1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * buffered writeback throttling. loosely based on CoDel. We can't drop 4 * packets for IO scheduling, so the logic is something like this: 5 * 6 * - Monitor latencies in a defined window of time. 7 * - If the minimum latency in the above window exceeds some target, increment 8 * scaling step and scale down queue depth by a factor of 2x. The monitoring 9 * window is then shrunk to 100 / sqrt(scaling step + 1). 10 * - For any window where we don't have solid data on what the latencies 11 * look like, retain status quo. 12 * - If latencies look good, decrement scaling step. 13 * - If we're only doing writes, allow the scaling step to go negative. This 14 * will temporarily boost write performance, snapping back to a stable 15 * scaling step of 0 if reads show up or the heavy writers finish. Unlike 16 * positive scaling steps where we shrink the monitoring window, a negative 17 * scaling step retains the default step==0 window size. 18 * 19 * Copyright (C) 2016 Jens Axboe 20 * 21 */ 22 #include <linux/kernel.h> 23 #include <linux/blk_types.h> 24 #include <linux/slab.h> 25 #include <linux/backing-dev.h> 26 #include <linux/swap.h> 27 28 #include "blk-stat.h" 29 #include "blk-wbt.h" 30 #include "blk-rq-qos.h" 31 #include "elevator.h" 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/wbt.h> 35 36 enum wbt_flags { 37 WBT_TRACKED = 1, /* write, tracked for throttling */ 38 WBT_READ = 2, /* read */ 39 WBT_KSWAPD = 4, /* write, from kswapd */ 40 WBT_DISCARD = 8, /* discard */ 41 42 WBT_NR_BITS = 4, /* number of bits */ 43 }; 44 45 enum { 46 WBT_RWQ_BG = 0, 47 WBT_RWQ_KSWAPD, 48 WBT_RWQ_DISCARD, 49 WBT_NUM_RWQ, 50 }; 51 52 /* 53 * If current state is WBT_STATE_ON/OFF_DEFAULT, it can be covered to any other 54 * state, if current state is WBT_STATE_ON/OFF_MANUAL, it can only be covered 55 * to WBT_STATE_OFF/ON_MANUAL. 56 */ 57 enum { 58 WBT_STATE_ON_DEFAULT = 1, /* on by default */ 59 WBT_STATE_ON_MANUAL = 2, /* on manually by sysfs */ 60 WBT_STATE_OFF_DEFAULT = 3, /* off by default */ 61 WBT_STATE_OFF_MANUAL = 4, /* off manually by sysfs */ 62 }; 63 64 struct rq_wb { 65 /* 66 * Settings that govern how we throttle 67 */ 68 unsigned int wb_background; /* background writeback */ 69 unsigned int wb_normal; /* normal writeback */ 70 71 short enable_state; /* WBT_STATE_* */ 72 73 /* 74 * Number of consecutive periods where we don't have enough 75 * information to make a firm scale up/down decision. 76 */ 77 unsigned int unknown_cnt; 78 79 u64 win_nsec; /* default window size */ 80 u64 cur_win_nsec; /* current window size */ 81 82 struct blk_stat_callback *cb; 83 84 u64 sync_issue; 85 void *sync_cookie; 86 87 unsigned long last_issue; /* last non-throttled issue */ 88 unsigned long last_comp; /* last non-throttled comp */ 89 unsigned long min_lat_nsec; 90 struct rq_qos rqos; 91 struct rq_wait rq_wait[WBT_NUM_RWQ]; 92 struct rq_depth rq_depth; 93 }; 94 95 static inline struct rq_wb *RQWB(struct rq_qos *rqos) 96 { 97 return container_of(rqos, struct rq_wb, rqos); 98 } 99 100 static inline void wbt_clear_state(struct request *rq) 101 { 102 rq->wbt_flags = 0; 103 } 104 105 static inline enum wbt_flags wbt_flags(struct request *rq) 106 { 107 return rq->wbt_flags; 108 } 109 110 static inline bool wbt_is_tracked(struct request *rq) 111 { 112 return rq->wbt_flags & WBT_TRACKED; 113 } 114 115 static inline bool wbt_is_read(struct request *rq) 116 { 117 return rq->wbt_flags & WBT_READ; 118 } 119 120 enum { 121 /* 122 * Default setting, we'll scale up (to 75% of QD max) or down (min 1) 123 * from here depending on device stats 124 */ 125 RWB_DEF_DEPTH = 16, 126 127 /* 128 * 100msec window 129 */ 130 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL, 131 132 /* 133 * Disregard stats, if we don't meet this minimum 134 */ 135 RWB_MIN_WRITE_SAMPLES = 3, 136 137 /* 138 * If we have this number of consecutive windows with not enough 139 * information to scale up or down, scale up. 140 */ 141 RWB_UNKNOWN_BUMP = 5, 142 }; 143 144 static inline bool rwb_enabled(struct rq_wb *rwb) 145 { 146 return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT && 147 rwb->enable_state != WBT_STATE_OFF_MANUAL; 148 } 149 150 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var) 151 { 152 if (rwb_enabled(rwb)) { 153 const unsigned long cur = jiffies; 154 155 if (cur != *var) 156 *var = cur; 157 } 158 } 159 160 /* 161 * If a task was rate throttled in balance_dirty_pages() within the last 162 * second or so, use that to indicate a higher cleaning rate. 163 */ 164 static bool wb_recent_wait(struct rq_wb *rwb) 165 { 166 struct bdi_writeback *wb = &rwb->rqos.disk->bdi->wb; 167 168 return time_before(jiffies, wb->dirty_sleep + HZ); 169 } 170 171 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, 172 enum wbt_flags wb_acct) 173 { 174 if (wb_acct & WBT_KSWAPD) 175 return &rwb->rq_wait[WBT_RWQ_KSWAPD]; 176 else if (wb_acct & WBT_DISCARD) 177 return &rwb->rq_wait[WBT_RWQ_DISCARD]; 178 179 return &rwb->rq_wait[WBT_RWQ_BG]; 180 } 181 182 static void rwb_wake_all(struct rq_wb *rwb) 183 { 184 int i; 185 186 for (i = 0; i < WBT_NUM_RWQ; i++) { 187 struct rq_wait *rqw = &rwb->rq_wait[i]; 188 189 if (wq_has_sleeper(&rqw->wait)) 190 wake_up_all(&rqw->wait); 191 } 192 } 193 194 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw, 195 enum wbt_flags wb_acct) 196 { 197 int inflight, limit; 198 199 inflight = atomic_dec_return(&rqw->inflight); 200 201 /* 202 * For discards, our limit is always the background. For writes, if 203 * the device does write back caching, drop further down before we 204 * wake people up. 205 */ 206 if (wb_acct & WBT_DISCARD) 207 limit = rwb->wb_background; 208 else if (test_bit(QUEUE_FLAG_WC, &rwb->rqos.disk->queue->queue_flags) && 209 !wb_recent_wait(rwb)) 210 limit = 0; 211 else 212 limit = rwb->wb_normal; 213 214 /* 215 * Don't wake anyone up if we are above the normal limit. 216 */ 217 if (inflight && inflight >= limit) 218 return; 219 220 if (wq_has_sleeper(&rqw->wait)) { 221 int diff = limit - inflight; 222 223 if (!inflight || diff >= rwb->wb_background / 2) 224 wake_up_all(&rqw->wait); 225 } 226 } 227 228 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct) 229 { 230 struct rq_wb *rwb = RQWB(rqos); 231 struct rq_wait *rqw; 232 233 if (!(wb_acct & WBT_TRACKED)) 234 return; 235 236 rqw = get_rq_wait(rwb, wb_acct); 237 wbt_rqw_done(rwb, rqw, wb_acct); 238 } 239 240 /* 241 * Called on completion of a request. Note that it's also called when 242 * a request is merged, when the request gets freed. 243 */ 244 static void wbt_done(struct rq_qos *rqos, struct request *rq) 245 { 246 struct rq_wb *rwb = RQWB(rqos); 247 248 if (!wbt_is_tracked(rq)) { 249 if (rwb->sync_cookie == rq) { 250 rwb->sync_issue = 0; 251 rwb->sync_cookie = NULL; 252 } 253 254 if (wbt_is_read(rq)) 255 wb_timestamp(rwb, &rwb->last_comp); 256 } else { 257 WARN_ON_ONCE(rq == rwb->sync_cookie); 258 __wbt_done(rqos, wbt_flags(rq)); 259 } 260 wbt_clear_state(rq); 261 } 262 263 static inline bool stat_sample_valid(struct blk_rq_stat *stat) 264 { 265 /* 266 * We need at least one read sample, and a minimum of 267 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know 268 * that it's writes impacting us, and not just some sole read on 269 * a device that is in a lower power state. 270 */ 271 return (stat[READ].nr_samples >= 1 && 272 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES); 273 } 274 275 static u64 rwb_sync_issue_lat(struct rq_wb *rwb) 276 { 277 u64 now, issue = READ_ONCE(rwb->sync_issue); 278 279 if (!issue || !rwb->sync_cookie) 280 return 0; 281 282 now = ktime_to_ns(ktime_get()); 283 return now - issue; 284 } 285 286 static inline unsigned int wbt_inflight(struct rq_wb *rwb) 287 { 288 unsigned int i, ret = 0; 289 290 for (i = 0; i < WBT_NUM_RWQ; i++) 291 ret += atomic_read(&rwb->rq_wait[i].inflight); 292 293 return ret; 294 } 295 296 enum { 297 LAT_OK = 1, 298 LAT_UNKNOWN, 299 LAT_UNKNOWN_WRITES, 300 LAT_EXCEEDED, 301 }; 302 303 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat) 304 { 305 struct backing_dev_info *bdi = rwb->rqos.disk->bdi; 306 struct rq_depth *rqd = &rwb->rq_depth; 307 u64 thislat; 308 309 /* 310 * If our stored sync issue exceeds the window size, or it 311 * exceeds our min target AND we haven't logged any entries, 312 * flag the latency as exceeded. wbt works off completion latencies, 313 * but for a flooded device, a single sync IO can take a long time 314 * to complete after being issued. If this time exceeds our 315 * monitoring window AND we didn't see any other completions in that 316 * window, then count that sync IO as a violation of the latency. 317 */ 318 thislat = rwb_sync_issue_lat(rwb); 319 if (thislat > rwb->cur_win_nsec || 320 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) { 321 trace_wbt_lat(bdi, thislat); 322 return LAT_EXCEEDED; 323 } 324 325 /* 326 * No read/write mix, if stat isn't valid 327 */ 328 if (!stat_sample_valid(stat)) { 329 /* 330 * If we had writes in this stat window and the window is 331 * current, we're only doing writes. If a task recently 332 * waited or still has writes in flights, consider us doing 333 * just writes as well. 334 */ 335 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) || 336 wbt_inflight(rwb)) 337 return LAT_UNKNOWN_WRITES; 338 return LAT_UNKNOWN; 339 } 340 341 /* 342 * If the 'min' latency exceeds our target, step down. 343 */ 344 if (stat[READ].min > rwb->min_lat_nsec) { 345 trace_wbt_lat(bdi, stat[READ].min); 346 trace_wbt_stat(bdi, stat); 347 return LAT_EXCEEDED; 348 } 349 350 if (rqd->scale_step) 351 trace_wbt_stat(bdi, stat); 352 353 return LAT_OK; 354 } 355 356 static void rwb_trace_step(struct rq_wb *rwb, const char *msg) 357 { 358 struct backing_dev_info *bdi = rwb->rqos.disk->bdi; 359 struct rq_depth *rqd = &rwb->rq_depth; 360 361 trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec, 362 rwb->wb_background, rwb->wb_normal, rqd->max_depth); 363 } 364 365 static void calc_wb_limits(struct rq_wb *rwb) 366 { 367 if (rwb->min_lat_nsec == 0) { 368 rwb->wb_normal = rwb->wb_background = 0; 369 } else if (rwb->rq_depth.max_depth <= 2) { 370 rwb->wb_normal = rwb->rq_depth.max_depth; 371 rwb->wb_background = 1; 372 } else { 373 rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2; 374 rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4; 375 } 376 } 377 378 static void scale_up(struct rq_wb *rwb) 379 { 380 if (!rq_depth_scale_up(&rwb->rq_depth)) 381 return; 382 calc_wb_limits(rwb); 383 rwb->unknown_cnt = 0; 384 rwb_wake_all(rwb); 385 rwb_trace_step(rwb, tracepoint_string("scale up")); 386 } 387 388 static void scale_down(struct rq_wb *rwb, bool hard_throttle) 389 { 390 if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle)) 391 return; 392 calc_wb_limits(rwb); 393 rwb->unknown_cnt = 0; 394 rwb_trace_step(rwb, tracepoint_string("scale down")); 395 } 396 397 static void rwb_arm_timer(struct rq_wb *rwb) 398 { 399 struct rq_depth *rqd = &rwb->rq_depth; 400 401 if (rqd->scale_step > 0) { 402 /* 403 * We should speed this up, using some variant of a fast 404 * integer inverse square root calculation. Since we only do 405 * this for every window expiration, it's not a huge deal, 406 * though. 407 */ 408 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4, 409 int_sqrt((rqd->scale_step + 1) << 8)); 410 } else { 411 /* 412 * For step < 0, we don't want to increase/decrease the 413 * window size. 414 */ 415 rwb->cur_win_nsec = rwb->win_nsec; 416 } 417 418 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec); 419 } 420 421 static void wb_timer_fn(struct blk_stat_callback *cb) 422 { 423 struct rq_wb *rwb = cb->data; 424 struct rq_depth *rqd = &rwb->rq_depth; 425 unsigned int inflight = wbt_inflight(rwb); 426 int status; 427 428 if (!rwb->rqos.disk) 429 return; 430 431 status = latency_exceeded(rwb, cb->stat); 432 433 trace_wbt_timer(rwb->rqos.disk->bdi, status, rqd->scale_step, inflight); 434 435 /* 436 * If we exceeded the latency target, step down. If we did not, 437 * step one level up. If we don't know enough to say either exceeded 438 * or ok, then don't do anything. 439 */ 440 switch (status) { 441 case LAT_EXCEEDED: 442 scale_down(rwb, true); 443 break; 444 case LAT_OK: 445 scale_up(rwb); 446 break; 447 case LAT_UNKNOWN_WRITES: 448 /* 449 * We started a the center step, but don't have a valid 450 * read/write sample, but we do have writes going on. 451 * Allow step to go negative, to increase write perf. 452 */ 453 scale_up(rwb); 454 break; 455 case LAT_UNKNOWN: 456 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP) 457 break; 458 /* 459 * We get here when previously scaled reduced depth, and we 460 * currently don't have a valid read/write sample. For that 461 * case, slowly return to center state (step == 0). 462 */ 463 if (rqd->scale_step > 0) 464 scale_up(rwb); 465 else if (rqd->scale_step < 0) 466 scale_down(rwb, false); 467 break; 468 default: 469 break; 470 } 471 472 /* 473 * Re-arm timer, if we have IO in flight 474 */ 475 if (rqd->scale_step || inflight) 476 rwb_arm_timer(rwb); 477 } 478 479 static void wbt_update_limits(struct rq_wb *rwb) 480 { 481 struct rq_depth *rqd = &rwb->rq_depth; 482 483 rqd->scale_step = 0; 484 rqd->scaled_max = false; 485 486 rq_depth_calc_max_depth(rqd); 487 calc_wb_limits(rwb); 488 489 rwb_wake_all(rwb); 490 } 491 492 bool wbt_disabled(struct request_queue *q) 493 { 494 struct rq_qos *rqos = wbt_rq_qos(q); 495 496 return !rqos || !rwb_enabled(RQWB(rqos)); 497 } 498 499 u64 wbt_get_min_lat(struct request_queue *q) 500 { 501 struct rq_qos *rqos = wbt_rq_qos(q); 502 if (!rqos) 503 return 0; 504 return RQWB(rqos)->min_lat_nsec; 505 } 506 507 void wbt_set_min_lat(struct request_queue *q, u64 val) 508 { 509 struct rq_qos *rqos = wbt_rq_qos(q); 510 if (!rqos) 511 return; 512 513 RQWB(rqos)->min_lat_nsec = val; 514 if (val) 515 RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL; 516 else 517 RQWB(rqos)->enable_state = WBT_STATE_OFF_MANUAL; 518 519 wbt_update_limits(RQWB(rqos)); 520 } 521 522 523 static bool close_io(struct rq_wb *rwb) 524 { 525 const unsigned long now = jiffies; 526 527 return time_before(now, rwb->last_issue + HZ / 10) || 528 time_before(now, rwb->last_comp + HZ / 10); 529 } 530 531 #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO) 532 533 static inline unsigned int get_limit(struct rq_wb *rwb, blk_opf_t opf) 534 { 535 unsigned int limit; 536 537 if ((opf & REQ_OP_MASK) == REQ_OP_DISCARD) 538 return rwb->wb_background; 539 540 /* 541 * At this point we know it's a buffered write. If this is 542 * kswapd trying to free memory, or REQ_SYNC is set, then 543 * it's WB_SYNC_ALL writeback, and we'll use the max limit for 544 * that. If the write is marked as a background write, then use 545 * the idle limit, or go to normal if we haven't had competing 546 * IO for a bit. 547 */ 548 if ((opf & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd()) 549 limit = rwb->rq_depth.max_depth; 550 else if ((opf & REQ_BACKGROUND) || close_io(rwb)) { 551 /* 552 * If less than 100ms since we completed unrelated IO, 553 * limit us to half the depth for background writeback. 554 */ 555 limit = rwb->wb_background; 556 } else 557 limit = rwb->wb_normal; 558 559 return limit; 560 } 561 562 struct wbt_wait_data { 563 struct rq_wb *rwb; 564 enum wbt_flags wb_acct; 565 blk_opf_t opf; 566 }; 567 568 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data) 569 { 570 struct wbt_wait_data *data = private_data; 571 return rq_wait_inc_below(rqw, get_limit(data->rwb, data->opf)); 572 } 573 574 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data) 575 { 576 struct wbt_wait_data *data = private_data; 577 wbt_rqw_done(data->rwb, rqw, data->wb_acct); 578 } 579 580 /* 581 * Block if we will exceed our limit, or if we are currently waiting for 582 * the timer to kick off queuing again. 583 */ 584 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct, 585 blk_opf_t opf) 586 { 587 struct rq_wait *rqw = get_rq_wait(rwb, wb_acct); 588 struct wbt_wait_data data = { 589 .rwb = rwb, 590 .wb_acct = wb_acct, 591 .opf = opf, 592 }; 593 594 rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb); 595 } 596 597 static inline bool wbt_should_throttle(struct bio *bio) 598 { 599 switch (bio_op(bio)) { 600 case REQ_OP_WRITE: 601 /* 602 * Don't throttle WRITE_ODIRECT 603 */ 604 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == 605 (REQ_SYNC | REQ_IDLE)) 606 return false; 607 fallthrough; 608 case REQ_OP_DISCARD: 609 return true; 610 default: 611 return false; 612 } 613 } 614 615 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio) 616 { 617 enum wbt_flags flags = 0; 618 619 if (!rwb_enabled(rwb)) 620 return 0; 621 622 if (bio_op(bio) == REQ_OP_READ) { 623 flags = WBT_READ; 624 } else if (wbt_should_throttle(bio)) { 625 if (current_is_kswapd()) 626 flags |= WBT_KSWAPD; 627 if (bio_op(bio) == REQ_OP_DISCARD) 628 flags |= WBT_DISCARD; 629 flags |= WBT_TRACKED; 630 } 631 return flags; 632 } 633 634 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio) 635 { 636 struct rq_wb *rwb = RQWB(rqos); 637 enum wbt_flags flags = bio_to_wbt_flags(rwb, bio); 638 __wbt_done(rqos, flags); 639 } 640 641 /* 642 * May sleep, if we have exceeded the writeback limits. Caller can pass 643 * in an irq held spinlock, if it holds one when calling this function. 644 * If we do sleep, we'll release and re-grab it. 645 */ 646 static void wbt_wait(struct rq_qos *rqos, struct bio *bio) 647 { 648 struct rq_wb *rwb = RQWB(rqos); 649 enum wbt_flags flags; 650 651 flags = bio_to_wbt_flags(rwb, bio); 652 if (!(flags & WBT_TRACKED)) { 653 if (flags & WBT_READ) 654 wb_timestamp(rwb, &rwb->last_issue); 655 return; 656 } 657 658 __wbt_wait(rwb, flags, bio->bi_opf); 659 660 if (!blk_stat_is_active(rwb->cb)) 661 rwb_arm_timer(rwb); 662 } 663 664 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio) 665 { 666 struct rq_wb *rwb = RQWB(rqos); 667 rq->wbt_flags |= bio_to_wbt_flags(rwb, bio); 668 } 669 670 static void wbt_issue(struct rq_qos *rqos, struct request *rq) 671 { 672 struct rq_wb *rwb = RQWB(rqos); 673 674 if (!rwb_enabled(rwb)) 675 return; 676 677 /* 678 * Track sync issue, in case it takes a long time to complete. Allows us 679 * to react quicker, if a sync IO takes a long time to complete. Note 680 * that this is just a hint. The request can go away when it completes, 681 * so it's important we never dereference it. We only use the address to 682 * compare with, which is why we store the sync_issue time locally. 683 */ 684 if (wbt_is_read(rq) && !rwb->sync_issue) { 685 rwb->sync_cookie = rq; 686 rwb->sync_issue = rq->io_start_time_ns; 687 } 688 } 689 690 static void wbt_requeue(struct rq_qos *rqos, struct request *rq) 691 { 692 struct rq_wb *rwb = RQWB(rqos); 693 if (!rwb_enabled(rwb)) 694 return; 695 if (rq == rwb->sync_cookie) { 696 rwb->sync_issue = 0; 697 rwb->sync_cookie = NULL; 698 } 699 } 700 701 /* 702 * Enable wbt if defaults are configured that way 703 */ 704 void wbt_enable_default(struct gendisk *disk) 705 { 706 struct request_queue *q = disk->queue; 707 struct rq_qos *rqos; 708 bool enable = IS_ENABLED(CONFIG_BLK_WBT_MQ); 709 710 if (q->elevator && 711 test_bit(ELEVATOR_FLAG_DISABLE_WBT, &q->elevator->flags)) 712 enable = false; 713 714 /* Throttling already enabled? */ 715 rqos = wbt_rq_qos(q); 716 if (rqos) { 717 if (enable && RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT) 718 RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT; 719 return; 720 } 721 722 /* Queue not registered? Maybe shutting down... */ 723 if (!blk_queue_registered(q)) 724 return; 725 726 if (queue_is_mq(q) && enable) 727 wbt_init(disk); 728 } 729 EXPORT_SYMBOL_GPL(wbt_enable_default); 730 731 u64 wbt_default_latency_nsec(struct request_queue *q) 732 { 733 /* 734 * We default to 2msec for non-rotational storage, and 75msec 735 * for rotational storage. 736 */ 737 if (blk_queue_nonrot(q)) 738 return 2000000ULL; 739 else 740 return 75000000ULL; 741 } 742 743 static int wbt_data_dir(const struct request *rq) 744 { 745 const enum req_op op = req_op(rq); 746 747 if (op == REQ_OP_READ) 748 return READ; 749 else if (op_is_write(op)) 750 return WRITE; 751 752 /* don't account */ 753 return -1; 754 } 755 756 static void wbt_queue_depth_changed(struct rq_qos *rqos) 757 { 758 RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->disk->queue); 759 wbt_update_limits(RQWB(rqos)); 760 } 761 762 static void wbt_exit(struct rq_qos *rqos) 763 { 764 struct rq_wb *rwb = RQWB(rqos); 765 766 blk_stat_remove_callback(rqos->disk->queue, rwb->cb); 767 blk_stat_free_callback(rwb->cb); 768 kfree(rwb); 769 } 770 771 /* 772 * Disable wbt, if enabled by default. 773 */ 774 void wbt_disable_default(struct gendisk *disk) 775 { 776 struct rq_qos *rqos = wbt_rq_qos(disk->queue); 777 struct rq_wb *rwb; 778 if (!rqos) 779 return; 780 rwb = RQWB(rqos); 781 if (rwb->enable_state == WBT_STATE_ON_DEFAULT) { 782 blk_stat_deactivate(rwb->cb); 783 rwb->enable_state = WBT_STATE_OFF_DEFAULT; 784 } 785 } 786 EXPORT_SYMBOL_GPL(wbt_disable_default); 787 788 #ifdef CONFIG_BLK_DEBUG_FS 789 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m) 790 { 791 struct rq_qos *rqos = data; 792 struct rq_wb *rwb = RQWB(rqos); 793 794 seq_printf(m, "%llu\n", rwb->cur_win_nsec); 795 return 0; 796 } 797 798 static int wbt_enabled_show(void *data, struct seq_file *m) 799 { 800 struct rq_qos *rqos = data; 801 struct rq_wb *rwb = RQWB(rqos); 802 803 seq_printf(m, "%d\n", rwb->enable_state); 804 return 0; 805 } 806 807 static int wbt_id_show(void *data, struct seq_file *m) 808 { 809 struct rq_qos *rqos = data; 810 811 seq_printf(m, "%u\n", rqos->id); 812 return 0; 813 } 814 815 static int wbt_inflight_show(void *data, struct seq_file *m) 816 { 817 struct rq_qos *rqos = data; 818 struct rq_wb *rwb = RQWB(rqos); 819 int i; 820 821 for (i = 0; i < WBT_NUM_RWQ; i++) 822 seq_printf(m, "%d: inflight %d\n", i, 823 atomic_read(&rwb->rq_wait[i].inflight)); 824 return 0; 825 } 826 827 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m) 828 { 829 struct rq_qos *rqos = data; 830 struct rq_wb *rwb = RQWB(rqos); 831 832 seq_printf(m, "%lu\n", rwb->min_lat_nsec); 833 return 0; 834 } 835 836 static int wbt_unknown_cnt_show(void *data, struct seq_file *m) 837 { 838 struct rq_qos *rqos = data; 839 struct rq_wb *rwb = RQWB(rqos); 840 841 seq_printf(m, "%u\n", rwb->unknown_cnt); 842 return 0; 843 } 844 845 static int wbt_normal_show(void *data, struct seq_file *m) 846 { 847 struct rq_qos *rqos = data; 848 struct rq_wb *rwb = RQWB(rqos); 849 850 seq_printf(m, "%u\n", rwb->wb_normal); 851 return 0; 852 } 853 854 static int wbt_background_show(void *data, struct seq_file *m) 855 { 856 struct rq_qos *rqos = data; 857 struct rq_wb *rwb = RQWB(rqos); 858 859 seq_printf(m, "%u\n", rwb->wb_background); 860 return 0; 861 } 862 863 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = { 864 {"curr_win_nsec", 0400, wbt_curr_win_nsec_show}, 865 {"enabled", 0400, wbt_enabled_show}, 866 {"id", 0400, wbt_id_show}, 867 {"inflight", 0400, wbt_inflight_show}, 868 {"min_lat_nsec", 0400, wbt_min_lat_nsec_show}, 869 {"unknown_cnt", 0400, wbt_unknown_cnt_show}, 870 {"wb_normal", 0400, wbt_normal_show}, 871 {"wb_background", 0400, wbt_background_show}, 872 {}, 873 }; 874 #endif 875 876 static const struct rq_qos_ops wbt_rqos_ops = { 877 .throttle = wbt_wait, 878 .issue = wbt_issue, 879 .track = wbt_track, 880 .requeue = wbt_requeue, 881 .done = wbt_done, 882 .cleanup = wbt_cleanup, 883 .queue_depth_changed = wbt_queue_depth_changed, 884 .exit = wbt_exit, 885 #ifdef CONFIG_BLK_DEBUG_FS 886 .debugfs_attrs = wbt_debugfs_attrs, 887 #endif 888 }; 889 890 int wbt_init(struct gendisk *disk) 891 { 892 struct request_queue *q = disk->queue; 893 struct rq_wb *rwb; 894 int i; 895 int ret; 896 897 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL); 898 if (!rwb) 899 return -ENOMEM; 900 901 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb); 902 if (!rwb->cb) { 903 kfree(rwb); 904 return -ENOMEM; 905 } 906 907 for (i = 0; i < WBT_NUM_RWQ; i++) 908 rq_wait_init(&rwb->rq_wait[i]); 909 910 rwb->last_comp = rwb->last_issue = jiffies; 911 rwb->win_nsec = RWB_WINDOW_NSEC; 912 rwb->enable_state = WBT_STATE_ON_DEFAULT; 913 rwb->rq_depth.default_depth = RWB_DEF_DEPTH; 914 rwb->min_lat_nsec = wbt_default_latency_nsec(q); 915 rwb->rq_depth.queue_depth = blk_queue_depth(q); 916 wbt_update_limits(rwb); 917 918 /* 919 * Assign rwb and add the stats callback. 920 */ 921 mutex_lock(&q->rq_qos_mutex); 922 ret = rq_qos_add(&rwb->rqos, disk, RQ_QOS_WBT, &wbt_rqos_ops); 923 mutex_unlock(&q->rq_qos_mutex); 924 if (ret) 925 goto err_free; 926 927 blk_stat_add_callback(q, rwb->cb); 928 929 return 0; 930 931 err_free: 932 blk_stat_free_callback(rwb->cb); 933 kfree(rwb); 934 return ret; 935 936 } 937