xref: /linux/block/blk-wbt.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * buffered writeback throttling. loosely based on CoDel. We can't drop
3  * packets for IO scheduling, so the logic is something like this:
4  *
5  * - Monitor latencies in a defined window of time.
6  * - If the minimum latency in the above window exceeds some target, increment
7  *   scaling step and scale down queue depth by a factor of 2x. The monitoring
8  *   window is then shrunk to 100 / sqrt(scaling step + 1).
9  * - For any window where we don't have solid data on what the latencies
10  *   look like, retain status quo.
11  * - If latencies look good, decrement scaling step.
12  * - If we're only doing writes, allow the scaling step to go negative. This
13  *   will temporarily boost write performance, snapping back to a stable
14  *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
15  *   positive scaling steps where we shrink the monitoring window, a negative
16  *   scaling step retains the default step==0 window size.
17  *
18  * Copyright (C) 2016 Jens Axboe
19  *
20  */
21 #include <linux/kernel.h>
22 #include <linux/blk_types.h>
23 #include <linux/slab.h>
24 #include <linux/backing-dev.h>
25 #include <linux/swap.h>
26 
27 #include "blk-wbt.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/wbt.h>
31 
32 enum {
33 	/*
34 	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
35 	 * from here depending on device stats
36 	 */
37 	RWB_DEF_DEPTH	= 16,
38 
39 	/*
40 	 * 100msec window
41 	 */
42 	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,
43 
44 	/*
45 	 * Disregard stats, if we don't meet this minimum
46 	 */
47 	RWB_MIN_WRITE_SAMPLES	= 3,
48 
49 	/*
50 	 * If we have this number of consecutive windows with not enough
51 	 * information to scale up or down, scale up.
52 	 */
53 	RWB_UNKNOWN_BUMP	= 5,
54 };
55 
56 static inline bool rwb_enabled(struct rq_wb *rwb)
57 {
58 	return rwb && rwb->wb_normal != 0;
59 }
60 
61 /*
62  * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
63  * false if 'v' + 1 would be bigger than 'below'.
64  */
65 static bool atomic_inc_below(atomic_t *v, int below)
66 {
67 	int cur = atomic_read(v);
68 
69 	for (;;) {
70 		int old;
71 
72 		if (cur >= below)
73 			return false;
74 		old = atomic_cmpxchg(v, cur, cur + 1);
75 		if (old == cur)
76 			break;
77 		cur = old;
78 	}
79 
80 	return true;
81 }
82 
83 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
84 {
85 	if (rwb_enabled(rwb)) {
86 		const unsigned long cur = jiffies;
87 
88 		if (cur != *var)
89 			*var = cur;
90 	}
91 }
92 
93 /*
94  * If a task was rate throttled in balance_dirty_pages() within the last
95  * second or so, use that to indicate a higher cleaning rate.
96  */
97 static bool wb_recent_wait(struct rq_wb *rwb)
98 {
99 	struct bdi_writeback *wb = &rwb->queue->backing_dev_info->wb;
100 
101 	return time_before(jiffies, wb->dirty_sleep + HZ);
102 }
103 
104 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, bool is_kswapd)
105 {
106 	return &rwb->rq_wait[is_kswapd];
107 }
108 
109 static void rwb_wake_all(struct rq_wb *rwb)
110 {
111 	int i;
112 
113 	for (i = 0; i < WBT_NUM_RWQ; i++) {
114 		struct rq_wait *rqw = &rwb->rq_wait[i];
115 
116 		if (waitqueue_active(&rqw->wait))
117 			wake_up_all(&rqw->wait);
118 	}
119 }
120 
121 void __wbt_done(struct rq_wb *rwb, enum wbt_flags wb_acct)
122 {
123 	struct rq_wait *rqw;
124 	int inflight, limit;
125 
126 	if (!(wb_acct & WBT_TRACKED))
127 		return;
128 
129 	rqw = get_rq_wait(rwb, wb_acct & WBT_KSWAPD);
130 	inflight = atomic_dec_return(&rqw->inflight);
131 
132 	/*
133 	 * wbt got disabled with IO in flight. Wake up any potential
134 	 * waiters, we don't have to do more than that.
135 	 */
136 	if (unlikely(!rwb_enabled(rwb))) {
137 		rwb_wake_all(rwb);
138 		return;
139 	}
140 
141 	/*
142 	 * If the device does write back caching, drop further down
143 	 * before we wake people up.
144 	 */
145 	if (rwb->wc && !wb_recent_wait(rwb))
146 		limit = 0;
147 	else
148 		limit = rwb->wb_normal;
149 
150 	/*
151 	 * Don't wake anyone up if we are above the normal limit.
152 	 */
153 	if (inflight && inflight >= limit)
154 		return;
155 
156 	if (waitqueue_active(&rqw->wait)) {
157 		int diff = limit - inflight;
158 
159 		if (!inflight || diff >= rwb->wb_background / 2)
160 			wake_up_all(&rqw->wait);
161 	}
162 }
163 
164 /*
165  * Called on completion of a request. Note that it's also called when
166  * a request is merged, when the request gets freed.
167  */
168 void wbt_done(struct rq_wb *rwb, struct blk_issue_stat *stat)
169 {
170 	if (!rwb)
171 		return;
172 
173 	if (!wbt_is_tracked(stat)) {
174 		if (rwb->sync_cookie == stat) {
175 			rwb->sync_issue = 0;
176 			rwb->sync_cookie = NULL;
177 		}
178 
179 		if (wbt_is_read(stat))
180 			wb_timestamp(rwb, &rwb->last_comp);
181 		wbt_clear_state(stat);
182 	} else {
183 		WARN_ON_ONCE(stat == rwb->sync_cookie);
184 		__wbt_done(rwb, wbt_stat_to_mask(stat));
185 		wbt_clear_state(stat);
186 	}
187 }
188 
189 /*
190  * Return true, if we can't increase the depth further by scaling
191  */
192 static bool calc_wb_limits(struct rq_wb *rwb)
193 {
194 	unsigned int depth;
195 	bool ret = false;
196 
197 	if (!rwb->min_lat_nsec) {
198 		rwb->wb_max = rwb->wb_normal = rwb->wb_background = 0;
199 		return false;
200 	}
201 
202 	/*
203 	 * For QD=1 devices, this is a special case. It's important for those
204 	 * to have one request ready when one completes, so force a depth of
205 	 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
206 	 * since the device can't have more than that in flight. If we're
207 	 * scaling down, then keep a setting of 1/1/1.
208 	 */
209 	if (rwb->queue_depth == 1) {
210 		if (rwb->scale_step > 0)
211 			rwb->wb_max = rwb->wb_normal = 1;
212 		else {
213 			rwb->wb_max = rwb->wb_normal = 2;
214 			ret = true;
215 		}
216 		rwb->wb_background = 1;
217 	} else {
218 		/*
219 		 * scale_step == 0 is our default state. If we have suffered
220 		 * latency spikes, step will be > 0, and we shrink the
221 		 * allowed write depths. If step is < 0, we're only doing
222 		 * writes, and we allow a temporarily higher depth to
223 		 * increase performance.
224 		 */
225 		depth = min_t(unsigned int, RWB_DEF_DEPTH, rwb->queue_depth);
226 		if (rwb->scale_step > 0)
227 			depth = 1 + ((depth - 1) >> min(31, rwb->scale_step));
228 		else if (rwb->scale_step < 0) {
229 			unsigned int maxd = 3 * rwb->queue_depth / 4;
230 
231 			depth = 1 + ((depth - 1) << -rwb->scale_step);
232 			if (depth > maxd) {
233 				depth = maxd;
234 				ret = true;
235 			}
236 		}
237 
238 		/*
239 		 * Set our max/normal/bg queue depths based on how far
240 		 * we have scaled down (->scale_step).
241 		 */
242 		rwb->wb_max = depth;
243 		rwb->wb_normal = (rwb->wb_max + 1) / 2;
244 		rwb->wb_background = (rwb->wb_max + 3) / 4;
245 	}
246 
247 	return ret;
248 }
249 
250 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
251 {
252 	/*
253 	 * We need at least one read sample, and a minimum of
254 	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
255 	 * that it's writes impacting us, and not just some sole read on
256 	 * a device that is in a lower power state.
257 	 */
258 	return stat[BLK_STAT_READ].nr_samples >= 1 &&
259 		stat[BLK_STAT_WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES;
260 }
261 
262 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
263 {
264 	u64 now, issue = ACCESS_ONCE(rwb->sync_issue);
265 
266 	if (!issue || !rwb->sync_cookie)
267 		return 0;
268 
269 	now = ktime_to_ns(ktime_get());
270 	return now - issue;
271 }
272 
273 enum {
274 	LAT_OK = 1,
275 	LAT_UNKNOWN,
276 	LAT_UNKNOWN_WRITES,
277 	LAT_EXCEEDED,
278 };
279 
280 static int __latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
281 {
282 	struct backing_dev_info *bdi = rwb->queue->backing_dev_info;
283 	u64 thislat;
284 
285 	/*
286 	 * If our stored sync issue exceeds the window size, or it
287 	 * exceeds our min target AND we haven't logged any entries,
288 	 * flag the latency as exceeded. wbt works off completion latencies,
289 	 * but for a flooded device, a single sync IO can take a long time
290 	 * to complete after being issued. If this time exceeds our
291 	 * monitoring window AND we didn't see any other completions in that
292 	 * window, then count that sync IO as a violation of the latency.
293 	 */
294 	thislat = rwb_sync_issue_lat(rwb);
295 	if (thislat > rwb->cur_win_nsec ||
296 	    (thislat > rwb->min_lat_nsec && !stat[BLK_STAT_READ].nr_samples)) {
297 		trace_wbt_lat(bdi, thislat);
298 		return LAT_EXCEEDED;
299 	}
300 
301 	/*
302 	 * No read/write mix, if stat isn't valid
303 	 */
304 	if (!stat_sample_valid(stat)) {
305 		/*
306 		 * If we had writes in this stat window and the window is
307 		 * current, we're only doing writes. If a task recently
308 		 * waited or still has writes in flights, consider us doing
309 		 * just writes as well.
310 		 */
311 		if ((stat[BLK_STAT_WRITE].nr_samples && blk_stat_is_current(stat)) ||
312 		    wb_recent_wait(rwb) || wbt_inflight(rwb))
313 			return LAT_UNKNOWN_WRITES;
314 		return LAT_UNKNOWN;
315 	}
316 
317 	/*
318 	 * If the 'min' latency exceeds our target, step down.
319 	 */
320 	if (stat[BLK_STAT_READ].min > rwb->min_lat_nsec) {
321 		trace_wbt_lat(bdi, stat[BLK_STAT_READ].min);
322 		trace_wbt_stat(bdi, stat);
323 		return LAT_EXCEEDED;
324 	}
325 
326 	if (rwb->scale_step)
327 		trace_wbt_stat(bdi, stat);
328 
329 	return LAT_OK;
330 }
331 
332 static int latency_exceeded(struct rq_wb *rwb)
333 {
334 	struct blk_rq_stat stat[2];
335 
336 	blk_queue_stat_get(rwb->queue, stat);
337 	return __latency_exceeded(rwb, stat);
338 }
339 
340 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
341 {
342 	struct backing_dev_info *bdi = rwb->queue->backing_dev_info;
343 
344 	trace_wbt_step(bdi, msg, rwb->scale_step, rwb->cur_win_nsec,
345 			rwb->wb_background, rwb->wb_normal, rwb->wb_max);
346 }
347 
348 static void scale_up(struct rq_wb *rwb)
349 {
350 	/*
351 	 * Hit max in previous round, stop here
352 	 */
353 	if (rwb->scaled_max)
354 		return;
355 
356 	rwb->scale_step--;
357 	rwb->unknown_cnt = 0;
358 	blk_stat_clear(rwb->queue);
359 
360 	rwb->scaled_max = calc_wb_limits(rwb);
361 
362 	rwb_wake_all(rwb);
363 
364 	rwb_trace_step(rwb, "step up");
365 }
366 
367 /*
368  * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
369  * had a latency violation.
370  */
371 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
372 {
373 	/*
374 	 * Stop scaling down when we've hit the limit. This also prevents
375 	 * ->scale_step from going to crazy values, if the device can't
376 	 * keep up.
377 	 */
378 	if (rwb->wb_max == 1)
379 		return;
380 
381 	if (rwb->scale_step < 0 && hard_throttle)
382 		rwb->scale_step = 0;
383 	else
384 		rwb->scale_step++;
385 
386 	rwb->scaled_max = false;
387 	rwb->unknown_cnt = 0;
388 	blk_stat_clear(rwb->queue);
389 	calc_wb_limits(rwb);
390 	rwb_trace_step(rwb, "step down");
391 }
392 
393 static void rwb_arm_timer(struct rq_wb *rwb)
394 {
395 	unsigned long expires;
396 
397 	if (rwb->scale_step > 0) {
398 		/*
399 		 * We should speed this up, using some variant of a fast
400 		 * integer inverse square root calculation. Since we only do
401 		 * this for every window expiration, it's not a huge deal,
402 		 * though.
403 		 */
404 		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
405 					int_sqrt((rwb->scale_step + 1) << 8));
406 	} else {
407 		/*
408 		 * For step < 0, we don't want to increase/decrease the
409 		 * window size.
410 		 */
411 		rwb->cur_win_nsec = rwb->win_nsec;
412 	}
413 
414 	expires = jiffies + nsecs_to_jiffies(rwb->cur_win_nsec);
415 	mod_timer(&rwb->window_timer, expires);
416 }
417 
418 static void wb_timer_fn(unsigned long data)
419 {
420 	struct rq_wb *rwb = (struct rq_wb *) data;
421 	unsigned int inflight = wbt_inflight(rwb);
422 	int status;
423 
424 	status = latency_exceeded(rwb);
425 
426 	trace_wbt_timer(rwb->queue->backing_dev_info, status, rwb->scale_step,
427 			inflight);
428 
429 	/*
430 	 * If we exceeded the latency target, step down. If we did not,
431 	 * step one level up. If we don't know enough to say either exceeded
432 	 * or ok, then don't do anything.
433 	 */
434 	switch (status) {
435 	case LAT_EXCEEDED:
436 		scale_down(rwb, true);
437 		break;
438 	case LAT_OK:
439 		scale_up(rwb);
440 		break;
441 	case LAT_UNKNOWN_WRITES:
442 		/*
443 		 * We started a the center step, but don't have a valid
444 		 * read/write sample, but we do have writes going on.
445 		 * Allow step to go negative, to increase write perf.
446 		 */
447 		scale_up(rwb);
448 		break;
449 	case LAT_UNKNOWN:
450 		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
451 			break;
452 		/*
453 		 * We get here when previously scaled reduced depth, and we
454 		 * currently don't have a valid read/write sample. For that
455 		 * case, slowly return to center state (step == 0).
456 		 */
457 		if (rwb->scale_step > 0)
458 			scale_up(rwb);
459 		else if (rwb->scale_step < 0)
460 			scale_down(rwb, false);
461 		break;
462 	default:
463 		break;
464 	}
465 
466 	/*
467 	 * Re-arm timer, if we have IO in flight
468 	 */
469 	if (rwb->scale_step || inflight)
470 		rwb_arm_timer(rwb);
471 }
472 
473 void wbt_update_limits(struct rq_wb *rwb)
474 {
475 	rwb->scale_step = 0;
476 	rwb->scaled_max = false;
477 	calc_wb_limits(rwb);
478 
479 	rwb_wake_all(rwb);
480 }
481 
482 static bool close_io(struct rq_wb *rwb)
483 {
484 	const unsigned long now = jiffies;
485 
486 	return time_before(now, rwb->last_issue + HZ / 10) ||
487 		time_before(now, rwb->last_comp + HZ / 10);
488 }
489 
490 #define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO)
491 
492 static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
493 {
494 	unsigned int limit;
495 
496 	/*
497 	 * At this point we know it's a buffered write. If this is
498 	 * kswapd trying to free memory, or REQ_SYNC is set, set, then
499 	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
500 	 * that. If the write is marked as a background write, then use
501 	 * the idle limit, or go to normal if we haven't had competing
502 	 * IO for a bit.
503 	 */
504 	if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
505 		limit = rwb->wb_max;
506 	else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
507 		/*
508 		 * If less than 100ms since we completed unrelated IO,
509 		 * limit us to half the depth for background writeback.
510 		 */
511 		limit = rwb->wb_background;
512 	} else
513 		limit = rwb->wb_normal;
514 
515 	return limit;
516 }
517 
518 static inline bool may_queue(struct rq_wb *rwb, struct rq_wait *rqw,
519 			     wait_queue_t *wait, unsigned long rw)
520 {
521 	/*
522 	 * inc it here even if disabled, since we'll dec it at completion.
523 	 * this only happens if the task was sleeping in __wbt_wait(),
524 	 * and someone turned it off at the same time.
525 	 */
526 	if (!rwb_enabled(rwb)) {
527 		atomic_inc(&rqw->inflight);
528 		return true;
529 	}
530 
531 	/*
532 	 * If the waitqueue is already active and we are not the next
533 	 * in line to be woken up, wait for our turn.
534 	 */
535 	if (waitqueue_active(&rqw->wait) &&
536 	    rqw->wait.task_list.next != &wait->task_list)
537 		return false;
538 
539 	return atomic_inc_below(&rqw->inflight, get_limit(rwb, rw));
540 }
541 
542 /*
543  * Block if we will exceed our limit, or if we are currently waiting for
544  * the timer to kick off queuing again.
545  */
546 static void __wbt_wait(struct rq_wb *rwb, unsigned long rw, spinlock_t *lock)
547 	__releases(lock)
548 	__acquires(lock)
549 {
550 	struct rq_wait *rqw = get_rq_wait(rwb, current_is_kswapd());
551 	DEFINE_WAIT(wait);
552 
553 	if (may_queue(rwb, rqw, &wait, rw))
554 		return;
555 
556 	do {
557 		prepare_to_wait_exclusive(&rqw->wait, &wait,
558 						TASK_UNINTERRUPTIBLE);
559 
560 		if (may_queue(rwb, rqw, &wait, rw))
561 			break;
562 
563 		if (lock) {
564 			spin_unlock_irq(lock);
565 			io_schedule();
566 			spin_lock_irq(lock);
567 		} else
568 			io_schedule();
569 	} while (1);
570 
571 	finish_wait(&rqw->wait, &wait);
572 }
573 
574 static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
575 {
576 	const int op = bio_op(bio);
577 
578 	/*
579 	 * If not a WRITE, do nothing
580 	 */
581 	if (op != REQ_OP_WRITE)
582 		return false;
583 
584 	/*
585 	 * Don't throttle WRITE_ODIRECT
586 	 */
587 	if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == (REQ_SYNC | REQ_IDLE))
588 		return false;
589 
590 	return true;
591 }
592 
593 /*
594  * Returns true if the IO request should be accounted, false if not.
595  * May sleep, if we have exceeded the writeback limits. Caller can pass
596  * in an irq held spinlock, if it holds one when calling this function.
597  * If we do sleep, we'll release and re-grab it.
598  */
599 enum wbt_flags wbt_wait(struct rq_wb *rwb, struct bio *bio, spinlock_t *lock)
600 {
601 	unsigned int ret = 0;
602 
603 	if (!rwb_enabled(rwb))
604 		return 0;
605 
606 	if (bio_op(bio) == REQ_OP_READ)
607 		ret = WBT_READ;
608 
609 	if (!wbt_should_throttle(rwb, bio)) {
610 		if (ret & WBT_READ)
611 			wb_timestamp(rwb, &rwb->last_issue);
612 		return ret;
613 	}
614 
615 	__wbt_wait(rwb, bio->bi_opf, lock);
616 
617 	if (!timer_pending(&rwb->window_timer))
618 		rwb_arm_timer(rwb);
619 
620 	if (current_is_kswapd())
621 		ret |= WBT_KSWAPD;
622 
623 	return ret | WBT_TRACKED;
624 }
625 
626 void wbt_issue(struct rq_wb *rwb, struct blk_issue_stat *stat)
627 {
628 	if (!rwb_enabled(rwb))
629 		return;
630 
631 	/*
632 	 * Track sync issue, in case it takes a long time to complete. Allows
633 	 * us to react quicker, if a sync IO takes a long time to complete.
634 	 * Note that this is just a hint. 'stat' can go away when the
635 	 * request completes, so it's important we never dereference it. We
636 	 * only use the address to compare with, which is why we store the
637 	 * sync_issue time locally.
638 	 */
639 	if (wbt_is_read(stat) && !rwb->sync_issue) {
640 		rwb->sync_cookie = stat;
641 		rwb->sync_issue = blk_stat_time(stat);
642 	}
643 }
644 
645 void wbt_requeue(struct rq_wb *rwb, struct blk_issue_stat *stat)
646 {
647 	if (!rwb_enabled(rwb))
648 		return;
649 	if (stat == rwb->sync_cookie) {
650 		rwb->sync_issue = 0;
651 		rwb->sync_cookie = NULL;
652 	}
653 }
654 
655 void wbt_set_queue_depth(struct rq_wb *rwb, unsigned int depth)
656 {
657 	if (rwb) {
658 		rwb->queue_depth = depth;
659 		wbt_update_limits(rwb);
660 	}
661 }
662 
663 void wbt_set_write_cache(struct rq_wb *rwb, bool write_cache_on)
664 {
665 	if (rwb)
666 		rwb->wc = write_cache_on;
667 }
668 
669  /*
670  * Disable wbt, if enabled by default. Only called from CFQ, if we have
671  * cgroups enabled
672  */
673 void wbt_disable_default(struct request_queue *q)
674 {
675 	struct rq_wb *rwb = q->rq_wb;
676 
677 	if (rwb && rwb->enable_state == WBT_STATE_ON_DEFAULT) {
678 		del_timer_sync(&rwb->window_timer);
679 		rwb->win_nsec = rwb->min_lat_nsec = 0;
680 		wbt_update_limits(rwb);
681 	}
682 }
683 EXPORT_SYMBOL_GPL(wbt_disable_default);
684 
685 u64 wbt_default_latency_nsec(struct request_queue *q)
686 {
687 	/*
688 	 * We default to 2msec for non-rotational storage, and 75msec
689 	 * for rotational storage.
690 	 */
691 	if (blk_queue_nonrot(q))
692 		return 2000000ULL;
693 	else
694 		return 75000000ULL;
695 }
696 
697 int wbt_init(struct request_queue *q)
698 {
699 	struct rq_wb *rwb;
700 	int i;
701 
702 	/*
703 	 * For now, we depend on the stats window being larger than
704 	 * our monitoring window. Ensure that this isn't inadvertently
705 	 * violated.
706 	 */
707 	BUILD_BUG_ON(RWB_WINDOW_NSEC > BLK_STAT_NSEC);
708 	BUILD_BUG_ON(WBT_NR_BITS > BLK_STAT_RES_BITS);
709 
710 	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
711 	if (!rwb)
712 		return -ENOMEM;
713 
714 	for (i = 0; i < WBT_NUM_RWQ; i++) {
715 		atomic_set(&rwb->rq_wait[i].inflight, 0);
716 		init_waitqueue_head(&rwb->rq_wait[i].wait);
717 	}
718 
719 	setup_timer(&rwb->window_timer, wb_timer_fn, (unsigned long) rwb);
720 	rwb->wc = 1;
721 	rwb->queue_depth = RWB_DEF_DEPTH;
722 	rwb->last_comp = rwb->last_issue = jiffies;
723 	rwb->queue = q;
724 	rwb->win_nsec = RWB_WINDOW_NSEC;
725 	rwb->enable_state = WBT_STATE_ON_DEFAULT;
726 	wbt_update_limits(rwb);
727 
728 	/*
729 	 * Assign rwb, and turn on stats tracking for this queue
730 	 */
731 	q->rq_wb = rwb;
732 	blk_stat_enable(q);
733 
734 	rwb->min_lat_nsec = wbt_default_latency_nsec(q);
735 
736 	wbt_set_queue_depth(rwb, blk_queue_depth(q));
737 	wbt_set_write_cache(rwb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
738 
739 	return 0;
740 }
741 
742 void wbt_exit(struct request_queue *q)
743 {
744 	struct rq_wb *rwb = q->rq_wb;
745 
746 	if (rwb) {
747 		del_timer_sync(&rwb->window_timer);
748 		q->rq_wb = NULL;
749 		kfree(rwb);
750 	}
751 }
752