUG_PLUGGED; 1097 1098 spin_unlock_irqrestore(&zwplug->lock, flags); 1099 1100 return false; 1101 1102 plug: 1103 zwplug->flags |= BLK_ZONE_WPLUG_PLUGGED; 1104 blk_zone_wplug_add_bio(zwplug, bio, nr_segs); 1105 1106 spin_unlock_irqrestore(&zwplug->lock, flags); 1107 1108 return true; 1109 } 1110 1111 /** 1112 * blk_zone_plug_bio - Handle a zone write BIO with zone write plugging 1113 * @bio: The BIO being submitted 1114 * @nr_segs: The number of physical segments of @bio 1115 * 1116 * Handle write, write zeroes and zone append operations requiring emulation 1117 * using zone write plugging. 1118 * 1119 * Return true whenever @bio execution needs to be delayed through the zone 1120 * write plug. Otherwise, return false to let the submission path process 1121 * @bio normally. 1122 */ 1123 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs) 1124 { 1125 struct block_device *bdev = bio->bi_bdev; 1126 1127 if (!bdev->bd_disk->zone_wplugs_hash) 1128 return false; 1129 1130 /* 1131 * If the BIO already has the plugging flag set, then it was already 1132 * handled through this path and this is a submission from the zone 1133 * plug bio submit work. 1134 */ 1135 if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING)) 1136 return false; 1137 1138 /* 1139 * We do not need to do anything special for empty flush BIOs, e.g 1140 * BIOs such as issued by blkdev_issue_flush(). The is because it is 1141 * the responsibility of the user to first wait for the completion of 1142 * write operations for flush to have any effect on the persistence of 1143 * the written data. 1144 */ 1145 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 1146 return false; 1147 1148 /* 1149 * Regular writes and write zeroes need to be handled through the target 1150 * zone write plug. This includes writes with REQ_FUA | REQ_PREFLUSH 1151 * which may need to go through the flush machinery depending on the 1152 * target device capabilities. Plugging such writes is fine as the flush 1153 * machinery operates at the request level, below the plug, and 1154 * completion of the flush sequence will go through the regular BIO 1155 * completion, which will handle zone write plugging. 1156 * Zone append operations for devices that requested emulation must 1157 * also be plugged so that these BIOs can be changed into regular 1158 * write BIOs. 1159 * Zone reset, reset all and finish commands need special treatment 1160 * to correctly track the write pointer offset of zones. These commands 1161 * are not plugged as we do not need serialization with write 1162 * operations. It is the responsibility of the user to not issue reset 1163 * and finish commands when write operations are in flight. 1164 */ 1165 switch (bio_op(bio)) { 1166 case REQ_OP_ZONE_APPEND: 1167 if (!bdev_emulates_zone_append(bdev)) 1168 return false; 1169 fallthrough; 1170 case REQ_OP_WRITE: 1171 case REQ_OP_WRITE_ZEROES: 1172 return blk_zone_wplug_handle_write(bio, nr_segs); 1173 case REQ_OP_ZONE_RESET: 1174 return blk_zone_wplug_handle_reset_or_finish(bio, 0); 1175 case REQ_OP_ZONE_FINISH: 1176 return blk_zone_wplug_handle_reset_or_finish(bio, 1177 bdev_zone_sectors(bdev)); 1178 case REQ_OP_ZONE_RESET_ALL: 1179 return blk_zone_wplug_handle_reset_all(bio); 1180 default: 1181 return false; 1182 } 1183 1184 return false; 1185 } 1186 EXPORT_SYMBOL_GPL(blk_zone_plug_bio); 1187 1188 static void disk_zone_wplug_schedule_bio_work(struct gendisk *disk, 1189 struct blk_zone_wplug *zwplug) 1190 { 1191 /* 1192 * Take a reference on the zone write plug and schedule the submission 1193 * of the next plugged BIO. blk_zone_wplug_bio_work() will release the 1194 * reference we take here. 1195 */ 1196 WARN_ON_ONCE(!(zwplug->flags & BLK_ZONE_WPLUG_PLUGGED)); 1197 atomic_inc(&zwplug->ref); 1198 queue_work(disk->zone_wplugs_wq, &zwplug->bio_work); 1199 } 1200 1201 static void disk_zone_wplug_unplug_bio(struct gendisk *disk, 1202 struct blk_zone_wplug *zwplug) 1203 { 1204 unsigned long flags; 1205 1206 spin_lock_irqsave(&zwplug->lock, flags); 1207 1208 /* 1209 * If we had an error, schedule error recovery. The recovery work 1210 * will restart submission of plugged BIOs. 1211 */ 1212 if (zwplug->flags & BLK_ZONE_WPLUG_ERROR) { 1213 spin_unlock_irqrestore(&zwplug->lock, flags); 1214 kblockd_schedule_work(&disk->zone_wplugs_work); 1215 return; 1216 } 1217 1218 /* Schedule submission of the next plugged BIO if we have one. */ 1219 if (!bio_list_empty(&zwplug->bio_list)) { 1220 disk_zone_wplug_schedule_bio_work(disk, zwplug); 1221 spin_unlock_irqrestore(&zwplug->lock, flags); 1222 return; 1223 } 1224 1225 zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED; 1226 1227 /* 1228 * If the zone is full (it was fully written or finished, or empty 1229 * (it was reset), remove its zone write plug from the hash table. 1230 */ 1231 if (disk_should_remove_zone_wplug(disk, zwplug)) 1232 disk_remove_zone_wplug(disk, zwplug); 1233 1234 spin_unlock_irqrestore(&zwplug->lock, flags); 1235 } 1236 1237 void blk_zone_write_plug_bio_endio(struct bio *bio) 1238 { 1239 struct gendisk *disk = bio->bi_bdev->bd_disk; 1240 struct blk_zone_wplug *zwplug = 1241 disk_get_zone_wplug(disk, bio->bi_iter.bi_sector); 1242 unsigned long flags; 1243 1244 if (WARN_ON_ONCE(!zwplug)) 1245 return; 1246 1247 /* Make sure we do not see this BIO again by clearing the plug flag. */ 1248 bio_clear_flag(bio, BIO_ZONE_WRITE_PLUGGING); 1249 1250 /* 1251 * If this is a regular write emulating a zone append operation, 1252 * restore the original operation code. 1253 */ 1254 if (bio_flagged(bio, BIO_EMULATES_ZONE_APPEND)) { 1255 bio->bi_opf &= ~REQ_OP_MASK; 1256 bio->bi_opf |= REQ_OP_ZONE_APPEND; 1257 } 1258 1259 /* 1260 * If the BIO failed, mark the plug as having an error to trigger 1261 * recovery. 1262 */ 1263 if (bio->bi_status != BLK_STS_OK) { 1264 spin_lock_irqsave(&zwplug->lock, flags); 1265 disk_zone_wplug_set_error(disk, zwplug); 1266 spin_unlock_irqrestore(&zwplug->lock, flags); 1267 } 1268 1269 /* Drop the reference we took when the BIO was issued. */ 1270 disk_put_zone_wplug(zwplug); 1271 1272 /* 1273 * For BIO-based devices, blk_zone_write_plug_finish_request() 1274 * is not called. So we need to schedule execution of the next 1275 * plugged BIO here. 1276 */ 1277 if (bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) 1278 disk_zone_wplug_unplug_bio(disk, zwplug); 1279 1280 /* Drop the reference we took when entering this function. */ 1281 disk_put_zone_wplug(zwplug); 1282 } 1283 1284 void blk_zone_write_plug_finish_request(struct request *req) 1285 { 1286 struct gendisk *disk = req->q->disk; 1287 struct blk_zone_wplug *zwplug; 1288 1289 zwplug = disk_get_zone_wplug(disk, req->__sector); 1290 if (WARN_ON_ONCE(!zwplug)) 1291 return; 1292 1293 req->rq_flags &= ~RQF_ZONE_WRITE_PLUGGING; 1294 1295 /* 1296 * Drop the reference we took when the request was initialized in 1297 * blk_zone_write_plug_init_request(). 1298 */ 1299 disk_put_zone_wplug(zwplug); 1300 1301 disk_zone_wplug_unplug_bio(disk, zwplug); 1302 1303 /* Drop the reference we took when entering this function. */ 1304 disk_put_zone_wplug(zwplug); 1305 } 1306 1307 static void blk_zone_wplug_bio_work(struct work_struct *work) 1308 { 1309 struct blk_zone_wplug *zwplug = 1310 container_of(work, struct blk_zone_wplug, bio_work); 1311 struct block_device *bdev; 1312 unsigned long flags; 1313 struct bio *bio; 1314 1315 /* 1316 * Submit the next plugged BIO. If we do not have any, clear 1317 * the plugged flag. 1318 */ 1319 spin_lock_irqsave(&zwplug->lock, flags); 1320 1321 bio = bio_list_pop(&zwplug->bio_list); 1322 if (!bio) { 1323 zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED; 1324 spin_unlock_irqrestore(&zwplug->lock, flags); 1325 goto put_zwplug; 1326 } 1327 1328 if (!blk_zone_wplug_prepare_bio(zwplug, bio)) { 1329 /* Error recovery will decide what to do with the BIO. */ 1330 bio_list_add_head(&zwplug->bio_list, bio); 1331 spin_unlock_irqrestore(&zwplug->lock, flags); 1332 goto put_zwplug; 1333 } 1334 1335 spin_unlock_irqrestore(&zwplug->lock, flags); 1336 1337 bdev = bio->bi_bdev; 1338 submit_bio_noacct_nocheck(bio); 1339 1340 /* 1341 * blk-mq devices will reuse the extra reference on the request queue 1342 * usage counter we took when the BIO was plugged, but the submission 1343 * path for BIO-based devices will not do that. So drop this extra 1344 * reference here. 1345 */ 1346 if (bdev_test_flag(bdev, BD_HAS_SUBMIT_BIO)) 1347 blk_queue_exit(bdev->bd_disk->queue); 1348 1349 put_zwplug: 1350 /* Drop the reference we took in disk_zone_wplug_schedule_bio_work(). */ 1351 disk_put_zone_wplug(zwplug); 1352 } 1353 1354 static unsigned int blk_zone_wp_offset(struct blk_zone *zone) 1355 { 1356 switch (zone->cond) { 1357 case BLK_ZONE_COND_IMP_OPEN: 1358 case BLK_ZONE_COND_EXP_OPEN: 1359 case BLK_ZONE_COND_CLOSED: 1360 return zone->wp - zone->start; 1361 case BLK_ZONE_COND_FULL: 1362 return zone->len; 1363 case BLK_ZONE_COND_EMPTY: 1364 return 0; 1365 case BLK_ZONE_COND_NOT_WP: 1366 case BLK_ZONE_COND_OFFLINE: 1367 case BLK_ZONE_COND_READONLY: 1368 default: 1369 /* 1370 * Conventional, offline and read-only zones do not have a valid 1371 * write pointer. 1372 */ 1373 return UINT_MAX; 1374 } 1375 } 1376 1377 static int blk_zone_wplug_report_zone_cb(struct blk_zone *zone, 1378 unsigned int idx, void *data) 1379 { 1380 struct blk_zone *zonep = data; 1381 1382 *zonep = *zone; 1383 return 0; 1384 } 1385 1386 static void disk_zone_wplug_handle_error(struct gendisk *disk, 1387 struct blk_zone_wplug *zwplug) 1388 { 1389 sector_t zone_start_sector = 1390 bdev_zone_sectors(disk->part0) * zwplug->zone_no; 1391 unsigned int noio_flag; 1392 struct blk_zone zone; 1393 unsigned long flags; 1394 int ret; 1395 1396 /* Get the current zone information from the device. */ 1397 noio_flag = memalloc_noio_save(); 1398 ret = disk->fops->report_zones(disk, zone_start_sector, 1, 1399 blk_zone_wplug_report_zone_cb, &zone); 1400 memalloc_noio_restore(noio_flag); 1401 1402 spin_lock_irqsave(&zwplug->lock, flags); 1403 1404 /* 1405 * A zone reset or finish may have cleared the error already. In such 1406 * case, do nothing as the report zones may have seen the "old" write 1407 * pointer value before the reset/finish operation completed. 1408 */ 1409 if (!(zwplug->flags & BLK_ZONE_WPLUG_ERROR)) 1410 goto unlock; 1411 1412 zwplug->flags &= ~BLK_ZONE_WPLUG_ERROR; 1413 1414 if (ret != 1) { 1415 /* 1416 * We failed to get the zone information, meaning that something 1417 * is likely really wrong with the device. Abort all remaining 1418 * plugged BIOs as otherwise we could endup waiting forever on 1419 * plugged BIOs to complete if there is a queue freeze on-going. 1420 */ 1421 disk_zone_wplug_abort(zwplug); 1422 goto unplug; 1423 } 1424 1425 /* Update the zone write pointer offset. */ 1426 zwplug->wp_offset = blk_zone_wp_offset(&zone); 1427 disk_zone_wplug_abort_unaligned(disk, zwplug); 1428 1429 /* Restart BIO submission if we still have any BIO left. */ 1430 if (!bio_list_empty(&zwplug->bio_list)) { 1431 disk_zone_wplug_schedule_bio_work(disk, zwplug); 1432 goto unlock; 1433 } 1434 1435 unplug: 1436 zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED; 1437 if (disk_should_remove_zone_wplug(disk, zwplug)) 1438 disk_remove_zone_wplug(disk, zwplug); 1439 1440 unlock: 1441 spin_unlock_irqrestore(&zwplug->lock, flags); 1442 } 1443 1444 static void disk_zone_wplugs_work(struct work_struct *work) 1445 { 1446 struct gendisk *disk = 1447 container_of(work, struct gendisk, zone_wplugs_work); 1448 struct blk_zone_wplug *zwplug; 1449 unsigned long flags; 1450 1451 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 1452 1453 while (!list_empty(&disk->zone_wplugs_err_list)) { 1454 zwplug = list_first_entry(&disk->zone_wplugs_err_list, 1455 struct blk_zone_wplug, link); 1456 list_del_init(&zwplug->link); 1457 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 1458 1459 disk_zone_wplug_handle_error(disk, zwplug); 1460 disk_put_zone_wplug(zwplug); 1461 1462 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 1463 } 1464 1465 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 1466 } 1467 1468 static inline unsigned int disk_zone_wplugs_hash_size(struct gendisk *disk) 1469 { 1470 return 1U << disk->zone_wplugs_hash_bits; 1471 } 1472 1473 void disk_init_zone_resources(struct gendisk *disk) 1474 { 1475 spin_lock_init(&disk->zone_wplugs_lock); 1476 INIT_LIST_HEAD(&disk->zone_wplugs_err_list); 1477 INIT_WORK(&disk->zone_wplugs_work, disk_zone_wplugs_work); 1478 } 1479 1480 /* 1481 * For the size of a disk zone write plug hash table, use the size of the 1482 * zone write plug mempool, which is the maximum of the disk open zones and 1483 * active zones limits. But do not exceed 4KB (512 hlist head entries), that is, 1484 * 9 bits. For a disk that has no limits, mempool size defaults to 128. 1485 */ 1486 #define BLK_ZONE_WPLUG_MAX_HASH_BITS 9 1487 #define BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE 128 1488 1489 static int disk_alloc_zone_resources(struct gendisk *disk, 1490 unsigned int pool_size) 1491 { 1492 unsigned int i; 1493 1494 disk->zone_wplugs_hash_bits = 1495 min(ilog2(pool_size) + 1, BLK_ZONE_WPLUG_MAX_HASH_BITS); 1496 1497 disk->zone_wplugs_hash = 1498 kcalloc(disk_zone_wplugs_hash_size(disk), 1499 sizeof(struct hlist_head), GFP_KERNEL); 1500 if (!disk->zone_wplugs_hash) 1501 return -ENOMEM; 1502 1503 for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) 1504 INIT_HLIST_HEAD(&disk->zone_wplugs_hash[i]); 1505 1506 disk->zone_wplugs_pool = mempool_create_kmalloc_pool(pool_size, 1507 sizeof(struct blk_zone_wplug)); 1508 if (!disk->zone_wplugs_pool) 1509 goto free_hash; 1510 1511 disk->zone_wplugs_wq = 1512 alloc_workqueue("%s_zwplugs", WQ_MEM_RECLAIM | WQ_HIGHPRI, 1513 pool_size, disk->disk_name); 1514 if (!disk->zone_wplugs_wq) 1515 goto destroy_pool; 1516 1517 return 0; 1518 1519 destroy_pool: 1520 mempool_destroy(disk->zone_wplugs_pool); 1521 disk->zone_wplugs_pool = NULL; 1522 free_hash: 1523 kfree(disk->zone_wplugs_hash); 1524 disk->zone_wplugs_hash = NULL; 1525 disk->zone_wplugs_hash_bits = 0; 1526 return -ENOMEM; 1527 } 1528 1529 static void disk_destroy_zone_wplugs_hash_table(struct gendisk *disk) 1530 { 1531 struct blk_zone_wplug *zwplug; 1532 unsigned int i; 1533 1534 if (!disk->zone_wplugs_hash) 1535 return; 1536 1537 /* Free all the zone write plugs we have. */ 1538 for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) { 1539 while (!hlist_empty(&disk->zone_wplugs_hash[i])) { 1540 zwplug = hlist_entry(disk->zone_wplugs_hash[i].first, 1541 struct blk_zone_wplug, node); 1542 atomic_inc(&zwplug->ref); 1543 disk_remove_zone_wplug(disk, zwplug); 1544 disk_put_zone_wplug(zwplug); 1545 } 1546 } 1547 1548 kfree(disk->zone_wplugs_hash); 1549 disk->zone_wplugs_hash = NULL; 1550 disk->zone_wplugs_hash_bits = 0; 1551 } 1552 1553 void disk_free_zone_resources(struct gendisk *disk) 1554 { 1555 cancel_work_sync(&disk->zone_wplugs_work); 1556 1557 if (disk->zone_wplugs_wq) { 1558 destroy_workqueue(disk->zone_wplugs_wq); 1559 disk->zone_wplugs_wq = NULL; 1560 } 1561 1562 disk_destroy_zone_wplugs_hash_table(disk); 1563 1564 /* 1565 * Wait for the zone write plugs to be RCU-freed before 1566 * destorying the mempool. 1567 */ 1568 rcu_barrier(); 1569 1570 mempool_destroy(disk->zone_wplugs_pool); 1571 disk->zone_wplugs_pool = NULL; 1572 1573 kfree(disk->conv_zones_bitmap); 1574 disk->conv_zones_bitmap = NULL; 1575 disk->zone_capacity = 0; 1576 disk->last_zone_capacity = 0; 1577 disk->nr_zones = 0; 1578 } 1579 1580 static inline bool disk_need_zone_resources(struct gendisk *disk) 1581 { 1582 /* 1583 * All mq zoned devices need zone resources so that the block layer 1584 * can automatically handle write BIO plugging. BIO-based device drivers 1585 * (e.g. DM devices) are normally responsible for handling zone write 1586 * ordering and do not need zone resources, unless the driver requires 1587 * zone append emulation. 1588 */ 1589 return queue_is_mq(disk->queue) || 1590 queue_emulates_zone_append(disk->queue); 1591 } 1592 1593 static int disk_revalidate_zone_resources(struct gendisk *disk, 1594 unsigned int nr_zones) 1595 { 1596 struct queue_limits *lim = &disk->queue->limits; 1597 unsigned int pool_size; 1598 1599 if (!disk_need_zone_resources(disk)) 1600 return 0; 1601 1602 /* 1603 * If the device has no limit on the maximum number of open and active 1604 * zones, use BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE. 1605 */ 1606 pool_size = max(lim->max_open_zones, lim->max_active_zones); 1607 if (!pool_size) 1608 pool_size = min(BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE, nr_zones); 1609 1610 if (!disk->zone_wplugs_hash) 1611 return disk_alloc_zone_resources(disk, pool_size); 1612 1613 return 0; 1614 } 1615 1616 struct blk_revalidate_zone_args { 1617 struct gendisk *disk; 1618 unsigned long *conv_zones_bitmap; 1619 unsigned int nr_zones; 1620 unsigned int zone_capacity; 1621 unsigned int last_zone_capacity; 1622 sector_t sector; 1623 }; 1624 1625 /* 1626 * Update the disk zone resources information and device queue limits. 1627 * The disk queue is frozen when this is executed. 1628 */ 1629 static int disk_update_zone_resources(struct gendisk *disk, 1630 struct blk_revalidate_zone_args *args) 1631 { 1632 struct request_queue *q = disk->queue; 1633 unsigned int nr_seq_zones, nr_conv_zones = 0; 1634 unsigned int pool_size; 1635 struct queue_limits lim; 1636 1637 disk->nr_zones = args->nr_zones; 1638 disk->zone_capacity = args->zone_capacity; 1639 disk->last_zone_capacity = args->last_zone_capacity; 1640 swap(disk->conv_zones_bitmap, args->conv_zones_bitmap); 1641 if (disk->conv_zones_bitmap) 1642 nr_conv_zones = bitmap_weight(disk->conv_zones_bitmap, 1643 disk->nr_zones); 1644 if (nr_conv_zones >= disk->nr_zones) { 1645 pr_warn("%s: Invalid number of conventional zones %u / %u\n", 1646 disk->disk_name, nr_conv_zones, disk->nr_zones); 1647 return -ENODEV; 1648 } 1649 1650 lim = queue_limits_start_update(q); 1651 1652 /* 1653 * Some devices can advertize zone resource limits that are larger than 1654 * the number of sequential zones of the zoned block device, e.g. a 1655 * small ZNS namespace. For such case, assume that the zoned device has 1656 * no zone resource limits. 1657 */ 1658 nr_seq_zones = disk->nr_zones - nr_conv_zones; 1659 if (lim.max_open_zones >= nr_seq_zones) 1660 lim.max_open_zones = 0; 1661 if (lim.max_active_zones >= nr_seq_zones) 1662 lim.max_active_zones = 0; 1663 1664 if (!disk->zone_wplugs_pool) 1665 goto commit; 1666 1667 /* 1668 * If the device has no limit on the maximum number of open and active 1669 * zones, set its max open zone limit to the mempool size to indicate 1670 * to the user that there is a potential performance impact due to 1671 * dynamic zone write plug allocation when simultaneously writing to 1672 * more zones than the size of the mempool. 1673 */ 1674 pool_size = max(lim.max_open_zones, lim.max_active_zones); 1675 if (!pool_size) 1676 pool_size = min(BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE, nr_seq_zones); 1677 1678 mempool_resize(disk->zone_wplugs_pool, pool_size); 1679 1680 if (!lim.max_open_zones && !lim.max_active_zones) { 1681 if (pool_size < nr_seq_zones) 1682 lim.max_open_zones = pool_size; 1683 else 1684 lim.max_open_zones = 0; 1685 } 1686 1687 commit: 1688 return queue_limits_commit_update(q, &lim); 1689 } 1690 1691 static int blk_revalidate_conv_zone(struct blk_zone *zone, unsigned int idx, 1692 struct blk_revalidate_zone_args *args) 1693 { 1694 struct gendisk *disk = args->disk; 1695 struct request_queue *q = disk->queue; 1696 1697 if (zone->capacity != zone->len) { 1698 pr_warn("%s: Invalid conventional zone capacity\n", 1699 disk->disk_name); 1700 return -ENODEV; 1701 } 1702 1703 if (disk_zone_is_last(disk, zone)) 1704 args->last_zone_capacity = zone->capacity; 1705 1706 if (!disk_need_zone_resources(disk)) 1707 return 0; 1708 1709 if (!args->conv_zones_bitmap) { 1710 args->conv_zones_bitmap = 1711 blk_alloc_zone_bitmap(q->node, args->nr_zones); 1712 if (!args->conv_zones_bitmap) 1713 return -ENOMEM; 1714 } 1715 1716 set_bit(idx, args->conv_zones_bitmap); 1717 1718 return 0; 1719 } 1720 1721 static int blk_revalidate_seq_zone(struct blk_zone *zone, unsigned int idx, 1722 struct blk_revalidate_zone_args *args) 1723 { 1724 struct gendisk *disk = args->disk; 1725 struct blk_zone_wplug *zwplug; 1726 unsigned int wp_offset; 1727 unsigned long flags; 1728 1729 /* 1730 * Remember the capacity of the first sequential zone and check 1731 * if it is constant for all zones, ignoring the last zone as it can be 1732 * smaller. 1733 */ 1734 if (!args->zone_capacity) 1735 args->zone_capacity = zone->capacity; 1736 if (disk_zone_is_last(disk, zone)) { 1737 args->last_zone_capacity = zone->capacity; 1738 } else if (zone->capacity != args->zone_capacity) { 1739 pr_warn("%s: Invalid variable zone capacity\n", 1740 disk->disk_name); 1741 return -ENODEV; 1742 } 1743 1744 /* 1745 * We need to track the write pointer of all zones that are not 1746 * empty nor full. So make sure we have a zone write plug for 1747 * such zone if the device has a zone write plug hash table. 1748 */ 1749 if (!disk->zone_wplugs_hash) 1750 return 0; 1751 1752 wp_offset = blk_zone_wp_offset(zone); 1753 if (!wp_offset || wp_offset >= zone->capacity) 1754 return 0; 1755 1756 zwplug = disk_get_and_lock_zone_wplug(disk, zone->wp, GFP_NOIO, &flags); 1757 if (!zwplug) 1758 return -ENOMEM; 1759 spin_unlock_irqrestore(&zwplug->lock, flags); 1760 disk_put_zone_wplug(zwplug); 1761 1762 return 0; 1763 } 1764 1765 /* 1766 * Helper function to check the validity of zones of a zoned block device. 1767 */ 1768 static int blk_revalidate_zone_cb(struct blk_zone *zone, unsigned int idx, 1769 void *data) 1770 { 1771 struct blk_revalidate_zone_args *args = data; 1772 struct gendisk *disk = args->disk; 1773 sector_t zone_sectors = disk->queue->limits.chunk_sectors; 1774 int ret; 1775 1776 /* Check for bad zones and holes in the zone report */ 1777 if (zone->start != args->sector) { 1778 pr_warn("%s: Zone gap at sectors %llu..%llu\n", 1779 disk->disk_name, args->sector, zone->start); 1780 return -ENODEV; 1781 } 1782 1783 if (zone->start >= get_capacity(disk) || !zone->len) { 1784 pr_warn("%s: Invalid zone start %llu, length %llu\n", 1785 disk->disk_name, zone->start, zone->len); 1786 return -ENODEV; 1787 } 1788 1789 /* 1790 * All zones must have the same size, with the exception on an eventual 1791 * smaller last zone. 1792 */ 1793 if (!disk_zone_is_last(disk, zone)) { 1794 if (zone->len != zone_sectors) { 1795 pr_warn("%s: Invalid zoned device with non constant zone size\n", 1796 disk->disk_name); 1797 return -ENODEV; 1798 } 1799 } else if (zone->len > zone_sectors) { 1800 pr_warn("%s: Invalid zoned device with larger last zone size\n", 1801 disk->disk_name); 1802 return -ENODEV; 1803 } 1804 1805 if (!zone->capacity || zone->capacity > zone->len) { 1806 pr_warn("%s: Invalid zone capacity\n", 1807 disk->disk_name); 1808 return -ENODEV; 1809 } 1810 1811 /* Check zone type */ 1812 switch (zone->type) { 1813 case BLK_ZONE_TYPE_CONVENTIONAL: 1814 ret = blk_revalidate_conv_zone(zone, idx, args); 1815 break; 1816 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1817 ret = blk_revalidate_seq_zone(zone, idx, args); 1818 break; 1819 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1820 default: 1821 pr_warn("%s: Invalid zone type 0x%x at sectors %llu\n", 1822 disk->disk_name, (int)zone->type, zone->start); 1823 ret = -ENODEV; 1824 } 1825 1826 if (!ret) 1827 args->sector += zone->len; 1828 1829 return ret; 1830 } 1831 1832 /** 1833 * blk_revalidate_disk_zones - (re)allocate and initialize zone write plugs 1834 * @disk: Target disk 1835 * 1836 * Helper function for low-level device drivers to check, (re) allocate and 1837 * initialize resources used for managing zoned disks. This function should 1838 * normally be called by blk-mq based drivers when a zoned gendisk is probed 1839 * and when the zone configuration of the gendisk changes (e.g. after a format). 1840 * Before calling this function, the device driver must already have set the 1841 * device zone size (chunk_sector limit) and the max zone append limit. 1842 * BIO based drivers can also use this function as long as the device queue 1843 * can be safely frozen. 1844 */ 1845 int blk_revalidate_disk_zones(struct gendisk *disk) 1846 { 1847 struct request_queue *q = disk->queue; 1848 sector_t zone_sectors = q->limits.chunk_sectors; 1849 sector_t capacity = get_capacity(disk); 1850 struct blk_revalidate_zone_args args = { }; 1851 unsigned int noio_flag; 1852 int ret = -ENOMEM; 1853 1854 if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) 1855 return -EIO; 1856 1857 if (!capacity) 1858 return -ENODEV; 1859 1860 /* 1861 * Checks that the device driver indicated a valid zone size and that 1862 * the max zone append limit is set. 1863 */ 1864 if (!zone_sectors || !is_power_of_2(zone_sectors)) { 1865 pr_warn("%s: Invalid non power of two zone size (%llu)\n", 1866 disk->disk_name, zone_sectors); 1867 return -ENODEV; 1868 } 1869 1870 if (!queue_max_zone_append_sectors(q)) { 1871 pr_warn("%s: Invalid 0 maximum zone append limit\n", 1872 disk->disk_name); 1873 return -ENODEV; 1874 } 1875 1876 /* 1877 * Ensure that all memory allocations in this context are done as if 1878 * GFP_NOIO was specified. 1879 */ 1880 args.disk = disk; 1881 args.nr_zones = (capacity + zone_sectors - 1) >> ilog2(zone_sectors); 1882 noio_flag = memalloc_noio_save(); 1883 ret = disk_revalidate_zone_resources(disk, args.nr_zones); 1884 if (ret) { 1885 memalloc_noio_restore(noio_flag); 1886 return ret; 1887 } 1888 ret = disk->fops->report_zones(disk, 0, UINT_MAX, 1889 blk_revalidate_zone_cb, &args); 1890 if (!ret) { 1891 pr_warn("%s: No zones reported\n", disk->disk_name); 1892 ret = -ENODEV; 1893 } 1894 memalloc_noio_restore(noio_flag); 1895 1896 /* 1897 * If zones where reported, make sure that the entire disk capacity 1898 * has been checked. 1899 */ 1900 if (ret > 0 && args.sector != capacity) { 1901 pr_warn("%s: Missing zones from sector %llu\n", 1902 disk->disk_name, args.sector); 1903 ret = -ENODEV; 1904 } 1905 1906 /* 1907 * Set the new disk zone parameters only once the queue is frozen and 1908 * all I/Os are completed. 1909 */ 1910 blk_mq_freeze_queue(q); 1911 if (ret > 0) 1912 ret = disk_update_zone_resources(disk, &args); 1913 else 1914 pr_warn("%s: failed to revalidate zones\n", disk->disk_name); 1915 if (ret) 1916 disk_free_zone_resources(disk); 1917 blk_mq_unfreeze_queue(q); 1918 1919 kfree(args.conv_zones_bitmap); 1920 1921 return ret; 1922 } 1923 EXPORT_SYMBOL_GPL(blk_revalidate_disk_zones); 1924 1925 #ifdef CONFIG_BLK_DEBUG_FS 1926 1927 int queue_zone_wplugs_show(void *data, struct seq_file *m) 1928 { 1929 struct request_queue *q = data; 1930 struct gendisk *disk = q->disk; 1931 struct blk_zone_wplug *zwplug; 1932 unsigned int zwp_wp_offset, zwp_flags; 1933 unsigned int zwp_zone_no, zwp_ref; 1934 unsigned int zwp_bio_list_size, i; 1935 unsigned long flags; 1936 1937 if (!disk->zone_wplugs_hash) 1938 return 0; 1939 1940 rcu_read_lock(); 1941 for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) { 1942 hlist_for_each_entry_rcu(zwplug, 1943 &disk->zone_wplugs_hash[i], node) { 1944 spin_lock_irqsave(&zwplug->lock, flags); 1945 zwp_zone_no = zwplug->zone_no; 1946 zwp_flags = zwplug->flags; 1947 zwp_ref = atomic_read(&zwplug->ref); 1948 zwp_wp_offset = zwplug->wp_offset; 1949 zwp_bio_list_size = bio_list_size(&zwplug->bio_list); 1950 spin_unlock_irqrestore(&zwplug->lock, flags); 1951 1952 seq_printf(m, "%u 0x%x %u %u %u\n", 1953 zwp_zone_no, zwp_flags, zwp_ref, 1954 zwp_wp_offset, zwp_bio_list_size); 1955 } 1956 } 1957 rcu_read_unlock(); 1958 1959 return 0; 1960 } 1961 1962 #endif 1963