1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Zoned block device handling 4 * 5 * Copyright (c) 2015, Hannes Reinecke 6 * Copyright (c) 2015, SUSE Linux GmbH 7 * 8 * Copyright (c) 2016, Damien Le Moal 9 * Copyright (c) 2016, Western Digital 10 * Copyright (c) 2024, Western Digital Corporation or its affiliates. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/mm.h> 18 #include <linux/vmalloc.h> 19 #include <linux/sched/mm.h> 20 #include <linux/spinlock.h> 21 #include <linux/atomic.h> 22 #include <linux/mempool.h> 23 24 #include "blk.h" 25 #include "blk-mq-sched.h" 26 #include "blk-mq-debugfs.h" 27 28 #define ZONE_COND_NAME(name) [BLK_ZONE_COND_##name] = #name 29 static const char *const zone_cond_name[] = { 30 ZONE_COND_NAME(NOT_WP), 31 ZONE_COND_NAME(EMPTY), 32 ZONE_COND_NAME(IMP_OPEN), 33 ZONE_COND_NAME(EXP_OPEN), 34 ZONE_COND_NAME(CLOSED), 35 ZONE_COND_NAME(READONLY), 36 ZONE_COND_NAME(FULL), 37 ZONE_COND_NAME(OFFLINE), 38 }; 39 #undef ZONE_COND_NAME 40 41 /* 42 * Per-zone write plug. 43 * @node: hlist_node structure for managing the plug using a hash table. 44 * @link: To list the plug in the zone write plug error list of the disk. 45 * @ref: Zone write plug reference counter. A zone write plug reference is 46 * always at least 1 when the plug is hashed in the disk plug hash table. 47 * The reference is incremented whenever a new BIO needing plugging is 48 * submitted and when a function needs to manipulate a plug. The 49 * reference count is decremented whenever a plugged BIO completes and 50 * when a function that referenced the plug returns. The initial 51 * reference is dropped whenever the zone of the zone write plug is reset, 52 * finished and when the zone becomes full (last write BIO to the zone 53 * completes). 54 * @lock: Spinlock to atomically manipulate the plug. 55 * @flags: Flags indicating the plug state. 56 * @zone_no: The number of the zone the plug is managing. 57 * @wp_offset: The zone write pointer location relative to the start of the zone 58 * as a number of 512B sectors. 59 * @bio_list: The list of BIOs that are currently plugged. 60 * @bio_work: Work struct to handle issuing of plugged BIOs 61 * @rcu_head: RCU head to free zone write plugs with an RCU grace period. 62 * @disk: The gendisk the plug belongs to. 63 */ 64 struct blk_zone_wplug { 65 struct hlist_node node; 66 struct list_head link; 67 atomic_t ref; 68 spinlock_t lock; 69 unsigned int flags; 70 unsigned int zone_no; 71 unsigned int wp_offset; 72 struct bio_list bio_list; 73 struct work_struct bio_work; 74 struct rcu_head rcu_head; 75 struct gendisk *disk; 76 }; 77 78 /* 79 * Zone write plug flags bits: 80 * - BLK_ZONE_WPLUG_PLUGGED: Indicates that the zone write plug is plugged, 81 * that is, that write BIOs are being throttled due to a write BIO already 82 * being executed or the zone write plug bio list is not empty. 83 * - BLK_ZONE_WPLUG_ERROR: Indicates that a write error happened which will be 84 * recovered with a report zone to update the zone write pointer offset. 85 * - BLK_ZONE_WPLUG_UNHASHED: Indicates that the zone write plug was removed 86 * from the disk hash table and that the initial reference to the zone 87 * write plug set when the plug was first added to the hash table has been 88 * dropped. This flag is set when a zone is reset, finished or become full, 89 * to prevent new references to the zone write plug to be taken for 90 * newly incoming BIOs. A zone write plug flagged with this flag will be 91 * freed once all remaining references from BIOs or functions are dropped. 92 */ 93 #define BLK_ZONE_WPLUG_PLUGGED (1U << 0) 94 #define BLK_ZONE_WPLUG_ERROR (1U << 1) 95 #define BLK_ZONE_WPLUG_UNHASHED (1U << 2) 96 97 #define BLK_ZONE_WPLUG_BUSY (BLK_ZONE_WPLUG_PLUGGED | BLK_ZONE_WPLUG_ERROR) 98 99 /** 100 * blk_zone_cond_str - Return string XXX in BLK_ZONE_COND_XXX. 101 * @zone_cond: BLK_ZONE_COND_XXX. 102 * 103 * Description: Centralize block layer function to convert BLK_ZONE_COND_XXX 104 * into string format. Useful in the debugging and tracing zone conditions. For 105 * invalid BLK_ZONE_COND_XXX it returns string "UNKNOWN". 106 */ 107 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond) 108 { 109 static const char *zone_cond_str = "UNKNOWN"; 110 111 if (zone_cond < ARRAY_SIZE(zone_cond_name) && zone_cond_name[zone_cond]) 112 zone_cond_str = zone_cond_name[zone_cond]; 113 114 return zone_cond_str; 115 } 116 EXPORT_SYMBOL_GPL(blk_zone_cond_str); 117 118 /** 119 * blkdev_report_zones - Get zones information 120 * @bdev: Target block device 121 * @sector: Sector from which to report zones 122 * @nr_zones: Maximum number of zones to report 123 * @cb: Callback function called for each reported zone 124 * @data: Private data for the callback 125 * 126 * Description: 127 * Get zone information starting from the zone containing @sector for at most 128 * @nr_zones, and call @cb for each zone reported by the device. 129 * To report all zones in a device starting from @sector, the BLK_ALL_ZONES 130 * constant can be passed to @nr_zones. 131 * Returns the number of zones reported by the device, or a negative errno 132 * value in case of failure. 133 * 134 * Note: The caller must use memalloc_noXX_save/restore() calls to control 135 * memory allocations done within this function. 136 */ 137 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 138 unsigned int nr_zones, report_zones_cb cb, void *data) 139 { 140 struct gendisk *disk = bdev->bd_disk; 141 sector_t capacity = get_capacity(disk); 142 143 if (!bdev_is_zoned(bdev) || WARN_ON_ONCE(!disk->fops->report_zones)) 144 return -EOPNOTSUPP; 145 146 if (!nr_zones || sector >= capacity) 147 return 0; 148 149 return disk->fops->report_zones(disk, sector, nr_zones, cb, data); 150 } 151 EXPORT_SYMBOL_GPL(blkdev_report_zones); 152 153 static inline unsigned long *blk_alloc_zone_bitmap(int node, 154 unsigned int nr_zones) 155 { 156 return kcalloc_node(BITS_TO_LONGS(nr_zones), sizeof(unsigned long), 157 GFP_NOIO, node); 158 } 159 160 static int blk_zone_need_reset_cb(struct blk_zone *zone, unsigned int idx, 161 void *data) 162 { 163 /* 164 * For an all-zones reset, ignore conventional, empty, read-only 165 * and offline zones. 166 */ 167 switch (zone->cond) { 168 case BLK_ZONE_COND_NOT_WP: 169 case BLK_ZONE_COND_EMPTY: 170 case BLK_ZONE_COND_READONLY: 171 case BLK_ZONE_COND_OFFLINE: 172 return 0; 173 default: 174 set_bit(idx, (unsigned long *)data); 175 return 0; 176 } 177 } 178 179 static int blkdev_zone_reset_all_emulated(struct block_device *bdev) 180 { 181 struct gendisk *disk = bdev->bd_disk; 182 sector_t capacity = bdev_nr_sectors(bdev); 183 sector_t zone_sectors = bdev_zone_sectors(bdev); 184 unsigned long *need_reset; 185 struct bio *bio = NULL; 186 sector_t sector = 0; 187 int ret; 188 189 need_reset = blk_alloc_zone_bitmap(disk->queue->node, disk->nr_zones); 190 if (!need_reset) 191 return -ENOMEM; 192 193 ret = disk->fops->report_zones(disk, 0, disk->nr_zones, 194 blk_zone_need_reset_cb, need_reset); 195 if (ret < 0) 196 goto out_free_need_reset; 197 198 ret = 0; 199 while (sector < capacity) { 200 if (!test_bit(disk_zone_no(disk, sector), need_reset)) { 201 sector += zone_sectors; 202 continue; 203 } 204 205 bio = blk_next_bio(bio, bdev, 0, REQ_OP_ZONE_RESET | REQ_SYNC, 206 GFP_KERNEL); 207 bio->bi_iter.bi_sector = sector; 208 sector += zone_sectors; 209 210 /* This may take a while, so be nice to others */ 211 cond_resched(); 212 } 213 214 if (bio) { 215 ret = submit_bio_wait(bio); 216 bio_put(bio); 217 } 218 219 out_free_need_reset: 220 kfree(need_reset); 221 return ret; 222 } 223 224 static int blkdev_zone_reset_all(struct block_device *bdev) 225 { 226 struct bio bio; 227 228 bio_init(&bio, bdev, NULL, 0, REQ_OP_ZONE_RESET_ALL | REQ_SYNC); 229 return submit_bio_wait(&bio); 230 } 231 232 /** 233 * blkdev_zone_mgmt - Execute a zone management operation on a range of zones 234 * @bdev: Target block device 235 * @op: Operation to be performed on the zones 236 * @sector: Start sector of the first zone to operate on 237 * @nr_sectors: Number of sectors, should be at least the length of one zone and 238 * must be zone size aligned. 239 * 240 * Description: 241 * Perform the specified operation on the range of zones specified by 242 * @sector..@sector+@nr_sectors. Specifying the entire disk sector range 243 * is valid, but the specified range should not contain conventional zones. 244 * The operation to execute on each zone can be a zone reset, open, close 245 * or finish request. 246 */ 247 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, 248 sector_t sector, sector_t nr_sectors) 249 { 250 struct request_queue *q = bdev_get_queue(bdev); 251 sector_t zone_sectors = bdev_zone_sectors(bdev); 252 sector_t capacity = bdev_nr_sectors(bdev); 253 sector_t end_sector = sector + nr_sectors; 254 struct bio *bio = NULL; 255 int ret = 0; 256 257 if (!bdev_is_zoned(bdev)) 258 return -EOPNOTSUPP; 259 260 if (bdev_read_only(bdev)) 261 return -EPERM; 262 263 if (!op_is_zone_mgmt(op)) 264 return -EOPNOTSUPP; 265 266 if (end_sector <= sector || end_sector > capacity) 267 /* Out of range */ 268 return -EINVAL; 269 270 /* Check alignment (handle eventual smaller last zone) */ 271 if (!bdev_is_zone_start(bdev, sector)) 272 return -EINVAL; 273 274 if (!bdev_is_zone_start(bdev, nr_sectors) && end_sector != capacity) 275 return -EINVAL; 276 277 /* 278 * In the case of a zone reset operation over all zones, 279 * REQ_OP_ZONE_RESET_ALL can be used with devices supporting this 280 * command. For other devices, we emulate this command behavior by 281 * identifying the zones needing a reset. 282 */ 283 if (op == REQ_OP_ZONE_RESET && sector == 0 && nr_sectors == capacity) { 284 if (!blk_queue_zone_resetall(q)) 285 return blkdev_zone_reset_all_emulated(bdev); 286 return blkdev_zone_reset_all(bdev); 287 } 288 289 while (sector < end_sector) { 290 bio = blk_next_bio(bio, bdev, 0, op | REQ_SYNC, GFP_KERNEL); 291 bio->bi_iter.bi_sector = sector; 292 sector += zone_sectors; 293 294 /* This may take a while, so be nice to others */ 295 cond_resched(); 296 } 297 298 ret = submit_bio_wait(bio); 299 bio_put(bio); 300 301 return ret; 302 } 303 EXPORT_SYMBOL_GPL(blkdev_zone_mgmt); 304 305 struct zone_report_args { 306 struct blk_zone __user *zones; 307 }; 308 309 static int blkdev_copy_zone_to_user(struct blk_zone *zone, unsigned int idx, 310 void *data) 311 { 312 struct zone_report_args *args = data; 313 314 if (copy_to_user(&args->zones[idx], zone, sizeof(struct blk_zone))) 315 return -EFAULT; 316 return 0; 317 } 318 319 /* 320 * BLKREPORTZONE ioctl processing. 321 * Called from blkdev_ioctl. 322 */ 323 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, 324 unsigned long arg) 325 { 326 void __user *argp = (void __user *)arg; 327 struct zone_report_args args; 328 struct blk_zone_report rep; 329 int ret; 330 331 if (!argp) 332 return -EINVAL; 333 334 if (!bdev_is_zoned(bdev)) 335 return -ENOTTY; 336 337 if (copy_from_user(&rep, argp, sizeof(struct blk_zone_report))) 338 return -EFAULT; 339 340 if (!rep.nr_zones) 341 return -EINVAL; 342 343 args.zones = argp + sizeof(struct blk_zone_report); 344 ret = blkdev_report_zones(bdev, rep.sector, rep.nr_zones, 345 blkdev_copy_zone_to_user, &args); 346 if (ret < 0) 347 return ret; 348 349 rep.nr_zones = ret; 350 rep.flags = BLK_ZONE_REP_CAPACITY; 351 if (copy_to_user(argp, &rep, sizeof(struct blk_zone_report))) 352 return -EFAULT; 353 return 0; 354 } 355 356 static int blkdev_truncate_zone_range(struct block_device *bdev, 357 blk_mode_t mode, const struct blk_zone_range *zrange) 358 { 359 loff_t start, end; 360 361 if (zrange->sector + zrange->nr_sectors <= zrange->sector || 362 zrange->sector + zrange->nr_sectors > get_capacity(bdev->bd_disk)) 363 /* Out of range */ 364 return -EINVAL; 365 366 start = zrange->sector << SECTOR_SHIFT; 367 end = ((zrange->sector + zrange->nr_sectors) << SECTOR_SHIFT) - 1; 368 369 return truncate_bdev_range(bdev, mode, start, end); 370 } 371 372 /* 373 * BLKRESETZONE, BLKOPENZONE, BLKCLOSEZONE and BLKFINISHZONE ioctl processing. 374 * Called from blkdev_ioctl. 375 */ 376 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, 377 unsigned int cmd, unsigned long arg) 378 { 379 void __user *argp = (void __user *)arg; 380 struct blk_zone_range zrange; 381 enum req_op op; 382 int ret; 383 384 if (!argp) 385 return -EINVAL; 386 387 if (!bdev_is_zoned(bdev)) 388 return -ENOTTY; 389 390 if (!(mode & BLK_OPEN_WRITE)) 391 return -EBADF; 392 393 if (copy_from_user(&zrange, argp, sizeof(struct blk_zone_range))) 394 return -EFAULT; 395 396 switch (cmd) { 397 case BLKRESETZONE: 398 op = REQ_OP_ZONE_RESET; 399 400 /* Invalidate the page cache, including dirty pages. */ 401 filemap_invalidate_lock(bdev->bd_mapping); 402 ret = blkdev_truncate_zone_range(bdev, mode, &zrange); 403 if (ret) 404 goto fail; 405 break; 406 case BLKOPENZONE: 407 op = REQ_OP_ZONE_OPEN; 408 break; 409 case BLKCLOSEZONE: 410 op = REQ_OP_ZONE_CLOSE; 411 break; 412 case BLKFINISHZONE: 413 op = REQ_OP_ZONE_FINISH; 414 break; 415 default: 416 return -ENOTTY; 417 } 418 419 ret = blkdev_zone_mgmt(bdev, op, zrange.sector, zrange.nr_sectors); 420 421 fail: 422 if (cmd == BLKRESETZONE) 423 filemap_invalidate_unlock(bdev->bd_mapping); 424 425 return ret; 426 } 427 428 static inline bool disk_zone_is_conv(struct gendisk *disk, sector_t sector) 429 { 430 if (!disk->conv_zones_bitmap) 431 return false; 432 return test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap); 433 } 434 435 static bool disk_zone_is_last(struct gendisk *disk, struct blk_zone *zone) 436 { 437 return zone->start + zone->len >= get_capacity(disk); 438 } 439 440 static bool disk_zone_is_full(struct gendisk *disk, 441 unsigned int zno, unsigned int offset_in_zone) 442 { 443 if (zno < disk->nr_zones - 1) 444 return offset_in_zone >= disk->zone_capacity; 445 return offset_in_zone >= disk->last_zone_capacity; 446 } 447 448 static bool disk_zone_wplug_is_full(struct gendisk *disk, 449 struct blk_zone_wplug *zwplug) 450 { 451 return disk_zone_is_full(disk, zwplug->zone_no, zwplug->wp_offset); 452 } 453 454 static bool disk_insert_zone_wplug(struct gendisk *disk, 455 struct blk_zone_wplug *zwplug) 456 { 457 struct blk_zone_wplug *zwplg; 458 unsigned long flags; 459 unsigned int idx = 460 hash_32(zwplug->zone_no, disk->zone_wplugs_hash_bits); 461 462 /* 463 * Add the new zone write plug to the hash table, but carefully as we 464 * are racing with other submission context, so we may already have a 465 * zone write plug for the same zone. 466 */ 467 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 468 hlist_for_each_entry_rcu(zwplg, &disk->zone_wplugs_hash[idx], node) { 469 if (zwplg->zone_no == zwplug->zone_no) { 470 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 471 return false; 472 } 473 } 474 hlist_add_head_rcu(&zwplug->node, &disk->zone_wplugs_hash[idx]); 475 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 476 477 return true; 478 } 479 480 static struct blk_zone_wplug *disk_get_zone_wplug(struct gendisk *disk, 481 sector_t sector) 482 { 483 unsigned int zno = disk_zone_no(disk, sector); 484 unsigned int idx = hash_32(zno, disk->zone_wplugs_hash_bits); 485 struct blk_zone_wplug *zwplug; 486 487 rcu_read_lock(); 488 489 hlist_for_each_entry_rcu(zwplug, &disk->zone_wplugs_hash[idx], node) { 490 if (zwplug->zone_no == zno && 491 atomic_inc_not_zero(&zwplug->ref)) { 492 rcu_read_unlock(); 493 return zwplug; 494 } 495 } 496 497 rcu_read_unlock(); 498 499 return NULL; 500 } 501 502 static void disk_free_zone_wplug_rcu(struct rcu_head *rcu_head) 503 { 504 struct blk_zone_wplug *zwplug = 505 container_of(rcu_head, struct blk_zone_wplug, rcu_head); 506 507 mempool_free(zwplug, zwplug->disk->zone_wplugs_pool); 508 } 509 510 static inline void disk_put_zone_wplug(struct blk_zone_wplug *zwplug) 511 { 512 if (atomic_dec_and_test(&zwplug->ref)) { 513 WARN_ON_ONCE(!bio_list_empty(&zwplug->bio_list)); 514 WARN_ON_ONCE(!list_empty(&zwplug->link)); 515 WARN_ON_ONCE(!(zwplug->flags & BLK_ZONE_WPLUG_UNHASHED)); 516 517 call_rcu(&zwplug->rcu_head, disk_free_zone_wplug_rcu); 518 } 519 } 520 521 static inline bool disk_should_remove_zone_wplug(struct gendisk *disk, 522 struct blk_zone_wplug *zwplug) 523 { 524 /* If the zone write plug was already removed, we are done. */ 525 if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) 526 return false; 527 528 /* If the zone write plug is still busy, it cannot be removed. */ 529 if (zwplug->flags & BLK_ZONE_WPLUG_BUSY) 530 return false; 531 532 /* 533 * Completions of BIOs with blk_zone_write_plug_bio_endio() may 534 * happen after handling a request completion with 535 * blk_zone_write_plug_finish_request() (e.g. with split BIOs 536 * that are chained). In such case, disk_zone_wplug_unplug_bio() 537 * should not attempt to remove the zone write plug until all BIO 538 * completions are seen. Check by looking at the zone write plug 539 * reference count, which is 2 when the plug is unused (one reference 540 * taken when the plug was allocated and another reference taken by the 541 * caller context). 542 */ 543 if (atomic_read(&zwplug->ref) > 2) 544 return false; 545 546 /* We can remove zone write plugs for zones that are empty or full. */ 547 return !zwplug->wp_offset || disk_zone_wplug_is_full(disk, zwplug); 548 } 549 550 static void disk_remove_zone_wplug(struct gendisk *disk, 551 struct blk_zone_wplug *zwplug) 552 { 553 unsigned long flags; 554 555 /* If the zone write plug was already removed, we have nothing to do. */ 556 if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) 557 return; 558 559 /* 560 * Mark the zone write plug as unhashed and drop the extra reference we 561 * took when the plug was inserted in the hash table. 562 */ 563 zwplug->flags |= BLK_ZONE_WPLUG_UNHASHED; 564 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 565 hlist_del_init_rcu(&zwplug->node); 566 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 567 disk_put_zone_wplug(zwplug); 568 } 569 570 static void blk_zone_wplug_bio_work(struct work_struct *work); 571 572 /* 573 * Get a reference on the write plug for the zone containing @sector. 574 * If the plug does not exist, it is allocated and hashed. 575 * Return a pointer to the zone write plug with the plug spinlock held. 576 */ 577 static struct blk_zone_wplug *disk_get_and_lock_zone_wplug(struct gendisk *disk, 578 sector_t sector, gfp_t gfp_mask, 579 unsigned long *flags) 580 { 581 unsigned int zno = disk_zone_no(disk, sector); 582 struct blk_zone_wplug *zwplug; 583 584 again: 585 zwplug = disk_get_zone_wplug(disk, sector); 586 if (zwplug) { 587 /* 588 * Check that a BIO completion or a zone reset or finish 589 * operation has not already removed the zone write plug from 590 * the hash table and dropped its reference count. In such case, 591 * we need to get a new plug so start over from the beginning. 592 */ 593 spin_lock_irqsave(&zwplug->lock, *flags); 594 if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) { 595 spin_unlock_irqrestore(&zwplug->lock, *flags); 596 disk_put_zone_wplug(zwplug); 597 goto again; 598 } 599 return zwplug; 600 } 601 602 /* 603 * Allocate and initialize a zone write plug with an extra reference 604 * so that it is not freed when the zone write plug becomes idle without 605 * the zone being full. 606 */ 607 zwplug = mempool_alloc(disk->zone_wplugs_pool, gfp_mask); 608 if (!zwplug) 609 return NULL; 610 611 INIT_HLIST_NODE(&zwplug->node); 612 INIT_LIST_HEAD(&zwplug->link); 613 atomic_set(&zwplug->ref, 2); 614 spin_lock_init(&zwplug->lock); 615 zwplug->flags = 0; 616 zwplug->zone_no = zno; 617 zwplug->wp_offset = sector & (disk->queue->limits.chunk_sectors - 1); 618 bio_list_init(&zwplug->bio_list); 619 INIT_WORK(&zwplug->bio_work, blk_zone_wplug_bio_work); 620 zwplug->disk = disk; 621 622 spin_lock_irqsave(&zwplug->lock, *flags); 623 624 /* 625 * Insert the new zone write plug in the hash table. This can fail only 626 * if another context already inserted a plug. Retry from the beginning 627 * in such case. 628 */ 629 if (!disk_insert_zone_wplug(disk, zwplug)) { 630 spin_unlock_irqrestore(&zwplug->lock, *flags); 631 mempool_free(zwplug, disk->zone_wplugs_pool); 632 goto again; 633 } 634 635 return zwplug; 636 } 637 638 static inline void blk_zone_wplug_bio_io_error(struct blk_zone_wplug *zwplug, 639 struct bio *bio) 640 { 641 struct request_queue *q = zwplug->disk->queue; 642 643 bio_clear_flag(bio, BIO_ZONE_WRITE_PLUGGING); 644 bio_io_error(bio); 645 disk_put_zone_wplug(zwplug); 646 blk_queue_exit(q); 647 } 648 649 /* 650 * Abort (fail) all plugged BIOs of a zone write plug. 651 */ 652 static void disk_zone_wplug_abort(struct blk_zone_wplug *zwplug) 653 { 654 struct bio *bio; 655 656 while ((bio = bio_list_pop(&zwplug->bio_list))) 657 blk_zone_wplug_bio_io_error(zwplug, bio); 658 } 659 660 /* 661 * Abort (fail) all plugged BIOs of a zone write plug that are not aligned 662 * with the assumed write pointer location of the zone when the BIO will 663 * be unplugged. 664 */ 665 static void disk_zone_wplug_abort_unaligned(struct gendisk *disk, 666 struct blk_zone_wplug *zwplug) 667 { 668 unsigned int wp_offset = zwplug->wp_offset; 669 struct bio_list bl = BIO_EMPTY_LIST; 670 struct bio *bio; 671 672 while ((bio = bio_list_pop(&zwplug->bio_list))) { 673 if (disk_zone_is_full(disk, zwplug->zone_no, wp_offset) || 674 (bio_op(bio) != REQ_OP_ZONE_APPEND && 675 bio_offset_from_zone_start(bio) != wp_offset)) { 676 blk_zone_wplug_bio_io_error(zwplug, bio); 677 continue; 678 } 679 680 wp_offset += bio_sectors(bio); 681 bio_list_add(&bl, bio); 682 } 683 684 bio_list_merge(&zwplug->bio_list, &bl); 685 } 686 687 static inline void disk_zone_wplug_set_error(struct gendisk *disk, 688 struct blk_zone_wplug *zwplug) 689 { 690 unsigned long flags; 691 692 if (zwplug->flags & BLK_ZONE_WPLUG_ERROR) 693 return; 694 695 /* 696 * At this point, we already have a reference on the zone write plug. 697 * However, since we are going to add the plug to the disk zone write 698 * plugs work list, increase its reference count. This reference will 699 * be dropped in disk_zone_wplugs_work() once the error state is 700 * handled, or in disk_zone_wplug_clear_error() if the zone is reset or 701 * finished. 702 */ 703 zwplug->flags |= BLK_ZONE_WPLUG_ERROR; 704 atomic_inc(&zwplug->ref); 705 706 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 707 list_add_tail(&zwplug->link, &disk->zone_wplugs_err_list); 708 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 709 } 710 711 static inline void disk_zone_wplug_clear_error(struct gendisk *disk, 712 struct blk_zone_wplug *zwplug) 713 { 714 unsigned long flags; 715 716 if (!(zwplug->flags & BLK_ZONE_WPLUG_ERROR)) 717 return; 718 719 /* 720 * We are racing with the error handling work which drops the reference 721 * on the zone write plug after handling the error state. So remove the 722 * plug from the error list and drop its reference count only if the 723 * error handling has not yet started, that is, if the zone write plug 724 * is still listed. 725 */ 726 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 727 if (!list_empty(&zwplug->link)) { 728 list_del_init(&zwplug->link); 729 zwplug->flags &= ~BLK_ZONE_WPLUG_ERROR; 730 disk_put_zone_wplug(zwplug); 731 } 732 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 733 } 734 735 /* 736 * Set a zone write plug write pointer offset to either 0 (zone reset case) 737 * or to the zone size (zone finish case). This aborts all plugged BIOs, which 738 * is fine to do as doing a zone reset or zone finish while writes are in-flight 739 * is a mistake from the user which will most likely cause all plugged BIOs to 740 * fail anyway. 741 */ 742 static void disk_zone_wplug_set_wp_offset(struct gendisk *disk, 743 struct blk_zone_wplug *zwplug, 744 unsigned int wp_offset) 745 { 746 unsigned long flags; 747 748 spin_lock_irqsave(&zwplug->lock, flags); 749 750 /* 751 * Make sure that a BIO completion or another zone reset or finish 752 * operation has not already removed the plug from the hash table. 753 */ 754 if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) { 755 spin_unlock_irqrestore(&zwplug->lock, flags); 756 return; 757 } 758 759 /* Update the zone write pointer and abort all plugged BIOs. */ 760 zwplug->wp_offset = wp_offset; 761 disk_zone_wplug_abort(zwplug); 762 763 /* 764 * Updating the write pointer offset puts back the zone 765 * in a good state. So clear the error flag and decrement the 766 * error count if we were in error state. 767 */ 768 disk_zone_wplug_clear_error(disk, zwplug); 769 770 /* 771 * The zone write plug now has no BIO plugged: remove it from the 772 * hash table so that it cannot be seen. The plug will be freed 773 * when the last reference is dropped. 774 */ 775 if (disk_should_remove_zone_wplug(disk, zwplug)) 776 disk_remove_zone_wplug(disk, zwplug); 777 778 spin_unlock_irqrestore(&zwplug->lock, flags); 779 } 780 781 static bool blk_zone_wplug_handle_reset_or_finish(struct bio *bio, 782 unsigned int wp_offset) 783 { 784 struct gendisk *disk = bio->bi_bdev->bd_disk; 785 sector_t sector = bio->bi_iter.bi_sector; 786 struct blk_zone_wplug *zwplug; 787 788 /* Conventional zones cannot be reset nor finished. */ 789 if (disk_zone_is_conv(disk, sector)) { 790 bio_io_error(bio); 791 return true; 792 } 793 794 /* 795 * If we have a zone write plug, set its write pointer offset to 0 796 * (reset case) or to the zone size (finish case). This will abort all 797 * BIOs plugged for the target zone. It is fine as resetting or 798 * finishing zones while writes are still in-flight will result in the 799 * writes failing anyway. 800 */ 801 zwplug = disk_get_zone_wplug(disk, sector); 802 if (zwplug) { 803 disk_zone_wplug_set_wp_offset(disk, zwplug, wp_offset); 804 disk_put_zone_wplug(zwplug); 805 } 806 807 return false; 808 } 809 810 static bool blk_zone_wplug_handle_reset_all(struct bio *bio) 811 { 812 struct gendisk *disk = bio->bi_bdev->bd_disk; 813 struct blk_zone_wplug *zwplug; 814 sector_t sector; 815 816 /* 817 * Set the write pointer offset of all zone write plugs to 0. This will 818 * abort all plugged BIOs. It is fine as resetting zones while writes 819 * are still in-flight will result in the writes failing anyway. 820 */ 821 for (sector = 0; sector < get_capacity(disk); 822 sector += disk->queue->limits.chunk_sectors) { 823 zwplug = disk_get_zone_wplug(disk, sector); 824 if (zwplug) { 825 disk_zone_wplug_set_wp_offset(disk, zwplug, 0); 826 disk_put_zone_wplug(zwplug); 827 } 828 } 829 830 return false; 831 } 832 833 static inline void blk_zone_wplug_add_bio(struct blk_zone_wplug *zwplug, 834 struct bio *bio, unsigned int nr_segs) 835 { 836 /* 837 * Grab an extra reference on the BIO request queue usage counter. 838 * This reference will be reused to submit a request for the BIO for 839 * blk-mq devices and dropped when the BIO is failed and after 840 * it is issued in the case of BIO-based devices. 841 */ 842 percpu_ref_get(&bio->bi_bdev->bd_disk->queue->q_usage_counter); 843 844 /* 845 * The BIO is being plugged and thus will have to wait for the on-going 846 * write and for all other writes already plugged. So polling makes 847 * no sense. 848 */ 849 bio_clear_polled(bio); 850 851 /* 852 * Reuse the poll cookie field to store the number of segments when 853 * split to the hardware limits. 854 */ 855 bio->__bi_nr_segments = nr_segs; 856 857 /* 858 * We always receive BIOs after they are split and ready to be issued. 859 * The block layer passes the parts of a split BIO in order, and the 860 * user must also issue write sequentially. So simply add the new BIO 861 * at the tail of the list to preserve the sequential write order. 862 */ 863 bio_list_add(&zwplug->bio_list, bio); 864 } 865 866 /* 867 * Called from bio_attempt_back_merge() when a BIO was merged with a request. 868 */ 869 void blk_zone_write_plug_bio_merged(struct bio *bio) 870 { 871 struct blk_zone_wplug *zwplug; 872 unsigned long flags; 873 874 /* 875 * If the BIO was already plugged, then we were called through 876 * blk_zone_write_plug_init_request() -> blk_attempt_bio_merge(). 877 * For this case, we already hold a reference on the zone write plug for 878 * the BIO and blk_zone_write_plug_init_request() will handle the 879 * zone write pointer offset update. 880 */ 881 if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING)) 882 return; 883 884 bio_set_flag(bio, BIO_ZONE_WRITE_PLUGGING); 885 886 /* 887 * Get a reference on the zone write plug of the target zone and advance 888 * the zone write pointer offset. Given that this is a merge, we already 889 * have at least one request and one BIO referencing the zone write 890 * plug. So this should not fail. 891 */ 892 zwplug = disk_get_zone_wplug(bio->bi_bdev->bd_disk, 893 bio->bi_iter.bi_sector); 894 if (WARN_ON_ONCE(!zwplug)) 895 return; 896 897 spin_lock_irqsave(&zwplug->lock, flags); 898 zwplug->wp_offset += bio_sectors(bio); 899 spin_unlock_irqrestore(&zwplug->lock, flags); 900 } 901 902 /* 903 * Attempt to merge plugged BIOs with a newly prepared request for a BIO that 904 * already went through zone write plugging (either a new BIO or one that was 905 * unplugged). 906 */ 907 void blk_zone_write_plug_init_request(struct request *req) 908 { 909 sector_t req_back_sector = blk_rq_pos(req) + blk_rq_sectors(req); 910 struct request_queue *q = req->q; 911 struct gendisk *disk = q->disk; 912 struct blk_zone_wplug *zwplug = 913 disk_get_zone_wplug(disk, blk_rq_pos(req)); 914 unsigned long flags; 915 struct bio *bio; 916 917 if (WARN_ON_ONCE(!zwplug)) 918 return; 919 920 /* 921 * Indicate that completion of this request needs to be handled with 922 * blk_zone_write_plug_finish_request(), which will drop the reference 923 * on the zone write plug we took above on entry to this function. 924 */ 925 req->rq_flags |= RQF_ZONE_WRITE_PLUGGING; 926 927 if (blk_queue_nomerges(q)) 928 return; 929 930 /* 931 * Walk through the list of plugged BIOs to check if they can be merged 932 * into the back of the request. 933 */ 934 spin_lock_irqsave(&zwplug->lock, flags); 935 while (!disk_zone_wplug_is_full(disk, zwplug)) { 936 bio = bio_list_peek(&zwplug->bio_list); 937 if (!bio) 938 break; 939 940 if (bio->bi_iter.bi_sector != req_back_sector || 941 !blk_rq_merge_ok(req, bio)) 942 break; 943 944 WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE_ZEROES && 945 !bio->__bi_nr_segments); 946 947 bio_list_pop(&zwplug->bio_list); 948 if (bio_attempt_back_merge(req, bio, bio->__bi_nr_segments) != 949 BIO_MERGE_OK) { 950 bio_list_add_head(&zwplug->bio_list, bio); 951 break; 952 } 953 954 /* 955 * Drop the extra reference on the queue usage we got when 956 * plugging the BIO and advance the write pointer offset. 957 */ 958 blk_queue_exit(q); 959 zwplug->wp_offset += bio_sectors(bio); 960 961 req_back_sector += bio_sectors(bio); 962 } 963 spin_unlock_irqrestore(&zwplug->lock, flags); 964 } 965 966 /* 967 * Check and prepare a BIO for submission by incrementing the write pointer 968 * offset of its zone write plug and changing zone append operations into 969 * regular write when zone append emulation is needed. 970 */ 971 static bool blk_zone_wplug_prepare_bio(struct blk_zone_wplug *zwplug, 972 struct bio *bio) 973 { 974 struct gendisk *disk = bio->bi_bdev->bd_disk; 975 976 /* 977 * Check that the user is not attempting to write to a full zone. 978 * We know such BIO will fail, and that would potentially overflow our 979 * write pointer offset beyond the end of the zone. 980 */ 981 if (disk_zone_wplug_is_full(disk, zwplug)) 982 goto err; 983 984 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 985 /* 986 * Use a regular write starting at the current write pointer. 987 * Similarly to native zone append operations, do not allow 988 * merging. 989 */ 990 bio->bi_opf &= ~REQ_OP_MASK; 991 bio->bi_opf |= REQ_OP_WRITE | REQ_NOMERGE; 992 bio->bi_iter.bi_sector += zwplug->wp_offset; 993 994 /* 995 * Remember that this BIO is in fact a zone append operation 996 * so that we can restore its operation code on completion. 997 */ 998 bio_set_flag(bio, BIO_EMULATES_ZONE_APPEND); 999 } else { 1000 /* 1001 * Check for non-sequential writes early because we avoid a 1002 * whole lot of error handling trouble if we don't send it off 1003 * to the driver. 1004 */ 1005 if (bio_offset_from_zone_start(bio) != zwplug->wp_offset) 1006 goto err; 1007 } 1008 1009 /* Advance the zone write pointer offset. */ 1010 zwplug->wp_offset += bio_sectors(bio); 1011 1012 return true; 1013 1014 err: 1015 /* We detected an invalid write BIO: schedule error recovery. */ 1016 disk_zone_wplug_set_error(disk, zwplug); 1017 kblockd_schedule_work(&disk->zone_wplugs_work); 1018 return false; 1019 } 1020 1021 static bool blk_zone_wplug_handle_write(struct bio *bio, unsigned int nr_segs) 1022 { 1023 struct gendisk *disk = bio->bi_bdev->bd_disk; 1024 sector_t sector = bio->bi_iter.bi_sector; 1025 struct blk_zone_wplug *zwplug; 1026 gfp_t gfp_mask = GFP_NOIO; 1027 unsigned long flags; 1028 1029 /* 1030 * BIOs must be fully contained within a zone so that we use the correct 1031 * zone write plug for the entire BIO. For blk-mq devices, the block 1032 * layer should already have done any splitting required to ensure this 1033 * and this BIO should thus not be straddling zone boundaries. For 1034 * BIO-based devices, it is the responsibility of the driver to split 1035 * the bio before submitting it. 1036 */ 1037 if (WARN_ON_ONCE(bio_straddles_zones(bio))) { 1038 bio_io_error(bio); 1039 return true; 1040 } 1041 1042 /* Conventional zones do not need write plugging. */ 1043 if (disk_zone_is_conv(disk, sector)) { 1044 /* Zone append to conventional zones is not allowed. */ 1045 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1046 bio_io_error(bio); 1047 return true; 1048 } 1049 return false; 1050 } 1051 1052 if (bio->bi_opf & REQ_NOWAIT) 1053 gfp_mask = GFP_NOWAIT; 1054 1055 zwplug = disk_get_and_lock_zone_wplug(disk, sector, gfp_mask, &flags); 1056 if (!zwplug) { 1057 bio_io_error(bio); 1058 return true; 1059 } 1060 1061 /* Indicate that this BIO is being handled using zone write plugging. */ 1062 bio_set_flag(bio, BIO_ZONE_WRITE_PLUGGING); 1063 1064 /* 1065 * If the zone is already plugged or has a pending error, add the BIO 1066 * to the plug BIO list. Otherwise, plug and let the BIO execute. 1067 */ 1068 if (zwplug->flags & BLK_ZONE_WPLUG_BUSY) 1069 goto plug; 1070 1071 /* 1072 * If an error is detected when preparing the BIO, add it to the BIO 1073 * list so that error recovery can deal with it. 1074 */ 1075 if (!blk_zone_wplug_prepare_bio(zwplug, bio)) 1076 goto plug; 1077 1078 zwplug->flags |= BLK_ZONE_WPLUG_PLUGGED; 1079 1080 spin_unlock_irqrestore(&zwplug->lock, flags); 1081 1082 return false; 1083 1084 plug: 1085 zwplug->flags |= BLK_ZONE_WPLUG_PLUGGED; 1086 blk_zone_wplug_add_bio(zwplug, bio, nr_segs); 1087 1088 spin_unlock_irqrestore(&zwplug->lock, flags); 1089 1090 return true; 1091 } 1092 1093 /** 1094 * blk_zone_plug_bio - Handle a zone write BIO with zone write plugging 1095 * @bio: The BIO being submitted 1096 * @nr_segs: The number of physical segments of @bio 1097 * 1098 * Handle write, write zeroes and zone append operations requiring emulation 1099 * using zone write plugging. 1100 * 1101 * Return true whenever @bio execution needs to be delayed through the zone 1102 * write plug. Otherwise, return false to let the submission path process 1103 * @bio normally. 1104 */ 1105 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs) 1106 { 1107 struct block_device *bdev = bio->bi_bdev; 1108 1109 if (!bdev->bd_disk->zone_wplugs_hash) 1110 return false; 1111 1112 /* 1113 * If the BIO already has the plugging flag set, then it was already 1114 * handled through this path and this is a submission from the zone 1115 * plug bio submit work. 1116 */ 1117 if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING)) 1118 return false; 1119 1120 /* 1121 * We do not need to do anything special for empty flush BIOs, e.g 1122 * BIOs such as issued by blkdev_issue_flush(). The is because it is 1123 * the responsibility of the user to first wait for the completion of 1124 * write operations for flush to have any effect on the persistence of 1125 * the written data. 1126 */ 1127 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 1128 return false; 1129 1130 /* 1131 * Regular writes and write zeroes need to be handled through the target 1132 * zone write plug. This includes writes with REQ_FUA | REQ_PREFLUSH 1133 * which may need to go through the flush machinery depending on the 1134 * target device capabilities. Plugging such writes is fine as the flush 1135 * machinery operates at the request level, below the plug, and 1136 * completion of the flush sequence will go through the regular BIO 1137 * completion, which will handle zone write plugging. 1138 * Zone append operations for devices that requested emulation must 1139 * also be plugged so that these BIOs can be changed into regular 1140 * write BIOs. 1141 * Zone reset, reset all and finish commands need special treatment 1142 * to correctly track the write pointer offset of zones. These commands 1143 * are not plugged as we do not need serialization with write 1144 * operations. It is the responsibility of the user to not issue reset 1145 * and finish commands when write operations are in flight. 1146 */ 1147 switch (bio_op(bio)) { 1148 case REQ_OP_ZONE_APPEND: 1149 if (!bdev_emulates_zone_append(bdev)) 1150 return false; 1151 fallthrough; 1152 case REQ_OP_WRITE: 1153 case REQ_OP_WRITE_ZEROES: 1154 return blk_zone_wplug_handle_write(bio, nr_segs); 1155 case REQ_OP_ZONE_RESET: 1156 return blk_zone_wplug_handle_reset_or_finish(bio, 0); 1157 case REQ_OP_ZONE_FINISH: 1158 return blk_zone_wplug_handle_reset_or_finish(bio, 1159 bdev_zone_sectors(bdev)); 1160 case REQ_OP_ZONE_RESET_ALL: 1161 return blk_zone_wplug_handle_reset_all(bio); 1162 default: 1163 return false; 1164 } 1165 1166 return false; 1167 } 1168 EXPORT_SYMBOL_GPL(blk_zone_plug_bio); 1169 1170 static void disk_zone_wplug_schedule_bio_work(struct gendisk *disk, 1171 struct blk_zone_wplug *zwplug) 1172 { 1173 /* 1174 * Take a reference on the zone write plug and schedule the submission 1175 * of the next plugged BIO. blk_zone_wplug_bio_work() will release the 1176 * reference we take here. 1177 */ 1178 WARN_ON_ONCE(!(zwplug->flags & BLK_ZONE_WPLUG_PLUGGED)); 1179 atomic_inc(&zwplug->ref); 1180 queue_work(disk->zone_wplugs_wq, &zwplug->bio_work); 1181 } 1182 1183 static void disk_zone_wplug_unplug_bio(struct gendisk *disk, 1184 struct blk_zone_wplug *zwplug) 1185 { 1186 unsigned long flags; 1187 1188 spin_lock_irqsave(&zwplug->lock, flags); 1189 1190 /* 1191 * If we had an error, schedule error recovery. The recovery work 1192 * will restart submission of plugged BIOs. 1193 */ 1194 if (zwplug->flags & BLK_ZONE_WPLUG_ERROR) { 1195 spin_unlock_irqrestore(&zwplug->lock, flags); 1196 kblockd_schedule_work(&disk->zone_wplugs_work); 1197 return; 1198 } 1199 1200 /* Schedule submission of the next plugged BIO if we have one. */ 1201 if (!bio_list_empty(&zwplug->bio_list)) { 1202 disk_zone_wplug_schedule_bio_work(disk, zwplug); 1203 spin_unlock_irqrestore(&zwplug->lock, flags); 1204 return; 1205 } 1206 1207 zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED; 1208 1209 /* 1210 * If the zone is full (it was fully written or finished, or empty 1211 * (it was reset), remove its zone write plug from the hash table. 1212 */ 1213 if (disk_should_remove_zone_wplug(disk, zwplug)) 1214 disk_remove_zone_wplug(disk, zwplug); 1215 1216 spin_unlock_irqrestore(&zwplug->lock, flags); 1217 } 1218 1219 void blk_zone_write_plug_bio_endio(struct bio *bio) 1220 { 1221 struct gendisk *disk = bio->bi_bdev->bd_disk; 1222 struct blk_zone_wplug *zwplug = 1223 disk_get_zone_wplug(disk, bio->bi_iter.bi_sector); 1224 unsigned long flags; 1225 1226 if (WARN_ON_ONCE(!zwplug)) 1227 return; 1228 1229 /* Make sure we do not see this BIO again by clearing the plug flag. */ 1230 bio_clear_flag(bio, BIO_ZONE_WRITE_PLUGGING); 1231 1232 /* 1233 * If this is a regular write emulating a zone append operation, 1234 * restore the original operation code. 1235 */ 1236 if (bio_flagged(bio, BIO_EMULATES_ZONE_APPEND)) { 1237 bio->bi_opf &= ~REQ_OP_MASK; 1238 bio->bi_opf |= REQ_OP_ZONE_APPEND; 1239 } 1240 1241 /* 1242 * If the BIO failed, mark the plug as having an error to trigger 1243 * recovery. 1244 */ 1245 if (bio->bi_status != BLK_STS_OK) { 1246 spin_lock_irqsave(&zwplug->lock, flags); 1247 disk_zone_wplug_set_error(disk, zwplug); 1248 spin_unlock_irqrestore(&zwplug->lock, flags); 1249 } 1250 1251 /* Drop the reference we took when the BIO was issued. */ 1252 disk_put_zone_wplug(zwplug); 1253 1254 /* 1255 * For BIO-based devices, blk_zone_write_plug_finish_request() 1256 * is not called. So we need to schedule execution of the next 1257 * plugged BIO here. 1258 */ 1259 if (bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) 1260 disk_zone_wplug_unplug_bio(disk, zwplug); 1261 1262 /* Drop the reference we took when entering this function. */ 1263 disk_put_zone_wplug(zwplug); 1264 } 1265 1266 void blk_zone_write_plug_finish_request(struct request *req) 1267 { 1268 struct gendisk *disk = req->q->disk; 1269 struct blk_zone_wplug *zwplug; 1270 1271 zwplug = disk_get_zone_wplug(disk, req->__sector); 1272 if (WARN_ON_ONCE(!zwplug)) 1273 return; 1274 1275 req->rq_flags &= ~RQF_ZONE_WRITE_PLUGGING; 1276 1277 /* 1278 * Drop the reference we took when the request was initialized in 1279 * blk_zone_write_plug_init_request(). 1280 */ 1281 disk_put_zone_wplug(zwplug); 1282 1283 disk_zone_wplug_unplug_bio(disk, zwplug); 1284 1285 /* Drop the reference we took when entering this function. */ 1286 disk_put_zone_wplug(zwplug); 1287 } 1288 1289 static void blk_zone_wplug_bio_work(struct work_struct *work) 1290 { 1291 struct blk_zone_wplug *zwplug = 1292 container_of(work, struct blk_zone_wplug, bio_work); 1293 struct block_device *bdev; 1294 unsigned long flags; 1295 struct bio *bio; 1296 1297 /* 1298 * Submit the next plugged BIO. If we do not have any, clear 1299 * the plugged flag. 1300 */ 1301 spin_lock_irqsave(&zwplug->lock, flags); 1302 1303 bio = bio_list_pop(&zwplug->bio_list); 1304 if (!bio) { 1305 zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED; 1306 spin_unlock_irqrestore(&zwplug->lock, flags); 1307 goto put_zwplug; 1308 } 1309 1310 if (!blk_zone_wplug_prepare_bio(zwplug, bio)) { 1311 /* Error recovery will decide what to do with the BIO. */ 1312 bio_list_add_head(&zwplug->bio_list, bio); 1313 spin_unlock_irqrestore(&zwplug->lock, flags); 1314 goto put_zwplug; 1315 } 1316 1317 spin_unlock_irqrestore(&zwplug->lock, flags); 1318 1319 bdev = bio->bi_bdev; 1320 submit_bio_noacct_nocheck(bio); 1321 1322 /* 1323 * blk-mq devices will reuse the extra reference on the request queue 1324 * usage counter we took when the BIO was plugged, but the submission 1325 * path for BIO-based devices will not do that. So drop this extra 1326 * reference here. 1327 */ 1328 if (bdev_test_flag(bdev, BD_HAS_SUBMIT_BIO)) 1329 blk_queue_exit(bdev->bd_disk->queue); 1330 1331 put_zwplug: 1332 /* Drop the reference we took in disk_zone_wplug_schedule_bio_work(). */ 1333 disk_put_zone_wplug(zwplug); 1334 } 1335 1336 static unsigned int blk_zone_wp_offset(struct blk_zone *zone) 1337 { 1338 switch (zone->cond) { 1339 case BLK_ZONE_COND_IMP_OPEN: 1340 case BLK_ZONE_COND_EXP_OPEN: 1341 case BLK_ZONE_COND_CLOSED: 1342 return zone->wp - zone->start; 1343 case BLK_ZONE_COND_FULL: 1344 return zone->len; 1345 case BLK_ZONE_COND_EMPTY: 1346 return 0; 1347 case BLK_ZONE_COND_NOT_WP: 1348 case BLK_ZONE_COND_OFFLINE: 1349 case BLK_ZONE_COND_READONLY: 1350 default: 1351 /* 1352 * Conventional, offline and read-only zones do not have a valid 1353 * write pointer. 1354 */ 1355 return UINT_MAX; 1356 } 1357 } 1358 1359 static int blk_zone_wplug_report_zone_cb(struct blk_zone *zone, 1360 unsigned int idx, void *data) 1361 { 1362 struct blk_zone *zonep = data; 1363 1364 *zonep = *zone; 1365 return 0; 1366 } 1367 1368 static void disk_zone_wplug_handle_error(struct gendisk *disk, 1369 struct blk_zone_wplug *zwplug) 1370 { 1371 sector_t zone_start_sector = 1372 bdev_zone_sectors(disk->part0) * zwplug->zone_no; 1373 unsigned int noio_flag; 1374 struct blk_zone zone; 1375 unsigned long flags; 1376 int ret; 1377 1378 /* Get the current zone information from the device. */ 1379 noio_flag = memalloc_noio_save(); 1380 ret = disk->fops->report_zones(disk, zone_start_sector, 1, 1381 blk_zone_wplug_report_zone_cb, &zone); 1382 memalloc_noio_restore(noio_flag); 1383 1384 spin_lock_irqsave(&zwplug->lock, flags); 1385 1386 /* 1387 * A zone reset or finish may have cleared the error already. In such 1388 * case, do nothing as the report zones may have seen the "old" write 1389 * pointer value before the reset/finish operation completed. 1390 */ 1391 if (!(zwplug->flags & BLK_ZONE_WPLUG_ERROR)) 1392 goto unlock; 1393 1394 zwplug->flags &= ~BLK_ZONE_WPLUG_ERROR; 1395 1396 if (ret != 1) { 1397 /* 1398 * We failed to get the zone information, meaning that something 1399 * is likely really wrong with the device. Abort all remaining 1400 * plugged BIOs as otherwise we could endup waiting forever on 1401 * plugged BIOs to complete if there is a queue freeze on-going. 1402 */ 1403 disk_zone_wplug_abort(zwplug); 1404 goto unplug; 1405 } 1406 1407 /* Update the zone write pointer offset. */ 1408 zwplug->wp_offset = blk_zone_wp_offset(&zone); 1409 disk_zone_wplug_abort_unaligned(disk, zwplug); 1410 1411 /* Restart BIO submission if we still have any BIO left. */ 1412 if (!bio_list_empty(&zwplug->bio_list)) { 1413 disk_zone_wplug_schedule_bio_work(disk, zwplug); 1414 goto unlock; 1415 } 1416 1417 unplug: 1418 zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED; 1419 if (disk_should_remove_zone_wplug(disk, zwplug)) 1420 disk_remove_zone_wplug(disk, zwplug); 1421 1422 unlock: 1423 spin_unlock_irqrestore(&zwplug->lock, flags); 1424 } 1425 1426 static void disk_zone_wplugs_work(struct work_struct *work) 1427 { 1428 struct gendisk *disk = 1429 container_of(work, struct gendisk, zone_wplugs_work); 1430 struct blk_zone_wplug *zwplug; 1431 unsigned long flags; 1432 1433 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 1434 1435 while (!list_empty(&disk->zone_wplugs_err_list)) { 1436 zwplug = list_first_entry(&disk->zone_wplugs_err_list, 1437 struct blk_zone_wplug, link); 1438 list_del_init(&zwplug->link); 1439 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 1440 1441 disk_zone_wplug_handle_error(disk, zwplug); 1442 disk_put_zone_wplug(zwplug); 1443 1444 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 1445 } 1446 1447 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 1448 } 1449 1450 static inline unsigned int disk_zone_wplugs_hash_size(struct gendisk *disk) 1451 { 1452 return 1U << disk->zone_wplugs_hash_bits; 1453 } 1454 1455 void disk_init_zone_resources(struct gendisk *disk) 1456 { 1457 spin_lock_init(&disk->zone_wplugs_lock); 1458 INIT_LIST_HEAD(&disk->zone_wplugs_err_list); 1459 INIT_WORK(&disk->zone_wplugs_work, disk_zone_wplugs_work); 1460 } 1461 1462 /* 1463 * For the size of a disk zone write plug hash table, use the size of the 1464 * zone write plug mempool, which is the maximum of the disk open zones and 1465 * active zones limits. But do not exceed 4KB (512 hlist head entries), that is, 1466 * 9 bits. For a disk that has no limits, mempool size defaults to 128. 1467 */ 1468 #define BLK_ZONE_WPLUG_MAX_HASH_BITS 9 1469 #define BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE 128 1470 1471 static int disk_alloc_zone_resources(struct gendisk *disk, 1472 unsigned int pool_size) 1473 { 1474 unsigned int i; 1475 1476 disk->zone_wplugs_hash_bits = 1477 min(ilog2(pool_size) + 1, BLK_ZONE_WPLUG_MAX_HASH_BITS); 1478 1479 disk->zone_wplugs_hash = 1480 kcalloc(disk_zone_wplugs_hash_size(disk), 1481 sizeof(struct hlist_head), GFP_KERNEL); 1482 if (!disk->zone_wplugs_hash) 1483 return -ENOMEM; 1484 1485 for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) 1486 INIT_HLIST_HEAD(&disk->zone_wplugs_hash[i]); 1487 1488 disk->zone_wplugs_pool = mempool_create_kmalloc_pool(pool_size, 1489 sizeof(struct blk_zone_wplug)); 1490 if (!disk->zone_wplugs_pool) 1491 goto free_hash; 1492 1493 disk->zone_wplugs_wq = 1494 alloc_workqueue("%s_zwplugs", WQ_MEM_RECLAIM | WQ_HIGHPRI, 1495 pool_size, disk->disk_name); 1496 if (!disk->zone_wplugs_wq) 1497 goto destroy_pool; 1498 1499 return 0; 1500 1501 destroy_pool: 1502 mempool_destroy(disk->zone_wplugs_pool); 1503 disk->zone_wplugs_pool = NULL; 1504 free_hash: 1505 kfree(disk->zone_wplugs_hash); 1506 disk->zone_wplugs_hash = NULL; 1507 disk->zone_wplugs_hash_bits = 0; 1508 return -ENOMEM; 1509 } 1510 1511 static void disk_destroy_zone_wplugs_hash_table(struct gendisk *disk) 1512 { 1513 struct blk_zone_wplug *zwplug; 1514 unsigned int i; 1515 1516 if (!disk->zone_wplugs_hash) 1517 return; 1518 1519 /* Free all the zone write plugs we have. */ 1520 for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) { 1521 while (!hlist_empty(&disk->zone_wplugs_hash[i])) { 1522 zwplug = hlist_entry(disk->zone_wplugs_hash[i].first, 1523 struct blk_zone_wplug, node); 1524 atomic_inc(&zwplug->ref); 1525 disk_remove_zone_wplug(disk, zwplug); 1526 disk_put_zone_wplug(zwplug); 1527 } 1528 } 1529 1530 kfree(disk->zone_wplugs_hash); 1531 disk->zone_wplugs_hash = NULL; 1532 disk->zone_wplugs_hash_bits = 0; 1533 } 1534 1535 void disk_free_zone_resources(struct gendisk *disk) 1536 { 1537 cancel_work_sync(&disk->zone_wplugs_work); 1538 1539 if (disk->zone_wplugs_wq) { 1540 destroy_workqueue(disk->zone_wplugs_wq); 1541 disk->zone_wplugs_wq = NULL; 1542 } 1543 1544 disk_destroy_zone_wplugs_hash_table(disk); 1545 1546 /* 1547 * Wait for the zone write plugs to be RCU-freed before 1548 * destorying the mempool. 1549 */ 1550 rcu_barrier(); 1551 1552 mempool_destroy(disk->zone_wplugs_pool); 1553 disk->zone_wplugs_pool = NULL; 1554 1555 kfree(disk->conv_zones_bitmap); 1556 disk->conv_zones_bitmap = NULL; 1557 disk->zone_capacity = 0; 1558 disk->last_zone_capacity = 0; 1559 disk->nr_zones = 0; 1560 } 1561 1562 static inline bool disk_need_zone_resources(struct gendisk *disk) 1563 { 1564 /* 1565 * All mq zoned devices need zone resources so that the block layer 1566 * can automatically handle write BIO plugging. BIO-based device drivers 1567 * (e.g. DM devices) are normally responsible for handling zone write 1568 * ordering and do not need zone resources, unless the driver requires 1569 * zone append emulation. 1570 */ 1571 return queue_is_mq(disk->queue) || 1572 queue_emulates_zone_append(disk->queue); 1573 } 1574 1575 static int disk_revalidate_zone_resources(struct gendisk *disk, 1576 unsigned int nr_zones) 1577 { 1578 struct queue_limits *lim = &disk->queue->limits; 1579 unsigned int pool_size; 1580 1581 if (!disk_need_zone_resources(disk)) 1582 return 0; 1583 1584 /* 1585 * If the device has no limit on the maximum number of open and active 1586 * zones, use BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE. 1587 */ 1588 pool_size = max(lim->max_open_zones, lim->max_active_zones); 1589 if (!pool_size) 1590 pool_size = min(BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE, nr_zones); 1591 1592 if (!disk->zone_wplugs_hash) 1593 return disk_alloc_zone_resources(disk, pool_size); 1594 1595 return 0; 1596 } 1597 1598 struct blk_revalidate_zone_args { 1599 struct gendisk *disk; 1600 unsigned long *conv_zones_bitmap; 1601 unsigned int nr_zones; 1602 unsigned int zone_capacity; 1603 unsigned int last_zone_capacity; 1604 sector_t sector; 1605 }; 1606 1607 /* 1608 * Update the disk zone resources information and device queue limits. 1609 * The disk queue is frozen when this is executed. 1610 */ 1611 static int disk_update_zone_resources(struct gendisk *disk, 1612 struct blk_revalidate_zone_args *args) 1613 { 1614 struct request_queue *q = disk->queue; 1615 unsigned int nr_seq_zones, nr_conv_zones = 0; 1616 unsigned int pool_size; 1617 struct queue_limits lim; 1618 1619 disk->nr_zones = args->nr_zones; 1620 disk->zone_capacity = args->zone_capacity; 1621 disk->last_zone_capacity = args->last_zone_capacity; 1622 swap(disk->conv_zones_bitmap, args->conv_zones_bitmap); 1623 if (disk->conv_zones_bitmap) 1624 nr_conv_zones = bitmap_weight(disk->conv_zones_bitmap, 1625 disk->nr_zones); 1626 if (nr_conv_zones >= disk->nr_zones) { 1627 pr_warn("%s: Invalid number of conventional zones %u / %u\n", 1628 disk->disk_name, nr_conv_zones, disk->nr_zones); 1629 return -ENODEV; 1630 } 1631 1632 lim = queue_limits_start_update(q); 1633 1634 /* 1635 * Some devices can advertize zone resource limits that are larger than 1636 * the number of sequential zones of the zoned block device, e.g. a 1637 * small ZNS namespace. For such case, assume that the zoned device has 1638 * no zone resource limits. 1639 */ 1640 nr_seq_zones = disk->nr_zones - nr_conv_zones; 1641 if (lim.max_open_zones >= nr_seq_zones) 1642 lim.max_open_zones = 0; 1643 if (lim.max_active_zones >= nr_seq_zones) 1644 lim.max_active_zones = 0; 1645 1646 if (!disk->zone_wplugs_pool) 1647 goto commit; 1648 1649 /* 1650 * If the device has no limit on the maximum number of open and active 1651 * zones, set its max open zone limit to the mempool size to indicate 1652 * to the user that there is a potential performance impact due to 1653 * dynamic zone write plug allocation when simultaneously writing to 1654 * more zones than the size of the mempool. 1655 */ 1656 pool_size = max(lim.max_open_zones, lim.max_active_zones); 1657 if (!pool_size) 1658 pool_size = min(BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE, nr_seq_zones); 1659 1660 mempool_resize(disk->zone_wplugs_pool, pool_size); 1661 1662 if (!lim.max_open_zones && !lim.max_active_zones) { 1663 if (pool_size < nr_seq_zones) 1664 lim.max_open_zones = pool_size; 1665 else 1666 lim.max_open_zones = 0; 1667 } 1668 1669 commit: 1670 return queue_limits_commit_update(q, &lim); 1671 } 1672 1673 static int blk_revalidate_conv_zone(struct blk_zone *zone, unsigned int idx, 1674 struct blk_revalidate_zone_args *args) 1675 { 1676 struct gendisk *disk = args->disk; 1677 struct request_queue *q = disk->queue; 1678 1679 if (zone->capacity != zone->len) { 1680 pr_warn("%s: Invalid conventional zone capacity\n", 1681 disk->disk_name); 1682 return -ENODEV; 1683 } 1684 1685 if (disk_zone_is_last(disk, zone)) 1686 args->last_zone_capacity = zone->capacity; 1687 1688 if (!disk_need_zone_resources(disk)) 1689 return 0; 1690 1691 if (!args->conv_zones_bitmap) { 1692 args->conv_zones_bitmap = 1693 blk_alloc_zone_bitmap(q->node, args->nr_zones); 1694 if (!args->conv_zones_bitmap) 1695 return -ENOMEM; 1696 } 1697 1698 set_bit(idx, args->conv_zones_bitmap); 1699 1700 return 0; 1701 } 1702 1703 static int blk_revalidate_seq_zone(struct blk_zone *zone, unsigned int idx, 1704 struct blk_revalidate_zone_args *args) 1705 { 1706 struct gendisk *disk = args->disk; 1707 struct blk_zone_wplug *zwplug; 1708 unsigned int wp_offset; 1709 unsigned long flags; 1710 1711 /* 1712 * Remember the capacity of the first sequential zone and check 1713 * if it is constant for all zones, ignoring the last zone as it can be 1714 * smaller. 1715 */ 1716 if (!args->zone_capacity) 1717 args->zone_capacity = zone->capacity; 1718 if (disk_zone_is_last(disk, zone)) { 1719 args->last_zone_capacity = zone->capacity; 1720 } else if (zone->capacity != args->zone_capacity) { 1721 pr_warn("%s: Invalid variable zone capacity\n", 1722 disk->disk_name); 1723 return -ENODEV; 1724 } 1725 1726 /* 1727 * We need to track the write pointer of all zones that are not 1728 * empty nor full. So make sure we have a zone write plug for 1729 * such zone if the device has a zone write plug hash table. 1730 */ 1731 if (!disk->zone_wplugs_hash) 1732 return 0; 1733 1734 wp_offset = blk_zone_wp_offset(zone); 1735 if (!wp_offset || wp_offset >= zone->capacity) 1736 return 0; 1737 1738 zwplug = disk_get_and_lock_zone_wplug(disk, zone->wp, GFP_NOIO, &flags); 1739 if (!zwplug) 1740 return -ENOMEM; 1741 spin_unlock_irqrestore(&zwplug->lock, flags); 1742 disk_put_zone_wplug(zwplug); 1743 1744 return 0; 1745 } 1746 1747 /* 1748 * Helper function to check the validity of zones of a zoned block device. 1749 */ 1750 static int blk_revalidate_zone_cb(struct blk_zone *zone, unsigned int idx, 1751 void *data) 1752 { 1753 struct blk_revalidate_zone_args *args = data; 1754 struct gendisk *disk = args->disk; 1755 sector_t zone_sectors = disk->queue->limits.chunk_sectors; 1756 int ret; 1757 1758 /* Check for bad zones and holes in the zone report */ 1759 if (zone->start != args->sector) { 1760 pr_warn("%s: Zone gap at sectors %llu..%llu\n", 1761 disk->disk_name, args->sector, zone->start); 1762 return -ENODEV; 1763 } 1764 1765 if (zone->start >= get_capacity(disk) || !zone->len) { 1766 pr_warn("%s: Invalid zone start %llu, length %llu\n", 1767 disk->disk_name, zone->start, zone->len); 1768 return -ENODEV; 1769 } 1770 1771 /* 1772 * All zones must have the same size, with the exception on an eventual 1773 * smaller last zone. 1774 */ 1775 if (!disk_zone_is_last(disk, zone)) { 1776 if (zone->len != zone_sectors) { 1777 pr_warn("%s: Invalid zoned device with non constant zone size\n", 1778 disk->disk_name); 1779 return -ENODEV; 1780 } 1781 } else if (zone->len > zone_sectors) { 1782 pr_warn("%s: Invalid zoned device with larger last zone size\n", 1783 disk->disk_name); 1784 return -ENODEV; 1785 } 1786 1787 if (!zone->capacity || zone->capacity > zone->len) { 1788 pr_warn("%s: Invalid zone capacity\n", 1789 disk->disk_name); 1790 return -ENODEV; 1791 } 1792 1793 /* Check zone type */ 1794 switch (zone->type) { 1795 case BLK_ZONE_TYPE_CONVENTIONAL: 1796 ret = blk_revalidate_conv_zone(zone, idx, args); 1797 break; 1798 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1799 ret = blk_revalidate_seq_zone(zone, idx, args); 1800 break; 1801 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1802 default: 1803 pr_warn("%s: Invalid zone type 0x%x at sectors %llu\n", 1804 disk->disk_name, (int)zone->type, zone->start); 1805 ret = -ENODEV; 1806 } 1807 1808 if (!ret) 1809 args->sector += zone->len; 1810 1811 return ret; 1812 } 1813 1814 /** 1815 * blk_revalidate_disk_zones - (re)allocate and initialize zone write plugs 1816 * @disk: Target disk 1817 * 1818 * Helper function for low-level device drivers to check, (re) allocate and 1819 * initialize resources used for managing zoned disks. This function should 1820 * normally be called by blk-mq based drivers when a zoned gendisk is probed 1821 * and when the zone configuration of the gendisk changes (e.g. after a format). 1822 * Before calling this function, the device driver must already have set the 1823 * device zone size (chunk_sector limit) and the max zone append limit. 1824 * BIO based drivers can also use this function as long as the device queue 1825 * can be safely frozen. 1826 */ 1827 int blk_revalidate_disk_zones(struct gendisk *disk) 1828 { 1829 struct request_queue *q = disk->queue; 1830 sector_t zone_sectors = q->limits.chunk_sectors; 1831 sector_t capacity = get_capacity(disk); 1832 struct blk_revalidate_zone_args args = { }; 1833 unsigned int noio_flag; 1834 int ret = -ENOMEM; 1835 1836 if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) 1837 return -EIO; 1838 1839 if (!capacity) 1840 return -ENODEV; 1841 1842 /* 1843 * Checks that the device driver indicated a valid zone size and that 1844 * the max zone append limit is set. 1845 */ 1846 if (!zone_sectors || !is_power_of_2(zone_sectors)) { 1847 pr_warn("%s: Invalid non power of two zone size (%llu)\n", 1848 disk->disk_name, zone_sectors); 1849 return -ENODEV; 1850 } 1851 1852 if (!queue_max_zone_append_sectors(q)) { 1853 pr_warn("%s: Invalid 0 maximum zone append limit\n", 1854 disk->disk_name); 1855 return -ENODEV; 1856 } 1857 1858 /* 1859 * Ensure that all memory allocations in this context are done as if 1860 * GFP_NOIO was specified. 1861 */ 1862 args.disk = disk; 1863 args.nr_zones = (capacity + zone_sectors - 1) >> ilog2(zone_sectors); 1864 noio_flag = memalloc_noio_save(); 1865 ret = disk_revalidate_zone_resources(disk, args.nr_zones); 1866 if (ret) { 1867 memalloc_noio_restore(noio_flag); 1868 return ret; 1869 } 1870 ret = disk->fops->report_zones(disk, 0, UINT_MAX, 1871 blk_revalidate_zone_cb, &args); 1872 if (!ret) { 1873 pr_warn("%s: No zones reported\n", disk->disk_name); 1874 ret = -ENODEV; 1875 } 1876 memalloc_noio_restore(noio_flag); 1877 1878 /* 1879 * If zones where reported, make sure that the entire disk capacity 1880 * has been checked. 1881 */ 1882 if (ret > 0 && args.sector != capacity) { 1883 pr_warn("%s: Missing zones from sector %llu\n", 1884 disk->disk_name, args.sector); 1885 ret = -ENODEV; 1886 } 1887 1888 /* 1889 * Set the new disk zone parameters only once the queue is frozen and 1890 * all I/Os are completed. 1891 */ 1892 blk_mq_freeze_queue(q); 1893 if (ret > 0) 1894 ret = disk_update_zone_resources(disk, &args); 1895 else 1896 pr_warn("%s: failed to revalidate zones\n", disk->disk_name); 1897 if (ret) 1898 disk_free_zone_resources(disk); 1899 blk_mq_unfreeze_queue(q); 1900 1901 kfree(args.conv_zones_bitmap); 1902 1903 return ret; 1904 } 1905 EXPORT_SYMBOL_GPL(blk_revalidate_disk_zones); 1906 1907 #ifdef CONFIG_BLK_DEBUG_FS 1908 1909 int queue_zone_wplugs_show(void *data, struct seq_file *m) 1910 { 1911 struct request_queue *q = data; 1912 struct gendisk *disk = q->disk; 1913 struct blk_zone_wplug *zwplug; 1914 unsigned int zwp_wp_offset, zwp_flags; 1915 unsigned int zwp_zone_no, zwp_ref; 1916 unsigned int zwp_bio_list_size, i; 1917 unsigned long flags; 1918 1919 if (!disk->zone_wplugs_hash) 1920 return 0; 1921 1922 rcu_read_lock(); 1923 for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) { 1924 hlist_for_each_entry_rcu(zwplug, 1925 &disk->zone_wplugs_hash[i], node) { 1926 spin_lock_irqsave(&zwplug->lock, flags); 1927 zwp_zone_no = zwplug->zone_no; 1928 zwp_flags = zwplug->flags; 1929 zwp_ref = atomic_read(&zwplug->ref); 1930 zwp_wp_offset = zwplug->wp_offset; 1931 zwp_bio_list_size = bio_list_size(&zwplug->bio_list); 1932 spin_unlock_irqrestore(&zwplug->lock, flags); 1933 1934 seq_printf(m, "%u 0x%x %u %u %u\n", 1935 zwp_zone_no, zwp_flags, zwp_ref, 1936 zwp_wp_offset, zwp_bio_list_size); 1937 } 1938 } 1939 rcu_read_unlock(); 1940 1941 return 0; 1942 } 1943 1944 #endif 1945