xref: /linux/block/blk-wbt.c (revision fbf46565c67c626849c7ce2a326972d3008d2a91)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * buffered writeback throttling. loosely based on CoDel. We can't drop
4  * packets for IO scheduling, so the logic is something like this:
5  *
6  * - Monitor latencies in a defined window of time.
7  * - If the minimum latency in the above window exceeds some target, increment
8  *   scaling step and scale down queue depth by a factor of 2x. The monitoring
9  *   window is then shrunk to 100 / sqrt(scaling step + 1).
10  * - For any window where we don't have solid data on what the latencies
11  *   look like, retain status quo.
12  * - If latencies look good, decrement scaling step.
13  * - If we're only doing writes, allow the scaling step to go negative. This
14  *   will temporarily boost write performance, snapping back to a stable
15  *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
16  *   positive scaling steps where we shrink the monitoring window, a negative
17  *   scaling step retains the default step==0 window size.
18  *
19  * Copyright (C) 2016 Jens Axboe
20  *
21  */
22 #include <linux/kernel.h>
23 #include <linux/blk_types.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/swap.h>
27 
28 #include "blk-wbt.h"
29 #include "blk-rq-qos.h"
30 #include "elevator.h"
31 
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/wbt.h>
34 
35 static inline void wbt_clear_state(struct request *rq)
36 {
37 	rq->wbt_flags = 0;
38 }
39 
40 static inline enum wbt_flags wbt_flags(struct request *rq)
41 {
42 	return rq->wbt_flags;
43 }
44 
45 static inline bool wbt_is_tracked(struct request *rq)
46 {
47 	return rq->wbt_flags & WBT_TRACKED;
48 }
49 
50 static inline bool wbt_is_read(struct request *rq)
51 {
52 	return rq->wbt_flags & WBT_READ;
53 }
54 
55 enum {
56 	/*
57 	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
58 	 * from here depending on device stats
59 	 */
60 	RWB_DEF_DEPTH	= 16,
61 
62 	/*
63 	 * 100msec window
64 	 */
65 	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,
66 
67 	/*
68 	 * Disregard stats, if we don't meet this minimum
69 	 */
70 	RWB_MIN_WRITE_SAMPLES	= 3,
71 
72 	/*
73 	 * If we have this number of consecutive windows with not enough
74 	 * information to scale up or down, scale up.
75 	 */
76 	RWB_UNKNOWN_BUMP	= 5,
77 };
78 
79 static inline bool rwb_enabled(struct rq_wb *rwb)
80 {
81 	return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT &&
82 		      rwb->wb_normal != 0;
83 }
84 
85 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
86 {
87 	if (rwb_enabled(rwb)) {
88 		const unsigned long cur = jiffies;
89 
90 		if (cur != *var)
91 			*var = cur;
92 	}
93 }
94 
95 /*
96  * If a task was rate throttled in balance_dirty_pages() within the last
97  * second or so, use that to indicate a higher cleaning rate.
98  */
99 static bool wb_recent_wait(struct rq_wb *rwb)
100 {
101 	struct bdi_writeback *wb = &rwb->rqos.q->disk->bdi->wb;
102 
103 	return time_before(jiffies, wb->dirty_sleep + HZ);
104 }
105 
106 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
107 					  enum wbt_flags wb_acct)
108 {
109 	if (wb_acct & WBT_KSWAPD)
110 		return &rwb->rq_wait[WBT_RWQ_KSWAPD];
111 	else if (wb_acct & WBT_DISCARD)
112 		return &rwb->rq_wait[WBT_RWQ_DISCARD];
113 
114 	return &rwb->rq_wait[WBT_RWQ_BG];
115 }
116 
117 static void rwb_wake_all(struct rq_wb *rwb)
118 {
119 	int i;
120 
121 	for (i = 0; i < WBT_NUM_RWQ; i++) {
122 		struct rq_wait *rqw = &rwb->rq_wait[i];
123 
124 		if (wq_has_sleeper(&rqw->wait))
125 			wake_up_all(&rqw->wait);
126 	}
127 }
128 
129 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
130 			 enum wbt_flags wb_acct)
131 {
132 	int inflight, limit;
133 
134 	inflight = atomic_dec_return(&rqw->inflight);
135 
136 	/*
137 	 * wbt got disabled with IO in flight. Wake up any potential
138 	 * waiters, we don't have to do more than that.
139 	 */
140 	if (unlikely(!rwb_enabled(rwb))) {
141 		rwb_wake_all(rwb);
142 		return;
143 	}
144 
145 	/*
146 	 * For discards, our limit is always the background. For writes, if
147 	 * the device does write back caching, drop further down before we
148 	 * wake people up.
149 	 */
150 	if (wb_acct & WBT_DISCARD)
151 		limit = rwb->wb_background;
152 	else if (rwb->wc && !wb_recent_wait(rwb))
153 		limit = 0;
154 	else
155 		limit = rwb->wb_normal;
156 
157 	/*
158 	 * Don't wake anyone up if we are above the normal limit.
159 	 */
160 	if (inflight && inflight >= limit)
161 		return;
162 
163 	if (wq_has_sleeper(&rqw->wait)) {
164 		int diff = limit - inflight;
165 
166 		if (!inflight || diff >= rwb->wb_background / 2)
167 			wake_up_all(&rqw->wait);
168 	}
169 }
170 
171 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
172 {
173 	struct rq_wb *rwb = RQWB(rqos);
174 	struct rq_wait *rqw;
175 
176 	if (!(wb_acct & WBT_TRACKED))
177 		return;
178 
179 	rqw = get_rq_wait(rwb, wb_acct);
180 	wbt_rqw_done(rwb, rqw, wb_acct);
181 }
182 
183 /*
184  * Called on completion of a request. Note that it's also called when
185  * a request is merged, when the request gets freed.
186  */
187 static void wbt_done(struct rq_qos *rqos, struct request *rq)
188 {
189 	struct rq_wb *rwb = RQWB(rqos);
190 
191 	if (!wbt_is_tracked(rq)) {
192 		if (rwb->sync_cookie == rq) {
193 			rwb->sync_issue = 0;
194 			rwb->sync_cookie = NULL;
195 		}
196 
197 		if (wbt_is_read(rq))
198 			wb_timestamp(rwb, &rwb->last_comp);
199 	} else {
200 		WARN_ON_ONCE(rq == rwb->sync_cookie);
201 		__wbt_done(rqos, wbt_flags(rq));
202 	}
203 	wbt_clear_state(rq);
204 }
205 
206 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
207 {
208 	/*
209 	 * We need at least one read sample, and a minimum of
210 	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
211 	 * that it's writes impacting us, and not just some sole read on
212 	 * a device that is in a lower power state.
213 	 */
214 	return (stat[READ].nr_samples >= 1 &&
215 		stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
216 }
217 
218 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
219 {
220 	u64 now, issue = READ_ONCE(rwb->sync_issue);
221 
222 	if (!issue || !rwb->sync_cookie)
223 		return 0;
224 
225 	now = ktime_to_ns(ktime_get());
226 	return now - issue;
227 }
228 
229 enum {
230 	LAT_OK = 1,
231 	LAT_UNKNOWN,
232 	LAT_UNKNOWN_WRITES,
233 	LAT_EXCEEDED,
234 };
235 
236 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
237 {
238 	struct backing_dev_info *bdi = rwb->rqos.q->disk->bdi;
239 	struct rq_depth *rqd = &rwb->rq_depth;
240 	u64 thislat;
241 
242 	/*
243 	 * If our stored sync issue exceeds the window size, or it
244 	 * exceeds our min target AND we haven't logged any entries,
245 	 * flag the latency as exceeded. wbt works off completion latencies,
246 	 * but for a flooded device, a single sync IO can take a long time
247 	 * to complete after being issued. If this time exceeds our
248 	 * monitoring window AND we didn't see any other completions in that
249 	 * window, then count that sync IO as a violation of the latency.
250 	 */
251 	thislat = rwb_sync_issue_lat(rwb);
252 	if (thislat > rwb->cur_win_nsec ||
253 	    (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
254 		trace_wbt_lat(bdi, thislat);
255 		return LAT_EXCEEDED;
256 	}
257 
258 	/*
259 	 * No read/write mix, if stat isn't valid
260 	 */
261 	if (!stat_sample_valid(stat)) {
262 		/*
263 		 * If we had writes in this stat window and the window is
264 		 * current, we're only doing writes. If a task recently
265 		 * waited or still has writes in flights, consider us doing
266 		 * just writes as well.
267 		 */
268 		if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
269 		    wbt_inflight(rwb))
270 			return LAT_UNKNOWN_WRITES;
271 		return LAT_UNKNOWN;
272 	}
273 
274 	/*
275 	 * If the 'min' latency exceeds our target, step down.
276 	 */
277 	if (stat[READ].min > rwb->min_lat_nsec) {
278 		trace_wbt_lat(bdi, stat[READ].min);
279 		trace_wbt_stat(bdi, stat);
280 		return LAT_EXCEEDED;
281 	}
282 
283 	if (rqd->scale_step)
284 		trace_wbt_stat(bdi, stat);
285 
286 	return LAT_OK;
287 }
288 
289 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
290 {
291 	struct backing_dev_info *bdi = rwb->rqos.q->disk->bdi;
292 	struct rq_depth *rqd = &rwb->rq_depth;
293 
294 	trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
295 			rwb->wb_background, rwb->wb_normal, rqd->max_depth);
296 }
297 
298 static void calc_wb_limits(struct rq_wb *rwb)
299 {
300 	if (rwb->min_lat_nsec == 0) {
301 		rwb->wb_normal = rwb->wb_background = 0;
302 	} else if (rwb->rq_depth.max_depth <= 2) {
303 		rwb->wb_normal = rwb->rq_depth.max_depth;
304 		rwb->wb_background = 1;
305 	} else {
306 		rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
307 		rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
308 	}
309 }
310 
311 static void scale_up(struct rq_wb *rwb)
312 {
313 	if (!rq_depth_scale_up(&rwb->rq_depth))
314 		return;
315 	calc_wb_limits(rwb);
316 	rwb->unknown_cnt = 0;
317 	rwb_wake_all(rwb);
318 	rwb_trace_step(rwb, tracepoint_string("scale up"));
319 }
320 
321 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
322 {
323 	if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle))
324 		return;
325 	calc_wb_limits(rwb);
326 	rwb->unknown_cnt = 0;
327 	rwb_trace_step(rwb, tracepoint_string("scale down"));
328 }
329 
330 static void rwb_arm_timer(struct rq_wb *rwb)
331 {
332 	struct rq_depth *rqd = &rwb->rq_depth;
333 
334 	if (rqd->scale_step > 0) {
335 		/*
336 		 * We should speed this up, using some variant of a fast
337 		 * integer inverse square root calculation. Since we only do
338 		 * this for every window expiration, it's not a huge deal,
339 		 * though.
340 		 */
341 		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
342 					int_sqrt((rqd->scale_step + 1) << 8));
343 	} else {
344 		/*
345 		 * For step < 0, we don't want to increase/decrease the
346 		 * window size.
347 		 */
348 		rwb->cur_win_nsec = rwb->win_nsec;
349 	}
350 
351 	blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
352 }
353 
354 static void wb_timer_fn(struct blk_stat_callback *cb)
355 {
356 	struct rq_wb *rwb = cb->data;
357 	struct rq_depth *rqd = &rwb->rq_depth;
358 	unsigned int inflight = wbt_inflight(rwb);
359 	int status;
360 
361 	if (!rwb->rqos.q->disk)
362 		return;
363 
364 	status = latency_exceeded(rwb, cb->stat);
365 
366 	trace_wbt_timer(rwb->rqos.q->disk->bdi, status, rqd->scale_step,
367 			inflight);
368 
369 	/*
370 	 * If we exceeded the latency target, step down. If we did not,
371 	 * step one level up. If we don't know enough to say either exceeded
372 	 * or ok, then don't do anything.
373 	 */
374 	switch (status) {
375 	case LAT_EXCEEDED:
376 		scale_down(rwb, true);
377 		break;
378 	case LAT_OK:
379 		scale_up(rwb);
380 		break;
381 	case LAT_UNKNOWN_WRITES:
382 		/*
383 		 * We started a the center step, but don't have a valid
384 		 * read/write sample, but we do have writes going on.
385 		 * Allow step to go negative, to increase write perf.
386 		 */
387 		scale_up(rwb);
388 		break;
389 	case LAT_UNKNOWN:
390 		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
391 			break;
392 		/*
393 		 * We get here when previously scaled reduced depth, and we
394 		 * currently don't have a valid read/write sample. For that
395 		 * case, slowly return to center state (step == 0).
396 		 */
397 		if (rqd->scale_step > 0)
398 			scale_up(rwb);
399 		else if (rqd->scale_step < 0)
400 			scale_down(rwb, false);
401 		break;
402 	default:
403 		break;
404 	}
405 
406 	/*
407 	 * Re-arm timer, if we have IO in flight
408 	 */
409 	if (rqd->scale_step || inflight)
410 		rwb_arm_timer(rwb);
411 }
412 
413 static void wbt_update_limits(struct rq_wb *rwb)
414 {
415 	struct rq_depth *rqd = &rwb->rq_depth;
416 
417 	rqd->scale_step = 0;
418 	rqd->scaled_max = false;
419 
420 	rq_depth_calc_max_depth(rqd);
421 	calc_wb_limits(rwb);
422 
423 	rwb_wake_all(rwb);
424 }
425 
426 bool wbt_disabled(struct request_queue *q)
427 {
428 	struct rq_qos *rqos = wbt_rq_qos(q);
429 
430 	return !rqos || RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT ||
431 	       RQWB(rqos)->enable_state == WBT_STATE_OFF_MANUAL;
432 }
433 
434 u64 wbt_get_min_lat(struct request_queue *q)
435 {
436 	struct rq_qos *rqos = wbt_rq_qos(q);
437 	if (!rqos)
438 		return 0;
439 	return RQWB(rqos)->min_lat_nsec;
440 }
441 
442 void wbt_set_min_lat(struct request_queue *q, u64 val)
443 {
444 	struct rq_qos *rqos = wbt_rq_qos(q);
445 	if (!rqos)
446 		return;
447 
448 	RQWB(rqos)->min_lat_nsec = val;
449 	if (val)
450 		RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
451 	else
452 		RQWB(rqos)->enable_state = WBT_STATE_OFF_MANUAL;
453 
454 	wbt_update_limits(RQWB(rqos));
455 }
456 
457 
458 static bool close_io(struct rq_wb *rwb)
459 {
460 	const unsigned long now = jiffies;
461 
462 	return time_before(now, rwb->last_issue + HZ / 10) ||
463 		time_before(now, rwb->last_comp + HZ / 10);
464 }
465 
466 #define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO)
467 
468 static inline unsigned int get_limit(struct rq_wb *rwb, blk_opf_t opf)
469 {
470 	unsigned int limit;
471 
472 	/*
473 	 * If we got disabled, just return UINT_MAX. This ensures that
474 	 * we'll properly inc a new IO, and dec+wakeup at the end.
475 	 */
476 	if (!rwb_enabled(rwb))
477 		return UINT_MAX;
478 
479 	if ((opf & REQ_OP_MASK) == REQ_OP_DISCARD)
480 		return rwb->wb_background;
481 
482 	/*
483 	 * At this point we know it's a buffered write. If this is
484 	 * kswapd trying to free memory, or REQ_SYNC is set, then
485 	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
486 	 * that. If the write is marked as a background write, then use
487 	 * the idle limit, or go to normal if we haven't had competing
488 	 * IO for a bit.
489 	 */
490 	if ((opf & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
491 		limit = rwb->rq_depth.max_depth;
492 	else if ((opf & REQ_BACKGROUND) || close_io(rwb)) {
493 		/*
494 		 * If less than 100ms since we completed unrelated IO,
495 		 * limit us to half the depth for background writeback.
496 		 */
497 		limit = rwb->wb_background;
498 	} else
499 		limit = rwb->wb_normal;
500 
501 	return limit;
502 }
503 
504 struct wbt_wait_data {
505 	struct rq_wb *rwb;
506 	enum wbt_flags wb_acct;
507 	blk_opf_t opf;
508 };
509 
510 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
511 {
512 	struct wbt_wait_data *data = private_data;
513 	return rq_wait_inc_below(rqw, get_limit(data->rwb, data->opf));
514 }
515 
516 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
517 {
518 	struct wbt_wait_data *data = private_data;
519 	wbt_rqw_done(data->rwb, rqw, data->wb_acct);
520 }
521 
522 /*
523  * Block if we will exceed our limit, or if we are currently waiting for
524  * the timer to kick off queuing again.
525  */
526 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
527 		       blk_opf_t opf)
528 {
529 	struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
530 	struct wbt_wait_data data = {
531 		.rwb = rwb,
532 		.wb_acct = wb_acct,
533 		.opf = opf,
534 	};
535 
536 	rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
537 }
538 
539 static inline bool wbt_should_throttle(struct bio *bio)
540 {
541 	switch (bio_op(bio)) {
542 	case REQ_OP_WRITE:
543 		/*
544 		 * Don't throttle WRITE_ODIRECT
545 		 */
546 		if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
547 		    (REQ_SYNC | REQ_IDLE))
548 			return false;
549 		fallthrough;
550 	case REQ_OP_DISCARD:
551 		return true;
552 	default:
553 		return false;
554 	}
555 }
556 
557 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
558 {
559 	enum wbt_flags flags = 0;
560 
561 	if (!rwb_enabled(rwb))
562 		return 0;
563 
564 	if (bio_op(bio) == REQ_OP_READ) {
565 		flags = WBT_READ;
566 	} else if (wbt_should_throttle(bio)) {
567 		if (current_is_kswapd())
568 			flags |= WBT_KSWAPD;
569 		if (bio_op(bio) == REQ_OP_DISCARD)
570 			flags |= WBT_DISCARD;
571 		flags |= WBT_TRACKED;
572 	}
573 	return flags;
574 }
575 
576 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
577 {
578 	struct rq_wb *rwb = RQWB(rqos);
579 	enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
580 	__wbt_done(rqos, flags);
581 }
582 
583 /*
584  * May sleep, if we have exceeded the writeback limits. Caller can pass
585  * in an irq held spinlock, if it holds one when calling this function.
586  * If we do sleep, we'll release and re-grab it.
587  */
588 static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
589 {
590 	struct rq_wb *rwb = RQWB(rqos);
591 	enum wbt_flags flags;
592 
593 	flags = bio_to_wbt_flags(rwb, bio);
594 	if (!(flags & WBT_TRACKED)) {
595 		if (flags & WBT_READ)
596 			wb_timestamp(rwb, &rwb->last_issue);
597 		return;
598 	}
599 
600 	__wbt_wait(rwb, flags, bio->bi_opf);
601 
602 	if (!blk_stat_is_active(rwb->cb))
603 		rwb_arm_timer(rwb);
604 }
605 
606 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
607 {
608 	struct rq_wb *rwb = RQWB(rqos);
609 	rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
610 }
611 
612 static void wbt_issue(struct rq_qos *rqos, struct request *rq)
613 {
614 	struct rq_wb *rwb = RQWB(rqos);
615 
616 	if (!rwb_enabled(rwb))
617 		return;
618 
619 	/*
620 	 * Track sync issue, in case it takes a long time to complete. Allows us
621 	 * to react quicker, if a sync IO takes a long time to complete. Note
622 	 * that this is just a hint. The request can go away when it completes,
623 	 * so it's important we never dereference it. We only use the address to
624 	 * compare with, which is why we store the sync_issue time locally.
625 	 */
626 	if (wbt_is_read(rq) && !rwb->sync_issue) {
627 		rwb->sync_cookie = rq;
628 		rwb->sync_issue = rq->io_start_time_ns;
629 	}
630 }
631 
632 static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
633 {
634 	struct rq_wb *rwb = RQWB(rqos);
635 	if (!rwb_enabled(rwb))
636 		return;
637 	if (rq == rwb->sync_cookie) {
638 		rwb->sync_issue = 0;
639 		rwb->sync_cookie = NULL;
640 	}
641 }
642 
643 void wbt_set_write_cache(struct request_queue *q, bool write_cache_on)
644 {
645 	struct rq_qos *rqos = wbt_rq_qos(q);
646 	if (rqos)
647 		RQWB(rqos)->wc = write_cache_on;
648 }
649 
650 /*
651  * Enable wbt if defaults are configured that way
652  */
653 void wbt_enable_default(struct request_queue *q)
654 {
655 	struct rq_qos *rqos;
656 	bool disable_flag = q->elevator &&
657 		    test_bit(ELEVATOR_FLAG_DISABLE_WBT, &q->elevator->flags);
658 
659 	/* Throttling already enabled? */
660 	rqos = wbt_rq_qos(q);
661 	if (rqos) {
662 		if (!disable_flag &&
663 		    RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT)
664 			RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT;
665 		return;
666 	}
667 
668 	/* Queue not registered? Maybe shutting down... */
669 	if (!blk_queue_registered(q))
670 		return;
671 
672 	if (queue_is_mq(q) && !disable_flag)
673 		wbt_init(q);
674 }
675 EXPORT_SYMBOL_GPL(wbt_enable_default);
676 
677 u64 wbt_default_latency_nsec(struct request_queue *q)
678 {
679 	/*
680 	 * We default to 2msec for non-rotational storage, and 75msec
681 	 * for rotational storage.
682 	 */
683 	if (blk_queue_nonrot(q))
684 		return 2000000ULL;
685 	else
686 		return 75000000ULL;
687 }
688 
689 static int wbt_data_dir(const struct request *rq)
690 {
691 	const enum req_op op = req_op(rq);
692 
693 	if (op == REQ_OP_READ)
694 		return READ;
695 	else if (op_is_write(op))
696 		return WRITE;
697 
698 	/* don't account */
699 	return -1;
700 }
701 
702 static void wbt_queue_depth_changed(struct rq_qos *rqos)
703 {
704 	RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->q);
705 	wbt_update_limits(RQWB(rqos));
706 }
707 
708 static void wbt_exit(struct rq_qos *rqos)
709 {
710 	struct rq_wb *rwb = RQWB(rqos);
711 	struct request_queue *q = rqos->q;
712 
713 	blk_stat_remove_callback(q, rwb->cb);
714 	blk_stat_free_callback(rwb->cb);
715 	kfree(rwb);
716 }
717 
718 /*
719  * Disable wbt, if enabled by default.
720  */
721 void wbt_disable_default(struct request_queue *q)
722 {
723 	struct rq_qos *rqos = wbt_rq_qos(q);
724 	struct rq_wb *rwb;
725 	if (!rqos)
726 		return;
727 	rwb = RQWB(rqos);
728 	if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
729 		blk_stat_deactivate(rwb->cb);
730 		rwb->enable_state = WBT_STATE_OFF_DEFAULT;
731 	}
732 }
733 EXPORT_SYMBOL_GPL(wbt_disable_default);
734 
735 #ifdef CONFIG_BLK_DEBUG_FS
736 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
737 {
738 	struct rq_qos *rqos = data;
739 	struct rq_wb *rwb = RQWB(rqos);
740 
741 	seq_printf(m, "%llu\n", rwb->cur_win_nsec);
742 	return 0;
743 }
744 
745 static int wbt_enabled_show(void *data, struct seq_file *m)
746 {
747 	struct rq_qos *rqos = data;
748 	struct rq_wb *rwb = RQWB(rqos);
749 
750 	seq_printf(m, "%d\n", rwb->enable_state);
751 	return 0;
752 }
753 
754 static int wbt_id_show(void *data, struct seq_file *m)
755 {
756 	struct rq_qos *rqos = data;
757 
758 	seq_printf(m, "%u\n", rqos->id);
759 	return 0;
760 }
761 
762 static int wbt_inflight_show(void *data, struct seq_file *m)
763 {
764 	struct rq_qos *rqos = data;
765 	struct rq_wb *rwb = RQWB(rqos);
766 	int i;
767 
768 	for (i = 0; i < WBT_NUM_RWQ; i++)
769 		seq_printf(m, "%d: inflight %d\n", i,
770 			   atomic_read(&rwb->rq_wait[i].inflight));
771 	return 0;
772 }
773 
774 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
775 {
776 	struct rq_qos *rqos = data;
777 	struct rq_wb *rwb = RQWB(rqos);
778 
779 	seq_printf(m, "%lu\n", rwb->min_lat_nsec);
780 	return 0;
781 }
782 
783 static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
784 {
785 	struct rq_qos *rqos = data;
786 	struct rq_wb *rwb = RQWB(rqos);
787 
788 	seq_printf(m, "%u\n", rwb->unknown_cnt);
789 	return 0;
790 }
791 
792 static int wbt_normal_show(void *data, struct seq_file *m)
793 {
794 	struct rq_qos *rqos = data;
795 	struct rq_wb *rwb = RQWB(rqos);
796 
797 	seq_printf(m, "%u\n", rwb->wb_normal);
798 	return 0;
799 }
800 
801 static int wbt_background_show(void *data, struct seq_file *m)
802 {
803 	struct rq_qos *rqos = data;
804 	struct rq_wb *rwb = RQWB(rqos);
805 
806 	seq_printf(m, "%u\n", rwb->wb_background);
807 	return 0;
808 }
809 
810 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
811 	{"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
812 	{"enabled", 0400, wbt_enabled_show},
813 	{"id", 0400, wbt_id_show},
814 	{"inflight", 0400, wbt_inflight_show},
815 	{"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
816 	{"unknown_cnt", 0400, wbt_unknown_cnt_show},
817 	{"wb_normal", 0400, wbt_normal_show},
818 	{"wb_background", 0400, wbt_background_show},
819 	{},
820 };
821 #endif
822 
823 static struct rq_qos_ops wbt_rqos_ops = {
824 	.throttle = wbt_wait,
825 	.issue = wbt_issue,
826 	.track = wbt_track,
827 	.requeue = wbt_requeue,
828 	.done = wbt_done,
829 	.cleanup = wbt_cleanup,
830 	.queue_depth_changed = wbt_queue_depth_changed,
831 	.exit = wbt_exit,
832 #ifdef CONFIG_BLK_DEBUG_FS
833 	.debugfs_attrs = wbt_debugfs_attrs,
834 #endif
835 };
836 
837 int wbt_init(struct request_queue *q)
838 {
839 	struct rq_wb *rwb;
840 	int i;
841 	int ret;
842 
843 	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
844 	if (!rwb)
845 		return -ENOMEM;
846 
847 	rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
848 	if (!rwb->cb) {
849 		kfree(rwb);
850 		return -ENOMEM;
851 	}
852 
853 	for (i = 0; i < WBT_NUM_RWQ; i++)
854 		rq_wait_init(&rwb->rq_wait[i]);
855 
856 	rwb->rqos.id = RQ_QOS_WBT;
857 	rwb->rqos.ops = &wbt_rqos_ops;
858 	rwb->rqos.q = q;
859 	rwb->last_comp = rwb->last_issue = jiffies;
860 	rwb->win_nsec = RWB_WINDOW_NSEC;
861 	rwb->enable_state = WBT_STATE_ON_DEFAULT;
862 	rwb->wc = test_bit(QUEUE_FLAG_WC, &q->queue_flags);
863 	rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
864 	rwb->min_lat_nsec = wbt_default_latency_nsec(q);
865 
866 	wbt_queue_depth_changed(&rwb->rqos);
867 
868 	/*
869 	 * Assign rwb and add the stats callback.
870 	 */
871 	ret = rq_qos_add(q, &rwb->rqos);
872 	if (ret)
873 		goto err_free;
874 
875 	blk_stat_add_callback(q, rwb->cb);
876 
877 	return 0;
878 
879 err_free:
880 	blk_stat_free_callback(rwb->cb);
881 	kfree(rwb);
882 	return ret;
883 
884 }
885