xref: /linux/block/blk-wbt.c (revision 2672031b20f6681514bef14ddcfe8c62c2757d11)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * buffered writeback throttling. loosely based on CoDel. We can't drop
4  * packets for IO scheduling, so the logic is something like this:
5  *
6  * - Monitor latencies in a defined window of time.
7  * - If the minimum latency in the above window exceeds some target, increment
8  *   scaling step and scale down queue depth by a factor of 2x. The monitoring
9  *   window is then shrunk to 100 / sqrt(scaling step + 1).
10  * - For any window where we don't have solid data on what the latencies
11  *   look like, retain status quo.
12  * - If latencies look good, decrement scaling step.
13  * - If we're only doing writes, allow the scaling step to go negative. This
14  *   will temporarily boost write performance, snapping back to a stable
15  *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
16  *   positive scaling steps where we shrink the monitoring window, a negative
17  *   scaling step retains the default step==0 window size.
18  *
19  * Copyright (C) 2016 Jens Axboe
20  *
21  */
22 #include <linux/kernel.h>
23 #include <linux/blk_types.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/swap.h>
27 
28 #include "blk-stat.h"
29 #include "blk-wbt.h"
30 #include "blk-rq-qos.h"
31 #include "elevator.h"
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/wbt.h>
35 
36 enum wbt_flags {
37 	WBT_TRACKED		= 1,	/* write, tracked for throttling */
38 	WBT_READ		= 2,	/* read */
39 	WBT_KSWAPD		= 4,	/* write, from kswapd */
40 	WBT_DISCARD		= 8,	/* discard */
41 
42 	WBT_NR_BITS		= 4,	/* number of bits */
43 };
44 
45 enum {
46 	WBT_RWQ_BG		= 0,
47 	WBT_RWQ_KSWAPD,
48 	WBT_RWQ_DISCARD,
49 	WBT_NUM_RWQ,
50 };
51 
52 /*
53  * If current state is WBT_STATE_ON/OFF_DEFAULT, it can be covered to any other
54  * state, if current state is WBT_STATE_ON/OFF_MANUAL, it can only be covered
55  * to WBT_STATE_OFF/ON_MANUAL.
56  */
57 enum {
58 	WBT_STATE_ON_DEFAULT	= 1,	/* on by default */
59 	WBT_STATE_ON_MANUAL	= 2,	/* on manually by sysfs */
60 	WBT_STATE_OFF_DEFAULT	= 3,	/* off by default */
61 	WBT_STATE_OFF_MANUAL	= 4,	/* off manually by sysfs */
62 };
63 
64 struct rq_wb {
65 	/*
66 	 * Settings that govern how we throttle
67 	 */
68 	unsigned int wb_background;		/* background writeback */
69 	unsigned int wb_normal;			/* normal writeback */
70 
71 	short enable_state;			/* WBT_STATE_* */
72 
73 	/*
74 	 * Number of consecutive periods where we don't have enough
75 	 * information to make a firm scale up/down decision.
76 	 */
77 	unsigned int unknown_cnt;
78 
79 	u64 win_nsec;				/* default window size */
80 	u64 cur_win_nsec;			/* current window size */
81 
82 	struct blk_stat_callback *cb;
83 
84 	u64 sync_issue;
85 	void *sync_cookie;
86 
87 	unsigned long last_issue;		/* last non-throttled issue */
88 	unsigned long last_comp;		/* last non-throttled comp */
89 	unsigned long min_lat_nsec;
90 	struct rq_qos rqos;
91 	struct rq_wait rq_wait[WBT_NUM_RWQ];
92 	struct rq_depth rq_depth;
93 };
94 
95 static inline struct rq_wb *RQWB(struct rq_qos *rqos)
96 {
97 	return container_of(rqos, struct rq_wb, rqos);
98 }
99 
100 static inline void wbt_clear_state(struct request *rq)
101 {
102 	rq->wbt_flags = 0;
103 }
104 
105 static inline enum wbt_flags wbt_flags(struct request *rq)
106 {
107 	return rq->wbt_flags;
108 }
109 
110 static inline bool wbt_is_tracked(struct request *rq)
111 {
112 	return rq->wbt_flags & WBT_TRACKED;
113 }
114 
115 static inline bool wbt_is_read(struct request *rq)
116 {
117 	return rq->wbt_flags & WBT_READ;
118 }
119 
120 enum {
121 	/*
122 	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
123 	 * from here depending on device stats
124 	 */
125 	RWB_DEF_DEPTH	= 16,
126 
127 	/*
128 	 * 100msec window
129 	 */
130 	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,
131 
132 	/*
133 	 * Disregard stats, if we don't meet this minimum
134 	 */
135 	RWB_MIN_WRITE_SAMPLES	= 3,
136 
137 	/*
138 	 * If we have this number of consecutive windows with not enough
139 	 * information to scale up or down, scale up.
140 	 */
141 	RWB_UNKNOWN_BUMP	= 5,
142 };
143 
144 static inline bool rwb_enabled(struct rq_wb *rwb)
145 {
146 	return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT &&
147 		      rwb->enable_state != WBT_STATE_OFF_MANUAL;
148 }
149 
150 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
151 {
152 	if (rwb_enabled(rwb)) {
153 		const unsigned long cur = jiffies;
154 
155 		if (cur != *var)
156 			*var = cur;
157 	}
158 }
159 
160 /*
161  * If a task was rate throttled in balance_dirty_pages() within the last
162  * second or so, use that to indicate a higher cleaning rate.
163  */
164 static bool wb_recent_wait(struct rq_wb *rwb)
165 {
166 	struct bdi_writeback *wb = &rwb->rqos.disk->bdi->wb;
167 
168 	return time_before(jiffies, wb->dirty_sleep + HZ);
169 }
170 
171 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
172 					  enum wbt_flags wb_acct)
173 {
174 	if (wb_acct & WBT_KSWAPD)
175 		return &rwb->rq_wait[WBT_RWQ_KSWAPD];
176 	else if (wb_acct & WBT_DISCARD)
177 		return &rwb->rq_wait[WBT_RWQ_DISCARD];
178 
179 	return &rwb->rq_wait[WBT_RWQ_BG];
180 }
181 
182 static void rwb_wake_all(struct rq_wb *rwb)
183 {
184 	int i;
185 
186 	for (i = 0; i < WBT_NUM_RWQ; i++) {
187 		struct rq_wait *rqw = &rwb->rq_wait[i];
188 
189 		if (wq_has_sleeper(&rqw->wait))
190 			wake_up_all(&rqw->wait);
191 	}
192 }
193 
194 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
195 			 enum wbt_flags wb_acct)
196 {
197 	int inflight, limit;
198 
199 	inflight = atomic_dec_return(&rqw->inflight);
200 
201 	/*
202 	 * For discards, our limit is always the background. For writes, if
203 	 * the device does write back caching, drop further down before we
204 	 * wake people up.
205 	 */
206 	if (wb_acct & WBT_DISCARD)
207 		limit = rwb->wb_background;
208 	else if (test_bit(QUEUE_FLAG_WC, &rwb->rqos.disk->queue->queue_flags) &&
209 	         !wb_recent_wait(rwb))
210 		limit = 0;
211 	else
212 		limit = rwb->wb_normal;
213 
214 	/*
215 	 * Don't wake anyone up if we are above the normal limit.
216 	 */
217 	if (inflight && inflight >= limit)
218 		return;
219 
220 	if (wq_has_sleeper(&rqw->wait)) {
221 		int diff = limit - inflight;
222 
223 		if (!inflight || diff >= rwb->wb_background / 2)
224 			wake_up_all(&rqw->wait);
225 	}
226 }
227 
228 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
229 {
230 	struct rq_wb *rwb = RQWB(rqos);
231 	struct rq_wait *rqw;
232 
233 	if (!(wb_acct & WBT_TRACKED))
234 		return;
235 
236 	rqw = get_rq_wait(rwb, wb_acct);
237 	wbt_rqw_done(rwb, rqw, wb_acct);
238 }
239 
240 /*
241  * Called on completion of a request. Note that it's also called when
242  * a request is merged, when the request gets freed.
243  */
244 static void wbt_done(struct rq_qos *rqos, struct request *rq)
245 {
246 	struct rq_wb *rwb = RQWB(rqos);
247 
248 	if (!wbt_is_tracked(rq)) {
249 		if (rwb->sync_cookie == rq) {
250 			rwb->sync_issue = 0;
251 			rwb->sync_cookie = NULL;
252 		}
253 
254 		if (wbt_is_read(rq))
255 			wb_timestamp(rwb, &rwb->last_comp);
256 	} else {
257 		WARN_ON_ONCE(rq == rwb->sync_cookie);
258 		__wbt_done(rqos, wbt_flags(rq));
259 	}
260 	wbt_clear_state(rq);
261 }
262 
263 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
264 {
265 	/*
266 	 * We need at least one read sample, and a minimum of
267 	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
268 	 * that it's writes impacting us, and not just some sole read on
269 	 * a device that is in a lower power state.
270 	 */
271 	return (stat[READ].nr_samples >= 1 &&
272 		stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
273 }
274 
275 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
276 {
277 	u64 now, issue = READ_ONCE(rwb->sync_issue);
278 
279 	if (!issue || !rwb->sync_cookie)
280 		return 0;
281 
282 	now = ktime_to_ns(ktime_get());
283 	return now - issue;
284 }
285 
286 static inline unsigned int wbt_inflight(struct rq_wb *rwb)
287 {
288 	unsigned int i, ret = 0;
289 
290 	for (i = 0; i < WBT_NUM_RWQ; i++)
291 		ret += atomic_read(&rwb->rq_wait[i].inflight);
292 
293 	return ret;
294 }
295 
296 enum {
297 	LAT_OK = 1,
298 	LAT_UNKNOWN,
299 	LAT_UNKNOWN_WRITES,
300 	LAT_EXCEEDED,
301 };
302 
303 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
304 {
305 	struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
306 	struct rq_depth *rqd = &rwb->rq_depth;
307 	u64 thislat;
308 
309 	/*
310 	 * If our stored sync issue exceeds the window size, or it
311 	 * exceeds our min target AND we haven't logged any entries,
312 	 * flag the latency as exceeded. wbt works off completion latencies,
313 	 * but for a flooded device, a single sync IO can take a long time
314 	 * to complete after being issued. If this time exceeds our
315 	 * monitoring window AND we didn't see any other completions in that
316 	 * window, then count that sync IO as a violation of the latency.
317 	 */
318 	thislat = rwb_sync_issue_lat(rwb);
319 	if (thislat > rwb->cur_win_nsec ||
320 	    (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
321 		trace_wbt_lat(bdi, thislat);
322 		return LAT_EXCEEDED;
323 	}
324 
325 	/*
326 	 * No read/write mix, if stat isn't valid
327 	 */
328 	if (!stat_sample_valid(stat)) {
329 		/*
330 		 * If we had writes in this stat window and the window is
331 		 * current, we're only doing writes. If a task recently
332 		 * waited or still has writes in flights, consider us doing
333 		 * just writes as well.
334 		 */
335 		if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
336 		    wbt_inflight(rwb))
337 			return LAT_UNKNOWN_WRITES;
338 		return LAT_UNKNOWN;
339 	}
340 
341 	/*
342 	 * If the 'min' latency exceeds our target, step down.
343 	 */
344 	if (stat[READ].min > rwb->min_lat_nsec) {
345 		trace_wbt_lat(bdi, stat[READ].min);
346 		trace_wbt_stat(bdi, stat);
347 		return LAT_EXCEEDED;
348 	}
349 
350 	if (rqd->scale_step)
351 		trace_wbt_stat(bdi, stat);
352 
353 	return LAT_OK;
354 }
355 
356 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
357 {
358 	struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
359 	struct rq_depth *rqd = &rwb->rq_depth;
360 
361 	trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
362 			rwb->wb_background, rwb->wb_normal, rqd->max_depth);
363 }
364 
365 static void calc_wb_limits(struct rq_wb *rwb)
366 {
367 	if (rwb->min_lat_nsec == 0) {
368 		rwb->wb_normal = rwb->wb_background = 0;
369 	} else if (rwb->rq_depth.max_depth <= 2) {
370 		rwb->wb_normal = rwb->rq_depth.max_depth;
371 		rwb->wb_background = 1;
372 	} else {
373 		rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
374 		rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
375 	}
376 }
377 
378 static void scale_up(struct rq_wb *rwb)
379 {
380 	if (!rq_depth_scale_up(&rwb->rq_depth))
381 		return;
382 	calc_wb_limits(rwb);
383 	rwb->unknown_cnt = 0;
384 	rwb_wake_all(rwb);
385 	rwb_trace_step(rwb, tracepoint_string("scale up"));
386 }
387 
388 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
389 {
390 	if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle))
391 		return;
392 	calc_wb_limits(rwb);
393 	rwb->unknown_cnt = 0;
394 	rwb_trace_step(rwb, tracepoint_string("scale down"));
395 }
396 
397 static void rwb_arm_timer(struct rq_wb *rwb)
398 {
399 	struct rq_depth *rqd = &rwb->rq_depth;
400 
401 	if (rqd->scale_step > 0) {
402 		/*
403 		 * We should speed this up, using some variant of a fast
404 		 * integer inverse square root calculation. Since we only do
405 		 * this for every window expiration, it's not a huge deal,
406 		 * though.
407 		 */
408 		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
409 					int_sqrt((rqd->scale_step + 1) << 8));
410 	} else {
411 		/*
412 		 * For step < 0, we don't want to increase/decrease the
413 		 * window size.
414 		 */
415 		rwb->cur_win_nsec = rwb->win_nsec;
416 	}
417 
418 	blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
419 }
420 
421 static void wb_timer_fn(struct blk_stat_callback *cb)
422 {
423 	struct rq_wb *rwb = cb->data;
424 	struct rq_depth *rqd = &rwb->rq_depth;
425 	unsigned int inflight = wbt_inflight(rwb);
426 	int status;
427 
428 	if (!rwb->rqos.disk)
429 		return;
430 
431 	status = latency_exceeded(rwb, cb->stat);
432 
433 	trace_wbt_timer(rwb->rqos.disk->bdi, status, rqd->scale_step, inflight);
434 
435 	/*
436 	 * If we exceeded the latency target, step down. If we did not,
437 	 * step one level up. If we don't know enough to say either exceeded
438 	 * or ok, then don't do anything.
439 	 */
440 	switch (status) {
441 	case LAT_EXCEEDED:
442 		scale_down(rwb, true);
443 		break;
444 	case LAT_OK:
445 		scale_up(rwb);
446 		break;
447 	case LAT_UNKNOWN_WRITES:
448 		/*
449 		 * We started a the center step, but don't have a valid
450 		 * read/write sample, but we do have writes going on.
451 		 * Allow step to go negative, to increase write perf.
452 		 */
453 		scale_up(rwb);
454 		break;
455 	case LAT_UNKNOWN:
456 		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
457 			break;
458 		/*
459 		 * We get here when previously scaled reduced depth, and we
460 		 * currently don't have a valid read/write sample. For that
461 		 * case, slowly return to center state (step == 0).
462 		 */
463 		if (rqd->scale_step > 0)
464 			scale_up(rwb);
465 		else if (rqd->scale_step < 0)
466 			scale_down(rwb, false);
467 		break;
468 	default:
469 		break;
470 	}
471 
472 	/*
473 	 * Re-arm timer, if we have IO in flight
474 	 */
475 	if (rqd->scale_step || inflight)
476 		rwb_arm_timer(rwb);
477 }
478 
479 static void wbt_update_limits(struct rq_wb *rwb)
480 {
481 	struct rq_depth *rqd = &rwb->rq_depth;
482 
483 	rqd->scale_step = 0;
484 	rqd->scaled_max = false;
485 
486 	rq_depth_calc_max_depth(rqd);
487 	calc_wb_limits(rwb);
488 
489 	rwb_wake_all(rwb);
490 }
491 
492 bool wbt_disabled(struct request_queue *q)
493 {
494 	struct rq_qos *rqos = wbt_rq_qos(q);
495 
496 	return !rqos || !rwb_enabled(RQWB(rqos));
497 }
498 
499 u64 wbt_get_min_lat(struct request_queue *q)
500 {
501 	struct rq_qos *rqos = wbt_rq_qos(q);
502 	if (!rqos)
503 		return 0;
504 	return RQWB(rqos)->min_lat_nsec;
505 }
506 
507 void wbt_set_min_lat(struct request_queue *q, u64 val)
508 {
509 	struct rq_qos *rqos = wbt_rq_qos(q);
510 	if (!rqos)
511 		return;
512 
513 	RQWB(rqos)->min_lat_nsec = val;
514 	if (val)
515 		RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
516 	else
517 		RQWB(rqos)->enable_state = WBT_STATE_OFF_MANUAL;
518 
519 	wbt_update_limits(RQWB(rqos));
520 }
521 
522 
523 static bool close_io(struct rq_wb *rwb)
524 {
525 	const unsigned long now = jiffies;
526 
527 	return time_before(now, rwb->last_issue + HZ / 10) ||
528 		time_before(now, rwb->last_comp + HZ / 10);
529 }
530 
531 #define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO)
532 
533 static inline unsigned int get_limit(struct rq_wb *rwb, blk_opf_t opf)
534 {
535 	unsigned int limit;
536 
537 	if ((opf & REQ_OP_MASK) == REQ_OP_DISCARD)
538 		return rwb->wb_background;
539 
540 	/*
541 	 * At this point we know it's a buffered write. If this is
542 	 * kswapd trying to free memory, or REQ_SYNC is set, then
543 	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
544 	 * that. If the write is marked as a background write, then use
545 	 * the idle limit, or go to normal if we haven't had competing
546 	 * IO for a bit.
547 	 */
548 	if ((opf & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
549 		limit = rwb->rq_depth.max_depth;
550 	else if ((opf & REQ_BACKGROUND) || close_io(rwb)) {
551 		/*
552 		 * If less than 100ms since we completed unrelated IO,
553 		 * limit us to half the depth for background writeback.
554 		 */
555 		limit = rwb->wb_background;
556 	} else
557 		limit = rwb->wb_normal;
558 
559 	return limit;
560 }
561 
562 struct wbt_wait_data {
563 	struct rq_wb *rwb;
564 	enum wbt_flags wb_acct;
565 	blk_opf_t opf;
566 };
567 
568 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
569 {
570 	struct wbt_wait_data *data = private_data;
571 	return rq_wait_inc_below(rqw, get_limit(data->rwb, data->opf));
572 }
573 
574 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
575 {
576 	struct wbt_wait_data *data = private_data;
577 	wbt_rqw_done(data->rwb, rqw, data->wb_acct);
578 }
579 
580 /*
581  * Block if we will exceed our limit, or if we are currently waiting for
582  * the timer to kick off queuing again.
583  */
584 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
585 		       blk_opf_t opf)
586 {
587 	struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
588 	struct wbt_wait_data data = {
589 		.rwb = rwb,
590 		.wb_acct = wb_acct,
591 		.opf = opf,
592 	};
593 
594 	rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
595 }
596 
597 static inline bool wbt_should_throttle(struct bio *bio)
598 {
599 	switch (bio_op(bio)) {
600 	case REQ_OP_WRITE:
601 		/*
602 		 * Don't throttle WRITE_ODIRECT
603 		 */
604 		if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
605 		    (REQ_SYNC | REQ_IDLE))
606 			return false;
607 		fallthrough;
608 	case REQ_OP_DISCARD:
609 		return true;
610 	default:
611 		return false;
612 	}
613 }
614 
615 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
616 {
617 	enum wbt_flags flags = 0;
618 
619 	if (!rwb_enabled(rwb))
620 		return 0;
621 
622 	if (bio_op(bio) == REQ_OP_READ) {
623 		flags = WBT_READ;
624 	} else if (wbt_should_throttle(bio)) {
625 		if (current_is_kswapd())
626 			flags |= WBT_KSWAPD;
627 		if (bio_op(bio) == REQ_OP_DISCARD)
628 			flags |= WBT_DISCARD;
629 		flags |= WBT_TRACKED;
630 	}
631 	return flags;
632 }
633 
634 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
635 {
636 	struct rq_wb *rwb = RQWB(rqos);
637 	enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
638 	__wbt_done(rqos, flags);
639 }
640 
641 /*
642  * May sleep, if we have exceeded the writeback limits. Caller can pass
643  * in an irq held spinlock, if it holds one when calling this function.
644  * If we do sleep, we'll release and re-grab it.
645  */
646 static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
647 {
648 	struct rq_wb *rwb = RQWB(rqos);
649 	enum wbt_flags flags;
650 
651 	flags = bio_to_wbt_flags(rwb, bio);
652 	if (!(flags & WBT_TRACKED)) {
653 		if (flags & WBT_READ)
654 			wb_timestamp(rwb, &rwb->last_issue);
655 		return;
656 	}
657 
658 	__wbt_wait(rwb, flags, bio->bi_opf);
659 
660 	if (!blk_stat_is_active(rwb->cb))
661 		rwb_arm_timer(rwb);
662 }
663 
664 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
665 {
666 	struct rq_wb *rwb = RQWB(rqos);
667 	rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
668 }
669 
670 static void wbt_issue(struct rq_qos *rqos, struct request *rq)
671 {
672 	struct rq_wb *rwb = RQWB(rqos);
673 
674 	if (!rwb_enabled(rwb))
675 		return;
676 
677 	/*
678 	 * Track sync issue, in case it takes a long time to complete. Allows us
679 	 * to react quicker, if a sync IO takes a long time to complete. Note
680 	 * that this is just a hint. The request can go away when it completes,
681 	 * so it's important we never dereference it. We only use the address to
682 	 * compare with, which is why we store the sync_issue time locally.
683 	 */
684 	if (wbt_is_read(rq) && !rwb->sync_issue) {
685 		rwb->sync_cookie = rq;
686 		rwb->sync_issue = rq->io_start_time_ns;
687 	}
688 }
689 
690 static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
691 {
692 	struct rq_wb *rwb = RQWB(rqos);
693 	if (!rwb_enabled(rwb))
694 		return;
695 	if (rq == rwb->sync_cookie) {
696 		rwb->sync_issue = 0;
697 		rwb->sync_cookie = NULL;
698 	}
699 }
700 
701 /*
702  * Enable wbt if defaults are configured that way
703  */
704 void wbt_enable_default(struct gendisk *disk)
705 {
706 	struct request_queue *q = disk->queue;
707 	struct rq_qos *rqos;
708 	bool enable = IS_ENABLED(CONFIG_BLK_WBT_MQ);
709 
710 	if (q->elevator &&
711 	    test_bit(ELEVATOR_FLAG_DISABLE_WBT, &q->elevator->flags))
712 		enable = false;
713 
714 	/* Throttling already enabled? */
715 	rqos = wbt_rq_qos(q);
716 	if (rqos) {
717 		if (enable && RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT)
718 			RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT;
719 		return;
720 	}
721 
722 	/* Queue not registered? Maybe shutting down... */
723 	if (!blk_queue_registered(q))
724 		return;
725 
726 	if (queue_is_mq(q) && enable)
727 		wbt_init(disk);
728 }
729 EXPORT_SYMBOL_GPL(wbt_enable_default);
730 
731 u64 wbt_default_latency_nsec(struct request_queue *q)
732 {
733 	/*
734 	 * We default to 2msec for non-rotational storage, and 75msec
735 	 * for rotational storage.
736 	 */
737 	if (blk_queue_nonrot(q))
738 		return 2000000ULL;
739 	else
740 		return 75000000ULL;
741 }
742 
743 static int wbt_data_dir(const struct request *rq)
744 {
745 	const enum req_op op = req_op(rq);
746 
747 	if (op == REQ_OP_READ)
748 		return READ;
749 	else if (op_is_write(op))
750 		return WRITE;
751 
752 	/* don't account */
753 	return -1;
754 }
755 
756 static void wbt_queue_depth_changed(struct rq_qos *rqos)
757 {
758 	RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->disk->queue);
759 	wbt_update_limits(RQWB(rqos));
760 }
761 
762 static void wbt_exit(struct rq_qos *rqos)
763 {
764 	struct rq_wb *rwb = RQWB(rqos);
765 
766 	blk_stat_remove_callback(rqos->disk->queue, rwb->cb);
767 	blk_stat_free_callback(rwb->cb);
768 	kfree(rwb);
769 }
770 
771 /*
772  * Disable wbt, if enabled by default.
773  */
774 void wbt_disable_default(struct gendisk *disk)
775 {
776 	struct rq_qos *rqos = wbt_rq_qos(disk->queue);
777 	struct rq_wb *rwb;
778 	if (!rqos)
779 		return;
780 	rwb = RQWB(rqos);
781 	if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
782 		blk_stat_deactivate(rwb->cb);
783 		rwb->enable_state = WBT_STATE_OFF_DEFAULT;
784 	}
785 }
786 EXPORT_SYMBOL_GPL(wbt_disable_default);
787 
788 #ifdef CONFIG_BLK_DEBUG_FS
789 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
790 {
791 	struct rq_qos *rqos = data;
792 	struct rq_wb *rwb = RQWB(rqos);
793 
794 	seq_printf(m, "%llu\n", rwb->cur_win_nsec);
795 	return 0;
796 }
797 
798 static int wbt_enabled_show(void *data, struct seq_file *m)
799 {
800 	struct rq_qos *rqos = data;
801 	struct rq_wb *rwb = RQWB(rqos);
802 
803 	seq_printf(m, "%d\n", rwb->enable_state);
804 	return 0;
805 }
806 
807 static int wbt_id_show(void *data, struct seq_file *m)
808 {
809 	struct rq_qos *rqos = data;
810 
811 	seq_printf(m, "%u\n", rqos->id);
812 	return 0;
813 }
814 
815 static int wbt_inflight_show(void *data, struct seq_file *m)
816 {
817 	struct rq_qos *rqos = data;
818 	struct rq_wb *rwb = RQWB(rqos);
819 	int i;
820 
821 	for (i = 0; i < WBT_NUM_RWQ; i++)
822 		seq_printf(m, "%d: inflight %d\n", i,
823 			   atomic_read(&rwb->rq_wait[i].inflight));
824 	return 0;
825 }
826 
827 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
828 {
829 	struct rq_qos *rqos = data;
830 	struct rq_wb *rwb = RQWB(rqos);
831 
832 	seq_printf(m, "%lu\n", rwb->min_lat_nsec);
833 	return 0;
834 }
835 
836 static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
837 {
838 	struct rq_qos *rqos = data;
839 	struct rq_wb *rwb = RQWB(rqos);
840 
841 	seq_printf(m, "%u\n", rwb->unknown_cnt);
842 	return 0;
843 }
844 
845 static int wbt_normal_show(void *data, struct seq_file *m)
846 {
847 	struct rq_qos *rqos = data;
848 	struct rq_wb *rwb = RQWB(rqos);
849 
850 	seq_printf(m, "%u\n", rwb->wb_normal);
851 	return 0;
852 }
853 
854 static int wbt_background_show(void *data, struct seq_file *m)
855 {
856 	struct rq_qos *rqos = data;
857 	struct rq_wb *rwb = RQWB(rqos);
858 
859 	seq_printf(m, "%u\n", rwb->wb_background);
860 	return 0;
861 }
862 
863 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
864 	{"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
865 	{"enabled", 0400, wbt_enabled_show},
866 	{"id", 0400, wbt_id_show},
867 	{"inflight", 0400, wbt_inflight_show},
868 	{"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
869 	{"unknown_cnt", 0400, wbt_unknown_cnt_show},
870 	{"wb_normal", 0400, wbt_normal_show},
871 	{"wb_background", 0400, wbt_background_show},
872 	{},
873 };
874 #endif
875 
876 static const struct rq_qos_ops wbt_rqos_ops = {
877 	.throttle = wbt_wait,
878 	.issue = wbt_issue,
879 	.track = wbt_track,
880 	.requeue = wbt_requeue,
881 	.done = wbt_done,
882 	.cleanup = wbt_cleanup,
883 	.queue_depth_changed = wbt_queue_depth_changed,
884 	.exit = wbt_exit,
885 #ifdef CONFIG_BLK_DEBUG_FS
886 	.debugfs_attrs = wbt_debugfs_attrs,
887 #endif
888 };
889 
890 int wbt_init(struct gendisk *disk)
891 {
892 	struct request_queue *q = disk->queue;
893 	struct rq_wb *rwb;
894 	int i;
895 	int ret;
896 
897 	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
898 	if (!rwb)
899 		return -ENOMEM;
900 
901 	rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
902 	if (!rwb->cb) {
903 		kfree(rwb);
904 		return -ENOMEM;
905 	}
906 
907 	for (i = 0; i < WBT_NUM_RWQ; i++)
908 		rq_wait_init(&rwb->rq_wait[i]);
909 
910 	rwb->last_comp = rwb->last_issue = jiffies;
911 	rwb->win_nsec = RWB_WINDOW_NSEC;
912 	rwb->enable_state = WBT_STATE_ON_DEFAULT;
913 	rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
914 	rwb->min_lat_nsec = wbt_default_latency_nsec(q);
915 	rwb->rq_depth.queue_depth = blk_queue_depth(q);
916 	wbt_update_limits(rwb);
917 
918 	/*
919 	 * Assign rwb and add the stats callback.
920 	 */
921 	mutex_lock(&q->rq_qos_mutex);
922 	ret = rq_qos_add(&rwb->rqos, disk, RQ_QOS_WBT, &wbt_rqos_ops);
923 	mutex_unlock(&q->rq_qos_mutex);
924 	if (ret)
925 		goto err_free;
926 
927 	blk_stat_add_callback(q, rwb->cb);
928 
929 	return 0;
930 
931 err_free:
932 	blk_stat_free_callback(rwb->cb);
933 	kfree(rwb);
934 	return ret;
935 
936 }
937