1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * buffered writeback throttling. loosely based on CoDel. We can't drop 4 * packets for IO scheduling, so the logic is something like this: 5 * 6 * - Monitor latencies in a defined window of time. 7 * - If the minimum latency in the above window exceeds some target, increment 8 * scaling step and scale down queue depth by a factor of 2x. The monitoring 9 * window is then shrunk to 100 / sqrt(scaling step + 1). 10 * - For any window where we don't have solid data on what the latencies 11 * look like, retain status quo. 12 * - If latencies look good, decrement scaling step. 13 * - If we're only doing writes, allow the scaling step to go negative. This 14 * will temporarily boost write performance, snapping back to a stable 15 * scaling step of 0 if reads show up or the heavy writers finish. Unlike 16 * positive scaling steps where we shrink the monitoring window, a negative 17 * scaling step retains the default step==0 window size. 18 * 19 * Copyright (C) 2016 Jens Axboe 20 * 21 */ 22 #include <linux/kernel.h> 23 #include <linux/blk_types.h> 24 #include <linux/slab.h> 25 #include <linux/backing-dev.h> 26 #include <linux/swap.h> 27 28 #include "blk-stat.h" 29 #include "blk-wbt.h" 30 #include "blk-rq-qos.h" 31 #include "elevator.h" 32 #include "blk.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/wbt.h> 36 37 enum wbt_flags { 38 WBT_TRACKED = 1, /* write, tracked for throttling */ 39 WBT_READ = 2, /* read */ 40 WBT_SWAP = 4, /* write, from swap_writeout() */ 41 WBT_DISCARD = 8, /* discard */ 42 43 WBT_NR_BITS = 4, /* number of bits */ 44 }; 45 46 enum { 47 WBT_RWQ_BG = 0, 48 WBT_RWQ_SWAP, 49 WBT_RWQ_DISCARD, 50 WBT_NUM_RWQ, 51 }; 52 53 /* 54 * If current state is WBT_STATE_ON/OFF_DEFAULT, it can be covered to any other 55 * state, if current state is WBT_STATE_ON/OFF_MANUAL, it can only be covered 56 * to WBT_STATE_OFF/ON_MANUAL. 57 */ 58 enum { 59 WBT_STATE_ON_DEFAULT = 1, /* on by default */ 60 WBT_STATE_ON_MANUAL = 2, /* on manually by sysfs */ 61 WBT_STATE_OFF_DEFAULT = 3, /* off by default */ 62 WBT_STATE_OFF_MANUAL = 4, /* off manually by sysfs */ 63 }; 64 65 struct rq_wb { 66 /* 67 * Settings that govern how we throttle 68 */ 69 unsigned int wb_background; /* background writeback */ 70 unsigned int wb_normal; /* normal writeback */ 71 72 short enable_state; /* WBT_STATE_* */ 73 74 /* 75 * Number of consecutive periods where we don't have enough 76 * information to make a firm scale up/down decision. 77 */ 78 unsigned int unknown_cnt; 79 80 u64 win_nsec; /* default window size */ 81 u64 cur_win_nsec; /* current window size */ 82 83 struct blk_stat_callback *cb; 84 85 u64 sync_issue; 86 void *sync_cookie; 87 88 unsigned long last_issue; /* issue time of last read rq */ 89 unsigned long last_comp; /* completion time of last read rq */ 90 unsigned long min_lat_nsec; 91 struct rq_qos rqos; 92 struct rq_wait rq_wait[WBT_NUM_RWQ]; 93 struct rq_depth rq_depth; 94 }; 95 96 static inline struct rq_wb *RQWB(struct rq_qos *rqos) 97 { 98 return container_of(rqos, struct rq_wb, rqos); 99 } 100 101 static inline void wbt_clear_state(struct request *rq) 102 { 103 rq->wbt_flags = 0; 104 } 105 106 static inline enum wbt_flags wbt_flags(struct request *rq) 107 { 108 return rq->wbt_flags; 109 } 110 111 static inline bool wbt_is_tracked(struct request *rq) 112 { 113 return rq->wbt_flags & WBT_TRACKED; 114 } 115 116 static inline bool wbt_is_read(struct request *rq) 117 { 118 return rq->wbt_flags & WBT_READ; 119 } 120 121 enum { 122 /* 123 * Default setting, we'll scale up (to 75% of QD max) or down (min 1) 124 * from here depending on device stats 125 */ 126 RWB_DEF_DEPTH = 16, 127 128 /* 129 * 100msec window 130 */ 131 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL, 132 133 /* 134 * Disregard stats, if we don't meet this minimum 135 */ 136 RWB_MIN_WRITE_SAMPLES = 3, 137 138 /* 139 * If we have this number of consecutive windows without enough 140 * information to scale up or down, slowly return to center state 141 * (step == 0). 142 */ 143 RWB_UNKNOWN_BUMP = 5, 144 }; 145 146 static inline bool rwb_enabled(struct rq_wb *rwb) 147 { 148 return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT && 149 rwb->enable_state != WBT_STATE_OFF_MANUAL; 150 } 151 152 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var) 153 { 154 if (rwb_enabled(rwb)) { 155 const unsigned long cur = jiffies; 156 157 if (cur != *var) 158 *var = cur; 159 } 160 } 161 162 /* 163 * If a task was rate throttled in balance_dirty_pages() within the last 164 * second or so, use that to indicate a higher cleaning rate. 165 */ 166 static bool wb_recent_wait(struct rq_wb *rwb) 167 { 168 struct backing_dev_info *bdi = rwb->rqos.disk->bdi; 169 170 return time_before(jiffies, bdi->last_bdp_sleep + HZ); 171 } 172 173 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, 174 enum wbt_flags wb_acct) 175 { 176 if (wb_acct & WBT_SWAP) 177 return &rwb->rq_wait[WBT_RWQ_SWAP]; 178 else if (wb_acct & WBT_DISCARD) 179 return &rwb->rq_wait[WBT_RWQ_DISCARD]; 180 181 return &rwb->rq_wait[WBT_RWQ_BG]; 182 } 183 184 static void rwb_wake_all(struct rq_wb *rwb) 185 { 186 int i; 187 188 for (i = 0; i < WBT_NUM_RWQ; i++) { 189 struct rq_wait *rqw = &rwb->rq_wait[i]; 190 191 if (wq_has_sleeper(&rqw->wait)) 192 wake_up_all(&rqw->wait); 193 } 194 } 195 196 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw, 197 enum wbt_flags wb_acct) 198 { 199 int inflight, limit; 200 201 inflight = atomic_dec_return(&rqw->inflight); 202 203 /* 204 * For discards, our limit is always the background. For writes, if 205 * the device does write back caching, drop further down before we 206 * wake people up. 207 */ 208 if (wb_acct & WBT_DISCARD) 209 limit = rwb->wb_background; 210 else if (blk_queue_write_cache(rwb->rqos.disk->queue) && 211 !wb_recent_wait(rwb)) 212 limit = 0; 213 else 214 limit = rwb->wb_normal; 215 216 /* 217 * Don't wake anyone up if we are above the normal limit. 218 */ 219 if (inflight && inflight >= limit) 220 return; 221 222 if (wq_has_sleeper(&rqw->wait)) { 223 int diff = limit - inflight; 224 225 if (!inflight || diff >= rwb->wb_background / 2) 226 wake_up_all(&rqw->wait); 227 } 228 } 229 230 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct) 231 { 232 struct rq_wb *rwb = RQWB(rqos); 233 struct rq_wait *rqw; 234 235 if (!(wb_acct & WBT_TRACKED)) 236 return; 237 238 rqw = get_rq_wait(rwb, wb_acct); 239 wbt_rqw_done(rwb, rqw, wb_acct); 240 } 241 242 /* 243 * Called on completion of a request. Note that it's also called when 244 * a request is merged, when the request gets freed. 245 */ 246 static void wbt_done(struct rq_qos *rqos, struct request *rq) 247 { 248 struct rq_wb *rwb = RQWB(rqos); 249 250 if (!wbt_is_tracked(rq)) { 251 if (wbt_is_read(rq)) { 252 if (rwb->sync_cookie == rq) { 253 rwb->sync_issue = 0; 254 rwb->sync_cookie = NULL; 255 } 256 257 wb_timestamp(rwb, &rwb->last_comp); 258 } 259 } else { 260 WARN_ON_ONCE(rq == rwb->sync_cookie); 261 __wbt_done(rqos, wbt_flags(rq)); 262 } 263 wbt_clear_state(rq); 264 } 265 266 static inline bool stat_sample_valid(struct blk_rq_stat *stat) 267 { 268 /* 269 * We need at least one read sample, and a minimum of 270 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know 271 * that it's writes impacting us, and not just some sole read on 272 * a device that is in a lower power state. 273 */ 274 return (stat[READ].nr_samples >= 1 && 275 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES); 276 } 277 278 static u64 rwb_sync_issue_lat(struct rq_wb *rwb) 279 { 280 u64 issue = READ_ONCE(rwb->sync_issue); 281 282 if (!issue || !rwb->sync_cookie) 283 return 0; 284 285 return blk_time_get_ns() - issue; 286 } 287 288 static inline unsigned int wbt_inflight(struct rq_wb *rwb) 289 { 290 unsigned int i, ret = 0; 291 292 for (i = 0; i < WBT_NUM_RWQ; i++) 293 ret += atomic_read(&rwb->rq_wait[i].inflight); 294 295 return ret; 296 } 297 298 enum { 299 LAT_OK = 1, 300 LAT_UNKNOWN, 301 LAT_UNKNOWN_WRITES, 302 LAT_EXCEEDED, 303 }; 304 305 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat) 306 { 307 struct backing_dev_info *bdi = rwb->rqos.disk->bdi; 308 struct rq_depth *rqd = &rwb->rq_depth; 309 u64 thislat; 310 311 /* 312 * If our stored sync issue exceeds the window size, or it 313 * exceeds our min target AND we haven't logged any entries, 314 * flag the latency as exceeded. wbt works off completion latencies, 315 * but for a flooded device, a single sync IO can take a long time 316 * to complete after being issued. If this time exceeds our 317 * monitoring window AND we didn't see any other completions in that 318 * window, then count that sync IO as a violation of the latency. 319 */ 320 thislat = rwb_sync_issue_lat(rwb); 321 if (thislat > rwb->cur_win_nsec || 322 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) { 323 trace_wbt_lat(bdi, thislat); 324 return LAT_EXCEEDED; 325 } 326 327 /* 328 * No read/write mix, if stat isn't valid 329 */ 330 if (!stat_sample_valid(stat)) { 331 /* 332 * If we had writes in this stat window and the window is 333 * current, we're only doing writes. If a task recently 334 * waited or still has writes in flights, consider us doing 335 * just writes as well. 336 */ 337 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) || 338 wbt_inflight(rwb)) 339 return LAT_UNKNOWN_WRITES; 340 return LAT_UNKNOWN; 341 } 342 343 /* 344 * If the 'min' latency exceeds our target, step down. 345 */ 346 if (stat[READ].min > rwb->min_lat_nsec) { 347 trace_wbt_lat(bdi, stat[READ].min); 348 trace_wbt_stat(bdi, stat); 349 return LAT_EXCEEDED; 350 } 351 352 if (rqd->scale_step) 353 trace_wbt_stat(bdi, stat); 354 355 return LAT_OK; 356 } 357 358 static void rwb_trace_step(struct rq_wb *rwb, const char *msg) 359 { 360 struct backing_dev_info *bdi = rwb->rqos.disk->bdi; 361 struct rq_depth *rqd = &rwb->rq_depth; 362 363 trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec, 364 rwb->wb_background, rwb->wb_normal, rqd->max_depth); 365 } 366 367 static void calc_wb_limits(struct rq_wb *rwb) 368 { 369 if (rwb->min_lat_nsec == 0) { 370 rwb->wb_normal = rwb->wb_background = 0; 371 } else if (rwb->rq_depth.max_depth <= 2) { 372 rwb->wb_normal = rwb->rq_depth.max_depth; 373 rwb->wb_background = 1; 374 } else { 375 rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2; 376 rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4; 377 } 378 } 379 380 static void scale_up(struct rq_wb *rwb) 381 { 382 if (!rq_depth_scale_up(&rwb->rq_depth)) 383 return; 384 calc_wb_limits(rwb); 385 rwb->unknown_cnt = 0; 386 rwb_wake_all(rwb); 387 rwb_trace_step(rwb, tracepoint_string("scale up")); 388 } 389 390 static void scale_down(struct rq_wb *rwb, bool hard_throttle) 391 { 392 if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle)) 393 return; 394 calc_wb_limits(rwb); 395 rwb->unknown_cnt = 0; 396 rwb_trace_step(rwb, tracepoint_string("scale down")); 397 } 398 399 static void rwb_arm_timer(struct rq_wb *rwb) 400 { 401 struct rq_depth *rqd = &rwb->rq_depth; 402 403 if (rqd->scale_step > 0) { 404 /* 405 * We should speed this up, using some variant of a fast 406 * integer inverse square root calculation. Since we only do 407 * this for every window expiration, it's not a huge deal, 408 * though. 409 */ 410 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4, 411 int_sqrt((rqd->scale_step + 1) << 8)); 412 } else { 413 /* 414 * For step < 0, we don't want to increase/decrease the 415 * window size. 416 */ 417 rwb->cur_win_nsec = rwb->win_nsec; 418 } 419 420 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec); 421 } 422 423 static void wb_timer_fn(struct blk_stat_callback *cb) 424 { 425 struct rq_wb *rwb = cb->data; 426 struct rq_depth *rqd = &rwb->rq_depth; 427 unsigned int inflight = wbt_inflight(rwb); 428 int status; 429 430 if (!rwb->rqos.disk) 431 return; 432 433 status = latency_exceeded(rwb, cb->stat); 434 435 trace_wbt_timer(rwb->rqos.disk->bdi, status, rqd->scale_step, inflight); 436 437 /* 438 * If we exceeded the latency target, step down. If we did not, 439 * step one level up. If we don't know enough to say either exceeded 440 * or ok, then don't do anything. 441 */ 442 switch (status) { 443 case LAT_EXCEEDED: 444 scale_down(rwb, true); 445 break; 446 case LAT_OK: 447 scale_up(rwb); 448 break; 449 case LAT_UNKNOWN_WRITES: 450 /* 451 * We don't have a valid read/write sample, but we do have 452 * writes going on. Allow step to go negative, to increase 453 * write performance. 454 */ 455 scale_up(rwb); 456 break; 457 case LAT_UNKNOWN: 458 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP) 459 break; 460 /* 461 * We get here when previously scaled reduced depth, and we 462 * currently don't have a valid read/write sample. For that 463 * case, slowly return to center state (step == 0). 464 */ 465 if (rqd->scale_step > 0) 466 scale_up(rwb); 467 else if (rqd->scale_step < 0) 468 scale_down(rwb, false); 469 break; 470 default: 471 break; 472 } 473 474 /* 475 * Re-arm timer, if we have IO in flight 476 */ 477 if (rqd->scale_step || inflight) 478 rwb_arm_timer(rwb); 479 } 480 481 static void wbt_update_limits(struct rq_wb *rwb) 482 { 483 struct rq_depth *rqd = &rwb->rq_depth; 484 485 rqd->scale_step = 0; 486 rqd->scaled_max = false; 487 488 rq_depth_calc_max_depth(rqd); 489 calc_wb_limits(rwb); 490 491 rwb_wake_all(rwb); 492 } 493 494 bool wbt_disabled(struct request_queue *q) 495 { 496 struct rq_qos *rqos = wbt_rq_qos(q); 497 498 return !rqos || !rwb_enabled(RQWB(rqos)); 499 } 500 501 u64 wbt_get_min_lat(struct request_queue *q) 502 { 503 struct rq_qos *rqos = wbt_rq_qos(q); 504 if (!rqos) 505 return 0; 506 return RQWB(rqos)->min_lat_nsec; 507 } 508 509 void wbt_set_min_lat(struct request_queue *q, u64 val) 510 { 511 struct rq_qos *rqos = wbt_rq_qos(q); 512 if (!rqos) 513 return; 514 515 RQWB(rqos)->min_lat_nsec = val; 516 if (val) 517 RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL; 518 else 519 RQWB(rqos)->enable_state = WBT_STATE_OFF_MANUAL; 520 521 wbt_update_limits(RQWB(rqos)); 522 } 523 524 525 static bool close_io(struct rq_wb *rwb) 526 { 527 const unsigned long now = jiffies; 528 529 return time_before(now, rwb->last_issue + HZ / 10) || 530 time_before(now, rwb->last_comp + HZ / 10); 531 } 532 533 #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO | REQ_SWAP) 534 535 static inline unsigned int get_limit(struct rq_wb *rwb, blk_opf_t opf) 536 { 537 unsigned int limit; 538 539 if ((opf & REQ_OP_MASK) == REQ_OP_DISCARD) 540 return rwb->wb_background; 541 542 /* 543 * At this point we know it's a buffered write. If this is 544 * swap trying to free memory, or REQ_SYNC is set, then 545 * it's WB_SYNC_ALL writeback, and we'll use the max limit for 546 * that. If the write is marked as a background write, then use 547 * the idle limit, or go to normal if we haven't had competing 548 * IO for a bit. 549 */ 550 if ((opf & REQ_HIPRIO) || wb_recent_wait(rwb)) 551 limit = rwb->rq_depth.max_depth; 552 else if ((opf & REQ_BACKGROUND) || close_io(rwb)) { 553 /* 554 * If less than 100ms since we completed unrelated IO, 555 * limit us to half the depth for background writeback. 556 */ 557 limit = rwb->wb_background; 558 } else 559 limit = rwb->wb_normal; 560 561 return limit; 562 } 563 564 struct wbt_wait_data { 565 struct rq_wb *rwb; 566 enum wbt_flags wb_acct; 567 blk_opf_t opf; 568 }; 569 570 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data) 571 { 572 struct wbt_wait_data *data = private_data; 573 return rq_wait_inc_below(rqw, get_limit(data->rwb, data->opf)); 574 } 575 576 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data) 577 { 578 struct wbt_wait_data *data = private_data; 579 wbt_rqw_done(data->rwb, rqw, data->wb_acct); 580 } 581 582 /* 583 * Block if we will exceed our limit, or if we are currently waiting for 584 * the timer to kick off queuing again. 585 */ 586 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct, 587 blk_opf_t opf) 588 { 589 struct rq_wait *rqw = get_rq_wait(rwb, wb_acct); 590 struct wbt_wait_data data = { 591 .rwb = rwb, 592 .wb_acct = wb_acct, 593 .opf = opf, 594 }; 595 596 rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb); 597 } 598 599 static inline bool wbt_should_throttle(struct bio *bio) 600 { 601 switch (bio_op(bio)) { 602 case REQ_OP_WRITE: 603 /* 604 * Don't throttle WRITE_ODIRECT 605 */ 606 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == 607 (REQ_SYNC | REQ_IDLE)) 608 return false; 609 fallthrough; 610 case REQ_OP_DISCARD: 611 return true; 612 default: 613 return false; 614 } 615 } 616 617 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio) 618 { 619 enum wbt_flags flags = 0; 620 621 if (!rwb_enabled(rwb)) 622 return 0; 623 624 if (bio_op(bio) == REQ_OP_READ) { 625 flags = WBT_READ; 626 } else if (wbt_should_throttle(bio)) { 627 if (bio->bi_opf & REQ_SWAP) 628 flags |= WBT_SWAP; 629 if (bio_op(bio) == REQ_OP_DISCARD) 630 flags |= WBT_DISCARD; 631 flags |= WBT_TRACKED; 632 } 633 return flags; 634 } 635 636 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio) 637 { 638 struct rq_wb *rwb = RQWB(rqos); 639 enum wbt_flags flags = bio_to_wbt_flags(rwb, bio); 640 __wbt_done(rqos, flags); 641 } 642 643 /* May sleep, if we have exceeded the writeback limits. */ 644 static void wbt_wait(struct rq_qos *rqos, struct bio *bio) 645 { 646 struct rq_wb *rwb = RQWB(rqos); 647 enum wbt_flags flags; 648 649 flags = bio_to_wbt_flags(rwb, bio); 650 if (!(flags & WBT_TRACKED)) { 651 if (flags & WBT_READ) 652 wb_timestamp(rwb, &rwb->last_issue); 653 return; 654 } 655 656 __wbt_wait(rwb, flags, bio->bi_opf); 657 658 if (!blk_stat_is_active(rwb->cb)) 659 rwb_arm_timer(rwb); 660 } 661 662 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio) 663 { 664 struct rq_wb *rwb = RQWB(rqos); 665 rq->wbt_flags |= bio_to_wbt_flags(rwb, bio); 666 } 667 668 static void wbt_issue(struct rq_qos *rqos, struct request *rq) 669 { 670 struct rq_wb *rwb = RQWB(rqos); 671 672 if (!rwb_enabled(rwb)) 673 return; 674 675 /* 676 * Track sync issue, in case it takes a long time to complete. Allows us 677 * to react quicker, if a sync IO takes a long time to complete. Note 678 * that this is just a hint. The request can go away when it completes, 679 * so it's important we never dereference it. We only use the address to 680 * compare with, which is why we store the sync_issue time locally. 681 */ 682 if (wbt_is_read(rq) && !rwb->sync_issue) { 683 rwb->sync_cookie = rq; 684 rwb->sync_issue = rq->io_start_time_ns; 685 } 686 } 687 688 static void wbt_requeue(struct rq_qos *rqos, struct request *rq) 689 { 690 struct rq_wb *rwb = RQWB(rqos); 691 if (!rwb_enabled(rwb)) 692 return; 693 if (rq == rwb->sync_cookie) { 694 rwb->sync_issue = 0; 695 rwb->sync_cookie = NULL; 696 } 697 } 698 699 /* 700 * Enable wbt if defaults are configured that way 701 */ 702 void wbt_enable_default(struct gendisk *disk) 703 { 704 struct request_queue *q = disk->queue; 705 struct rq_qos *rqos; 706 bool enable = IS_ENABLED(CONFIG_BLK_WBT_MQ); 707 708 mutex_lock(&disk->rqos_state_mutex); 709 710 if (blk_queue_disable_wbt(q)) 711 enable = false; 712 713 /* Throttling already enabled? */ 714 rqos = wbt_rq_qos(q); 715 if (rqos) { 716 if (enable && RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT) 717 RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT; 718 mutex_unlock(&disk->rqos_state_mutex); 719 return; 720 } 721 mutex_unlock(&disk->rqos_state_mutex); 722 723 /* Queue not registered? Maybe shutting down... */ 724 if (!blk_queue_registered(q)) 725 return; 726 727 if (queue_is_mq(q) && enable) 728 wbt_init(disk); 729 } 730 EXPORT_SYMBOL_GPL(wbt_enable_default); 731 732 u64 wbt_default_latency_nsec(struct request_queue *q) 733 { 734 /* 735 * We default to 2msec for non-rotational storage, and 75msec 736 * for rotational storage. 737 */ 738 if (blk_queue_nonrot(q)) 739 return 2000000ULL; 740 else 741 return 75000000ULL; 742 } 743 744 static int wbt_data_dir(const struct request *rq) 745 { 746 const enum req_op op = req_op(rq); 747 748 if (op == REQ_OP_READ) 749 return READ; 750 else if (op_is_write(op)) 751 return WRITE; 752 753 /* don't account */ 754 return -1; 755 } 756 757 static void wbt_queue_depth_changed(struct rq_qos *rqos) 758 { 759 RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->disk->queue); 760 wbt_update_limits(RQWB(rqos)); 761 } 762 763 static void wbt_exit(struct rq_qos *rqos) 764 { 765 struct rq_wb *rwb = RQWB(rqos); 766 767 blk_stat_remove_callback(rqos->disk->queue, rwb->cb); 768 blk_stat_free_callback(rwb->cb); 769 kfree(rwb); 770 } 771 772 /* 773 * Disable wbt, if enabled by default. 774 */ 775 void wbt_disable_default(struct gendisk *disk) 776 { 777 struct rq_qos *rqos = wbt_rq_qos(disk->queue); 778 struct rq_wb *rwb; 779 if (!rqos) 780 return; 781 mutex_lock(&disk->rqos_state_mutex); 782 rwb = RQWB(rqos); 783 if (rwb->enable_state == WBT_STATE_ON_DEFAULT) { 784 blk_stat_deactivate(rwb->cb); 785 rwb->enable_state = WBT_STATE_OFF_DEFAULT; 786 } 787 mutex_unlock(&disk->rqos_state_mutex); 788 } 789 EXPORT_SYMBOL_GPL(wbt_disable_default); 790 791 #ifdef CONFIG_BLK_DEBUG_FS 792 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m) 793 { 794 struct rq_qos *rqos = data; 795 struct rq_wb *rwb = RQWB(rqos); 796 797 seq_printf(m, "%llu\n", rwb->cur_win_nsec); 798 return 0; 799 } 800 801 static int wbt_enabled_show(void *data, struct seq_file *m) 802 { 803 struct rq_qos *rqos = data; 804 struct rq_wb *rwb = RQWB(rqos); 805 806 seq_printf(m, "%d\n", rwb->enable_state); 807 return 0; 808 } 809 810 static int wbt_id_show(void *data, struct seq_file *m) 811 { 812 struct rq_qos *rqos = data; 813 814 seq_printf(m, "%u\n", rqos->id); 815 return 0; 816 } 817 818 static int wbt_inflight_show(void *data, struct seq_file *m) 819 { 820 struct rq_qos *rqos = data; 821 struct rq_wb *rwb = RQWB(rqos); 822 int i; 823 824 for (i = 0; i < WBT_NUM_RWQ; i++) 825 seq_printf(m, "%d: inflight %d\n", i, 826 atomic_read(&rwb->rq_wait[i].inflight)); 827 return 0; 828 } 829 830 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m) 831 { 832 struct rq_qos *rqos = data; 833 struct rq_wb *rwb = RQWB(rqos); 834 835 seq_printf(m, "%lu\n", rwb->min_lat_nsec); 836 return 0; 837 } 838 839 static int wbt_unknown_cnt_show(void *data, struct seq_file *m) 840 { 841 struct rq_qos *rqos = data; 842 struct rq_wb *rwb = RQWB(rqos); 843 844 seq_printf(m, "%u\n", rwb->unknown_cnt); 845 return 0; 846 } 847 848 static int wbt_normal_show(void *data, struct seq_file *m) 849 { 850 struct rq_qos *rqos = data; 851 struct rq_wb *rwb = RQWB(rqos); 852 853 seq_printf(m, "%u\n", rwb->wb_normal); 854 return 0; 855 } 856 857 static int wbt_background_show(void *data, struct seq_file *m) 858 { 859 struct rq_qos *rqos = data; 860 struct rq_wb *rwb = RQWB(rqos); 861 862 seq_printf(m, "%u\n", rwb->wb_background); 863 return 0; 864 } 865 866 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = { 867 {"curr_win_nsec", 0400, wbt_curr_win_nsec_show}, 868 {"enabled", 0400, wbt_enabled_show}, 869 {"id", 0400, wbt_id_show}, 870 {"inflight", 0400, wbt_inflight_show}, 871 {"min_lat_nsec", 0400, wbt_min_lat_nsec_show}, 872 {"unknown_cnt", 0400, wbt_unknown_cnt_show}, 873 {"wb_normal", 0400, wbt_normal_show}, 874 {"wb_background", 0400, wbt_background_show}, 875 {}, 876 }; 877 #endif 878 879 static const struct rq_qos_ops wbt_rqos_ops = { 880 .throttle = wbt_wait, 881 .issue = wbt_issue, 882 .track = wbt_track, 883 .requeue = wbt_requeue, 884 .done = wbt_done, 885 .cleanup = wbt_cleanup, 886 .queue_depth_changed = wbt_queue_depth_changed, 887 .exit = wbt_exit, 888 #ifdef CONFIG_BLK_DEBUG_FS 889 .debugfs_attrs = wbt_debugfs_attrs, 890 #endif 891 }; 892 893 int wbt_init(struct gendisk *disk) 894 { 895 struct request_queue *q = disk->queue; 896 struct rq_wb *rwb; 897 int i; 898 int ret; 899 900 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL); 901 if (!rwb) 902 return -ENOMEM; 903 904 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb); 905 if (!rwb->cb) { 906 kfree(rwb); 907 return -ENOMEM; 908 } 909 910 for (i = 0; i < WBT_NUM_RWQ; i++) 911 rq_wait_init(&rwb->rq_wait[i]); 912 913 rwb->last_comp = rwb->last_issue = jiffies; 914 rwb->win_nsec = RWB_WINDOW_NSEC; 915 rwb->enable_state = WBT_STATE_ON_DEFAULT; 916 rwb->rq_depth.default_depth = RWB_DEF_DEPTH; 917 rwb->min_lat_nsec = wbt_default_latency_nsec(q); 918 rwb->rq_depth.queue_depth = blk_queue_depth(q); 919 wbt_update_limits(rwb); 920 921 /* 922 * Assign rwb and add the stats callback. 923 */ 924 mutex_lock(&q->rq_qos_mutex); 925 ret = rq_qos_add(&rwb->rqos, disk, RQ_QOS_WBT, &wbt_rqos_ops); 926 mutex_unlock(&q->rq_qos_mutex); 927 if (ret) 928 goto err_free; 929 930 blk_stat_add_callback(q, rwb->cb); 931 932 return 0; 933 934 err_free: 935 blk_stat_free_callback(rwb->cb); 936 kfree(rwb); 937 return ret; 938 939 } 940